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ABSTRACT

Crowdsourcing platforms depend on the quality of work provided

by a distributed workforce. Yet, it is challenging to dependably

measure the reliability of these workers, particularly in the face of

strategic or malicious behavior. In this paper, we present a dynamic

and efficient solution to keep tracking workers’ reliability. In par-

ticular, we use both gold standard evaluation and peer consistency

evaluation to measure each worker performance, and adjust the

proportion of the two types of evaluation according to the estimated

distribution of workers’ behavior (e.g., being reliable or malicious).

Through experiments over real Amazon Mechanical Turk traces,

we find that our approach has a significant gain in terms of accuracy

and cost compared to state-of-the-art algorithms.
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1 INTRODUCTION

Crowdsourcing platforms successfully leverage the attention of

millions of users to tackle traditionally repetitive problems that

are difficult to automate. Through Crowdsourcing, individuals or

companies can obtain services, ideas, or content by soliciting con-

tributions from a large group of people, especially from the online

community instead of traditional employees. Crowdsourcing can

offer lower prices, compared to the price of hiring dedicated profes-

sionals for the same tasks. Furthermore, with the low price come a

large number of workers who are available to work at any time, as

Crowdsourcing platforms usually have a low barrier to entry.

Yet, these systems suffer from some important limitations. One

such limitation is the reliability of the outcomes as they are gener-

ated by workers with diverse profiles [20]. As the responses to tasks

are often too large to be verified, workers’ quality is difficult to

Proc. of the 17th International Conference on Autonomous Agents and Multiagent Systems
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control and wrong answers are hard to be efficiently detected. Some

workers may be unable or unwilling to put necessary efforts to com-

plete tasks with accuracy. Others, referred to as malicious workers,

may instead be driven by hidden agenda, and purposely provide

biased answers (e.g., promote a certain object or sway classification

tasks toward a certain value) [18, 19].

To this date, a number of approaches have been proposed to

deal with inaccuracies of crowd worker responses (e.g., [15, 20]).

A straightforward strategy is to pre-select workers based on their

responses to a pre-screen questionnaire. Unfortunately, an initial

filtering method is not sufficient to evaluate workers’ reliability,

as there is no continued incentive for workers to submit correct

answers after finishing the initial screening. As a solution, some

recent works propose to randomly inject gold tasks (i.e., tasks with

a universal truth value, and which the truth answers are known

by the task requester) into the work flow to estimate the workers’

accuracy. This approach is called gold standard evaluation or gold

evaluation [12, 17]. By checking responses to gold tasks one can

always accurately measure whether the workers’ responses are

correct or not. Yet, this approach can be very costly: gold tasks

need to be known before-hand and workers essentially will be paid

for tasks for which truth value is known [12, 17]. To reduce costs,

the requesters may employ a small sample of gold tasks. In turn,

this possibly affects the effectiveness of the workers’ evaluation

since the sample ratio may be insufficient and repeated workers can

game the system by only working hard on selected gold tasks [14].

Another widely used method to estimate workers’ behavior is

based on peer consistency evaluation or peer evaluation [8]. The

idea of peer evaluation is to use the combined (or fused) answer

provided by the workers as ground truth and each worker’s per-

formance is evaluated based on its consistency with the combined

answers. Different from the idea of gold tasks, peer evaluation can

generate abundant “gold-task”-like questions without repetition

or additional costs. Unfortunately, with peer evaluation there is

a non-zero chance of unfairly penalizing workers who give accu-

rate responses when the combined answers used as ground truth

and determined through estimation tools (e.g., majority voting) are

incorrect. Moreover, peer evaluation is also easily exploitable by

malicious workers, who may collude to flip the combined answer.

To clarify, we analyzed a trace records of users’ answers for a set

of crowdsourced tasks from Mechanical Turk or MTurk [13] in Fig-

ure 1. The trace includes 25 rounds, where each round is composed

of 20 binary questions (see more trace details in Section 5). After
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Figure 1: Comparison of two evaluation methods from an

MTurk trace.

the 13th round, around half of workers become malicious and their

combined answers’ accuracy drops dramatically. The requester used

majority voting [15] as the combination method to estimate the

true answers from workers. From Figure 1, we can observe that

peer evaluation cannot accurately keep track of the proportion

of malicious workers after the 13th round using the low accuracy

combined answers. Furthermore, once the workers’ reliability is in-

accurately estimated, the possibility of incorrect combined answer

in the next round highly increases.

In order to estimate workers’ reliability in an accurate and effi-

cient fashion, in this paper, we build a framework, namely CrowdE-

val, with strong theoretical foundations combining gold evaluation

with peer evaluation. In contrast to prior work, e.g., [12, 14], our

approach dynamically adjusts the proportion of gold tasks (or gold

ratio) according to the estimated proportion of different types of

workers (aka worker distribution) in the pool and uses peer eval-

uation for assessment of accuracy. Importantly, our framework

relies on the analysis of the distribution of reliability of workers

in the pool as a whole rather than individual worker’s reliability.

Therefore, we are not subjected to the difficult task of working on

individuals’ reliability estimation and their availability over time.

With respect to performance, results based on experiments car-

ried out over MTurk demonstrate that our approach outperforms

state-of-the-art algorithms in terms of both estimation accuracy

and cost (total compensation paid to all workers) on gold-tasks.

In particular, with the same compensation paid to workers, our

approach reduces the estimation error rate by at least 59.1% when

the proportion of the malicious workers increases to around 50%.

In addition, experiments on a synthetic dataset, i.e., with over 5,000

synthetic answers, demonstrate that our method outperforms state-

of-the art methods with respect to the different number of workers

and different proportion of malicious workers.

Simply put, our contributions can be summarized as follows:

1) We formulate a new optimization problem, the gold ratio control

(GR-Control) problem, to minimize the estimation error of workers’

reliability and to reduce the cost of gold evaluation through con-

trolling the gold ratio.

2) We derive a GR-Control function that determines the gold ratio

given the current worker distribution. We use maximum likelihood

estimator (MLE) to infer the worker distribution, and study conver-

gence results for the GR-Control function. Considering that peer

evaluation has a non-zero probability to underestimate the propor-

tion of malicious workers, we add a correction factor to adjust the

gold ratio and facilitate convergence.

3) We evaluate our approach’s performance by conducting exten-

sive simulations using both synthetic data and actual workers’ data.

The results demonstrate the superiority of our approach in terms

worker
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Figure 2: Outline of the system

of accuracy of workers’ reliability estimation and the cost of gold

evaluation.

The remainder of the paper is organized as follows: The next

section gives an outline of our approach. In Section 3, we present our

system model and formally define the gold ratio control problem. In

Section 4.1, we present the worker distribution estimation method.

In Section 4.2 and Section 4.3, we describe the gold ratio control

function. In Section 5, we evaluate the performance of our method

using both simulation and real world experiment, with comparisons

to existing approaches. Finally, we present related work in Section

6 and conclude in Section 7.

2 OVERALL APPROACH

We organize tasks submitted by requesters in time intervals, each

of which is referred to as round. Each round of tasks is then se-

quentially posted to a worker pool, i.e., a set of pre-screened and

available workers. Tasks may or may not be binary, but we presume

that a true universal answer exists or can be found. Within a round,

workers may complete any number of tasks, and their behavior is as-

sumed static. If newworkers attempt to be added to the worker pool,

they are added prior to the next round. Each newworker has to pass

an initial pre-screening exam, which includes a set of gold tasks.

Pre-screening might help requesters to infer worker’s reliability

and thus correctness of answers from the collected responses. How-

ever, pre-screening obviously will not avoid workers to provide

poor quality responses later on.

To overcome these issues, our approach aims at improving work-

ers’ quality control on the-fly, i.e., as crowdsourced tasks are com-

pleted by workers. The proposed system periodically injects gold

tasks in a round to accurately estimate workers’ reliability. In order

to minimize the cost of these additional tasks, we propose a novel

dynamic gold ratio control mechanism, i.e., a strategy to dynamically

adjust the ratio of the gold tasks assigned to workers (aka gold

ratio) according to the workers’ behavioral distribution within a

given round.

The gold ratio control mechanism (or GR-Control) includes two

parts (highlighted as two dashed boxes in Figure 2):

1. Worker distribution estimation (Section 4.1), where the dis-

tribution of different classes of workers is estimated (e.g., reliable,

sloppy), via the observation of workers’ accuracy.

2. Gold ratio control (Section 4.2 and Section 4.3), in which the

gold ratio is adjusted and controlled, according to the estimated

worker distribution from the first part.

3 PROBLEM STATEMENT AND BASIC
NOTATIONS

Crowdsourcing tasks are grouped into rounds, and each round

refers to the tasks posted within a finite time interval t as round t .
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Each round t contains K(t) tasks, and a set of workers (or worker

pool) can individually select to complete the tasks. Among K(t)
tasks, the system assigns Kgold(t) gold tasks into the work flow in

a random fashion, where the gold ratio (GR) is defined as

r (t) = Kgold(t)/K(t). (1)

Assume that the set of workers can be categorized according

to their response and accuracy rate, and results intom types (e.g.,

reliable workers, sloppy workers, etc.). Then, we can describe the

worker distribution by x(t)
x(t) = [x1(t), ...,xl (t), ...,xm (t)] ∈ X ⊂ [0, 1]m , (2)

where X represents the worker distribution space and xl (t) repre-
sents the proportion of workers of type l at round t (

∑m
l=1

xl (t) = 1).

According to the worker distribution in the last round t − 1, the

system adjusts the gold ratio (GR) r (t) in the next round t . This
adjustment process, GR-Control, aims to minimize the estimation

error of the worker distribution with minimum gold ratio.

We use yi (t) and ŷi (t) to represent the actual reliability and the

estimated reliability of worker i at round t , respectively. Here, to
estimate workers’ accuracy in each round t , the system maintains

a reference vector, composed of Kgold(t) answers for gold tasks

and K(t) −Kgold(t) combined answers via majority voting [15] (i.e.,

answers of tasks provided by workers only in previous rounds, of

which the truth is unknown) for normal tasks. Then, by checking

the consistency of each worker i’s answer with the reference vector,

the system can estimate the worker i’s accuracy ŷi (t).
Moreover, given y(t) = [y1(t), ...,yN (t )(t)] and ŷ(t) = [ŷ1(t), ...,

ŷN (t )(t)], where N (t) denotes the number of workers in round t ,
we define the workers’ reliability estimation error (REE) in each

round t as the square error of y(t) and ŷ(t)1 :

ε(t) =
N (t )∑
i=1

(yi (t) − ŷi (t))2 . (3)

According to Equation (3), to calculate ε(t)we first need to have the
value of each yi (t), which is unknown. Nevertheless, researchers

(e.g., [3]) have found that the accuracy of Crowdsourced workers

are likely to follow a certain probability distributions, e.g., Gauss-

ian distribution, and the distribution parameters can be estimated

from workers’ historical records. Hence, in what follows, we use a

random variable Yi (t) to represent worker i’s accuracy at round t ,
and we calculate the expected REE by

ε(t) = E
���
N (t )∑
i=1

(Yi (t) − ŷi (t))2��	 . (4)

For simplicity, in the remaining of this paper, “REE”means the

expected REE defined in Equation (4).

We note that workers’ estimated accuracy ŷi (t) can be affected by
both gold ratio and combined answer accuracy, where the combined

answer accuracy further depends on the actual worker distribution.

Hence, the workers’ REE is also correlated to both actual worker

distribution and gold ratio. Accordingly, we can rewrite ε(t) in
form of x(t) and r (t): ε(t) = F (x(t), r (t)), where the details of F ’s
derivation will be introduced in Section 4.2.

1In the following, ε (t ) is normalized with respect to N (t ).

The GR-Control problem. Once the system finds that the pro-

portion of malicious workers in the worker pool is increasing (or

decreasing), it will increase (or decrease) the gold ratio r (t) corre-
spondingly. Precisely, the requester aims to find the optimal ratio

of gold tasks that simultaneously minimizes costs and maximizes

expected tasks’ accuracy (or minimizes errors). As far as we know,

taking a linear combination of multiple objectives as the objective

(also called linear scalarization) in problem formulation is a widely

used approach [2]. Henceforth, we define the objective function of

GR-Control as a linear combination of the cost (gold ratio) and the

estimation error (REE). The problem can be then written as:

min αr (t) + βF (x(t), r (t)) (5)

s.t. 0 ≤ r (t) ≤ 1. (6)

F (x(t), r (t)) ≤ ϵ . (7)

where α and β are respectively the weights assigned to the cost

and the estimation error in the objective function, and ϵ is the

acceptable error rate for REE.

Next, we discuss the two main issues that need to be addressed

to solve the GR-Control problem:

Q1 How to estimate x(t), given that workers’ behavior cannot be

observed directly (Section 4.1)?

Q2 How to design the control function based on the estimated x̂(t)
(Section 4.2 and Section 4.3)?

4 SYSTEM DESIGN

4.1 Worker Distribution Estimation

In this part, we aim to solve Q1, in which we need to infer which

category each worker i belongs to in round t given their estimated

accuracy.

Before categorizing workers into different types, the system first

learns the accuracy distribution of each category from workers’

historical record. Similar to [3], we assume that the accuracy of

workers with each type l follows Gaussian distribution with mean

μl and variance σ
2
l
. We consider the following two types of workers

(indicatingm = 2 in Equation (2)):

Type 1 Reliable workers, the workers who target on completing tasks

with high μ1.
Type 2 Malicious or careless workers, the workers deliver relative

lower accurate labels compared to reliable workers, i.e., μ2 <
μ1. Malicious workers may be driven by a hidden agenda or

try to complete tasks according to their own internal goal.

For simplicity, in what follows, we call workers in type 2

malicious workers.

Here, μl and σ
2
l
can be learned from the workers’ historical accu-

racy in type l . In particular, the system estimates the mean μl and
variance σ 2

l
of each worker type by resorting to MLE [16]:

μ̂l =
1

|Al |
∑
j ∈Al

yj and σ̂
2
l
=

1

|Al | − 1

∑
j ∈Al

(
ŷj − μ̂l

)2
. (8)

where Al represents the set of accuracy records of all workers in

type l in the previous rounds. Then, given each observed accuracy

ŷi for worker i , we use MLE to estimate his behavior:

l̂i = argmax
l=1,2

f (l ; ŷi ), (9)
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where f (l ; ŷi ) is the probability density function defined by f (l ; ŷi ) =
1√

2σ̂ 2
l
π
exp

(
−(ŷ−μ̂l )2

2σ̂ 2
l

)
. After estimating each worker’s behavior,

we can obtain workers’ distribution at round t , x1(t) and x2(t), by
counting the number of workers with l̂i = 1 and l̂i = 2, respectively.

Note that our estimation method can be directly extended to the

case of k types of workers by 1) estimating the distribution of each

worker type and 2) using MLE to estimate which type each worker

falls in.

4.2 Gold Ratio Control

Next, our goal to solve Q2, i.e., to design the gold ratio control

function based on the estimated worker distribution x̂(t). We start

by introducing Theorem 4.1 to describe the relationship between

the accuracy distribution estimation error ε(t), the actual worker
distribution x(t), and the gold ratio r (t). Based on Theorem 4.1, we

propose the GR-Control function, which determines the optimal

gold ratio given the estimated worker distribution. We then analyze

the convergence of the GR-control function by taking into account

the worker distribution estimation error, i.e., the error between

the estimated worker distribution and the actual value. Finally, we

propose to increase the speed of GR-control function’s convergence

by adding a correction factor to the calculated optimal gold ratio.

Theorem 4.1. The relationship between ε(t), x(t), and r (t) can be

described by:

ε (t ) = F (x(t ), r (t )) = 4(1 − r (t ))2P2e(x(t ))H(x(t ))
N (t ) (10)

where

Pe(x(t )) = 1 −
� N (t )

2 �∑
k=1

k∑
j=1

(−1)j
(
k

j

)
E

(
Y N (t )−k+j

)
︸��������������������������������������������������︷︷��������������������������������������������������︸

the expected error probability of combined answer

, (11)

and

H(x(t )) = N (t ) ���
(∑2

l=1 μlxl∑2
l=1 xl

− 1

2

)2
+

∑2
l=1 x

2
l
σ 2
l∑2

l=1 x
2
l

��	︸�������������������������������������������������︷︷�������������������������������������������������︸
reflect how much P2e(x(t )) can effect F (x(t ), r (t ))

. (12)

Here E
(
Yp

)
=

(
−√−1√2σ

)p
U

(
−p

2 ,
1
2 , − 1

2

(
μ
σ

)2)
, U is Tricomi’s

function [16], μ =
∑2
l=1

μlxl , and σ =
√∑2

l=1
x2
l
σ 2
l
.

Proof. As both Y1 and Y2 follow the Gaussian distribution, then

given the worker distribution x1 and x2, the workers’ accuracy in

the worker pool (represented by Y = x1Y1 + x2Y2) also follows

the Gaussian distribution with mean x1μ1 + x2μ2 and variance
x 2
1σ

2
1 +x

2
2σ

2
2

x 2
1+x

2
2

. We first can calculate the expected error probability of

combined answer as

Pe(x(t)) = 1 − E
����
� N (t )

2 �∑
k=1

(
YN (t )−k (1 − Y )k

)���	 (13)

= 1 −
� N (t )

2 �∑
k=1

k∑
j=1

(−1)j
(
k
j

)
E

(
YN (t )−k+j

)
.

We then define the following events: A1 (worker i is correct); A2

(task is a gold task);A3 (combined answer is correct). LetAc
i present

the complement of Ai (i = 1, 2, 3). Given the accuracy of worker i ,
Yi (t), we can obtain the expected estimated accuracy ŷi (t)

ŷi (t) = P (A1 |A2) P (A2) + P
(
A1 |Ac

2

)
P

(
Ac
2

)
P

(
A3 |Ac

2

)
+ P

(
Ac
1 |Ac

2

)
P

(
Ac
2

)
P

(
Ac
3 |Ac

2

)
= Yi (t)r (t) + Yi (t)(1 − r (t)) (1 − Pe(x(t)))
+ (1 − Yi (t))(1 − r (t))Pe(x(t)) (14)

from which we consequently derive that

ε(t) = F (x(t), r (t)) = E
���
N (t )∑
i=1

(Yi (t) − ŷi (t))2��	
= 4(1 − r (t))2P2e(x(t))

× N (t)
((
x1μ1 + x2μ2
x1 + x2

− 1

2

)2
+
x21σ

2
1 + x

2
2σ

2
2

x21 + x
2
2

)
︸�����������������������������������������������������︷︷�����������������������������������������������������︸

H(x(t ))

.

�

According to Theorem 4.1, we rewrite the GR-Control problem:

min βP2e(x(t))H(x(t)) +
(
α − 2βP2e(x(t))H(x(t))

)
r (t)

+ βP2e(x(t))H(x(t))r2(t) (15)

s.t. 0 ≤ r (t) ≤ 1, F (x(t), r (t)) ≤ ϵ . (16)

from which we can derive the optimal gold ratio ropt(t):

ropt(t) = h (x(t)) = min

⎧⎪⎪⎨⎪⎪⎩
max

{
0, 1 − α

2βP2e(x(t ))H(x(t ))
}
,√

ϵ
4H(x(t ))P2e(x(t )) + 1

⎫⎪⎪⎬⎪⎪⎭ (17)

where h (x(t)) is called the GR-Control function.

Algorithm 1 briefly describes the whole process of CrowdEval.

Before inferring each worker’s behavior type (i.e., reliable, sloppy,

or malicious), the system first learns the mean and variance of

historical accuracy in each category (line 2). Next, in each round t ,
the algorithm collects and combines the answers from workers to

derive the reference vector (line 5), and then estimates the accuracy

of each worker i by comparing their answers with the reference

vector (line 7). According to the estimated accuracy of workers,

workers are grouped into two types (line 8) and derives x(t) (line
9). Finally, the algorithm derives the optimal gold ratio in the next

round, t + 1, based on x(t) (line 10).
Note that, in Equation (17) (line 10 of Algorithm 1), the gold ratio

r (t) is calculated based on the estimation of worker distribution.

However, the observations used in MLE are partially based on peer

evaluation, leading to a non-null probability to overestimate the

accuracy of workers (Proposition 4.2).

Proposition 4.2. Peer evaluation via MV has a non-null probabil-

ity to overestimate workers’ average accuracy, but has zero probability

to underestimate the average accuracy.

Proof. Given a task with true answer unknown, suppose that

there are n1 correct answers and n2 incorrect answers. Then, the
average accuracy of the answers for this task is n1

n1+n2
. Consider

the following two cases:

1) When n1 > n2, the combined answer is correct. Then, the cor-

rectness of all the workers’ answers is accurately measured by
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referring the combined answer as a standard answer. Therefore, the

estimated average accuracy is equal to n1
n1+n2

.

2) When n1 < n2, the combined answer is incorrect. Then, the cor-

rectness of all the answers is inaccurately measured, indicating that

the estimated average accuracy equals to n2
n1+n2

, which is higher

than the actual average accuracy n1
n1+n2

. �

Algorithm 1: Pseudo-code of gold ratio control.

1 for each worker type l do

2 Estimate the mean μ̂l and variance σ̂ 2
l
via MLE (Equation (8))

based on workers’ historical accuracy record;

3 // Main steps

4 for each round t do

5 Collect and combine the answers from workers, and derive the

reference vector;

6 for each worker i do

7 Compare his answer with the reference vector and calculate

his estimated accuracy ŷ(t ) ;
8 Use MLE to estimate the type of worker i ’s behavior

(Equation (9));

9 Count the numumber of three types of workers to obtain x(t );
10 Set the gold ratio in round t + 1 by gold ratio control function

h (x(t )) (Equation (17))

Furthermore, when calculating r (t), the system has no informa-

tion of the worker distribution x(t) in the current round t . Hence,
it can only use the worker distribution in the last round x(t − 1) to
derive r (t), as described in Algorithm 1. Such lag of the response

to worker distribution, along with the estimation error of workers’

accuracy caused by peer evaluation, will lead to the gold ratio to

converge slowly to the optimal value especially when the worker

distribution changes over time.

4.3 Convergence of the GR-Control function.

In light of the observation above, let us consider the two cases when

the proportion of malicious workers x2 changes at round t : when
x2(t) < x2(t − 1) and when x2(t) > x2(t − 1).

According to ε(t) = F (x(t), r (t)) derived in Equation (10)-(12),

we find that: the estimation error ε(t)
i) decreases with the increase of gold ratio r (t),
ii) increases with the increase of the proportion of malicious

workers x2(t).
In other words, to guarantee the estimation error of worker distri-

bution to be lower than the acceptable error, the more malicious

exist in the worker pool, the higher gold ratio is required.

Accordingly, when x2(t) < x2(t −1), the gold ratio r (t) calculated
based on x2(t − 1) is higher than the required gold ratio based

on x2(t). Hence, while more costly than the optimal value, the

estimation error of x2(t) is small (as there will be more gold tasks

than actually needed) and the error of calculated gold ratio will

fall in the acceptable error region immediately. In contrast, when

x2(t) > x2(t − 1), the gold ratio r (t) based on x2(t − 1) is lower than
the required gold ratio, leading to the estimation error of x2(t) to
be high (i.e. malicious workers won’t be checked with sufficient

gold tasks) and the gold ratio’s error higher than the acceptable

error. Moreover, the estimation error of x2(t) in turn degrades the

accuracy of gold ratio in the next round. Consequently, it will take

numerous rounds to converge the gold ratio to the acceptable error

region.

To analyze the expected number of rounds to converge when

x2(t) > x2(t − 1), we need to know, in each round k , how the gold

ratio r (k ) is determined by the estimated x̂(k ) = [x̂ (k )1 , x̂
(k )
2 ] and how

x̂(k+1) = [x̂ (k+1)1 , x̂
(k+1)
2 ] in the next round will be effected by r (k ).

Here, we define x̂(0) = [x̂ (0)1 , x̂
(0)
2 ] as the worker distribution before

change. These relationships can be represented mathematically:

r (k ) = h
(
x̂(k )

)
(18)

x2 − x̂
(k+1)
2 = Δx̂

(k+1)
2 = д(x2, r (k )) (19)

where Δx̂
(k+1)
2 represents the proportion of malicious workers that

is underestimated in round k + 1 and д, called feedback function,

reflects how the estimation error Δx̂
(k+1)
2 in round k + 1 will be

effected by x2 and r (k ) in round k . Here, д is a monotonically in-

creasing function of x2 and a monotonically decreasing function of

r . As it is non-trivial to derive the closed-form expression of д, we
approximate д by the following linear equation:

д(x2, r (k )) ≈ д̂(x2, r (k )) (20)

= δ2r
(k ) + δ1x2 + δ0, (21)

where δ2 < 0, δ1 > 0, and δ0 can be learned by linear regression

from training data. Similarly, we approximate GR-Control function

ĥ() by a piecewise linear function (as shown in Figure 3, where

β1 = 0.26, β2 = 0.77, θ = 1.96 and θ0 = −0.51):

h
(
x̂(k )

)
≈ ĥ

(
x̂(k )

)
=

⎧⎪⎪⎨⎪⎪⎩
0 x2 ∈ [0, β1)
θx̂

(k )
2 + θ0 x2 ∈ [β1, β2)

1 x2 ∈ [β2, 1]
(22)

By solving the linear difference equations Equation (20) and

Equation (22), we can derive the expected number of rounds for

x̂2’s convergence (Proposition 4.3):

Proposition 4.3. When x2 ∈ [β1, β2), the expected number of

rounds k that x̂
(k )
2 converges to the acceptable error region [x2 −

ϵ2,x2 + ϵ2] is 2

k =

⌈
log−δ2θ

(
ϵ2(1 + θδ2) + x2(δ2θ + δ1) + δ0 + δ0θ0

x2(1 − δ1) − x̂
(0)
2 (1 + δ2θ ))

)⌉
. (23)

Proof. It is trivial to discuss the convergency of REE in the case

x2 ∈ [β2, 1), when the gold ratio equals 1 and can always accurately

estimate the worker distribution, making REE converge right after

the proportion changes. On the other hand, when x2 ∈ [0, β1),
although gold ratio equals 0, the proportion of malicious workers is

extremely low and the accuracy of combined answer is high. Hence,

the system can still quickly detect any change of x2. Therefore, we
only discuss the case of x2 ∈ [β1, β2) in what follows.

By approximating functions д and h with Equation (20) and

Equation (22), we can derive x̂
(k+1)
2 (i.e., the estimated proportion

2The cases x2 ∈ [0, β1) and x2 ∈ [β2, 1) are trivial to discuss and detailed explanation
can be found in the proof in the supplementary material.
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of malicious workers in round k + 1) from Equation (18) and (19):

x̂
(k+1)
2 = (−δ2θ )k

(
x̂
(0)
2 − x2(1 − δ1) − δ0 − δ0θ0

1 + δ2θ

)
+

x2(1 − δ1) − δ0 − δ0θ0
1 + δ2θ

. (24)

Let ϵ2 denote the acceptable error for the estimation of x2. Then,
to satisfy the constraint Equation (7), we have

x2 − x̂
(k+1)
2 = −(−δ2θ )k

(
x̂
(0)
2 − x2(1 − δ1)

1 + δ2θ

)
(25)

+
x2(δ2θ + δ1) + δ0 + δ0θ0

1 + δ2θ
≤ ϵ2, (26)

and finally we can derive the minimum number of rounds is

k =

⌈
log−δ2θ

(
ϵ2(1 + θδ2) + x2(δ2θ + δ1) + δ0 + δ0θ0

x2(1 − δ1) − x̂
(0)
2 (1 + δ2θ ))

)⌉
. (27)

�

Correction factor. As discussed, peer evaluation has a non-null

probability to underestimate x2, and hence the derived gold ratio

may be actually lower than the gold ratio required for accurate

reliability detection. Hence, we need to adjust the gold ratio r (t) by
adding a correction factor ξ (k ) to r (k ):

ĥ′
(
x̂(k )

)
= ĥ

(
x̂(k )

)
+ ξ (k ). (28)

Here, ξ (k ) is essentially the value that the gold ratio is under-

estimated due to the estimation of x2.

To determine ξ (k ), we need to first estimate how x̂
(k )
2 is related to

the proportion of malicious workers that is underestimated, Δx
(k )
2 .

FromEquation (19) and Equation (20), we can derive the relationship

between x̂
(k )
2 and Δx

(k )
2

Δx
(k )
2 =

δ1
1 − δ1

x̂
(k )
2 +

δ2
1 − δ1

r (k−1) +
δ0

1 − δ1
. (29)

According to the approximated GR-function defined in Equation

(22), we can estimate how much the gold ratio is under-estimated,

which is the product of Δx
(k )
2 and θ ,

ξ (k ) = θΔx (k )2 =
θδ1
1 − δ1

x̂
(k )
2 +

θδ2
1 − δ1

r (k−1) +
θδ0
1 − δ1

. (30)

We then analyze the convergence of the gold ratio with the

correction factor added: First, according to Equation (18)-(22), and

Equation (28):

Δx̂
(k+1)
2 = δ2(θx̂ (k )2 + θ0 + ξ

(k )) + δ1x2 + δ0 (31)

= δ2r + δ1x2 + δ0 ≤ ϵ2 (32)

which implies that the gold ratio adjusted by the correction factor

immediately satisfies the requirement in the 1st round.

Note that the adjusted gold ratio might be higher than it is

required, then it will be in Case x2(t) < x2(t − 1), and REE will

immediately converge to the acceptable error region in the next

round. Figure 4 depicts how the correlation factor can increase the

converge ratio of gold ratio to the acceptable error region using our

dataset (see the description of the trace in Section 5).
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Figure 3: Approximation of

the feedback function h
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Figure 4: Convergence of

the GR-Control function

5 PERFORMANCE EVALUATION

In this section, we turn our attention to practical applications of our

reliability evaluation strategy and examine the performance of the

system in realistic settings. Specifically, we implement simulation

using both real trace from MTurk (Section 5.1) and synthetic data

(Section 5.2), and carry out an online experiment on MTurk (Section

5.3).

Baseline methods and comparison metrics. We compare our

approach CrowdEval with three baseline methods:

1) Gold evaluation (GE) [14]. GE randomly injects gold tasks into

the work flow with a constant ratio. The answers generated by the

workers are evaluated by the gold tasks. In particular, we set the

gold ratio by 0.3.

2) Peer evaluation (PE) [8]. PE solely uses workers’ combined an-

swers as ground truth to evaluate each workers’ performance.

3) Gold evaluation and peer evaluation (GP). GP uses both gold

evaluation and peer evaluation, where gold tasks are distributed

randomly in the work flow with the constant gold ratio 0.3. For the

non-gold tasks, we use peer evaluation to estimate each worker’s

accuracy.

4) GP to individuals (GI). GI uses GP to evaluate all workers but

specifies the gold ratio of each individual according to his own

accuracy. Particularly, the gold ratio for each worker i in round t is
set by 1 − ŷi (t ′), where t ′ is the round of worker i’s last recorded
task responses.

The metrics we compare include:

1) The total reliability estimation error (REE):
∑
t ε(t) (defined by

Equation (3)).

2) The total worker distribution estimation error (WDEE), defined

as the sum of the mean squared error of x(t) and x̂(t) over t , i.e.,∑
t
∑2
l=1

(xl (t) − x̂l (t))2.
3) The total gold cost, i.e., the total number of gold tasks used, i.e.,

K(t)∑t r (t).
4) The relative cost, a linear combination of the total REE and the

total gold cost: α
∑
t r (t)+ β

∑
t ε(t). This metric reflects the overall

benefit of the requester considering both REE and gold cost. In the

following we set α by 20 and β by 1 by default3.

5.1 Trace-driven simulation

We collected 10,947 traces for “news” tasks from 267MTurkworkers.

In these traces (for which ground truth values are known to us),

Turk workers were asked to decide whether a given URL was a

3In the simulation, we assume the requester has similar preference to accuracy and
cost, and we set higher value for α than for β because r (t ) has a smaller scale than
ε (t ).
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son in different methods
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Figure 6: Comparison of x2’s
estimation error

reliable news site or not. Each task has up to 10 workers to complete,

and all the tasks are completed in 25 rounds. We labeled part of

tasks as “gold” based on the gold task assignments and we assume

the system doesn’t know the true answer of a task if it is not labeled

as “gold”. Note that all the gold tasks are randomly injected in the

work flow and workers cannot realize which tasks are gold, hence

the change of gold ratio won’t affect workers’ answers in the trace.

To test how our method can accurately keep track of the work-

ers’ reliability when the worker distribution changes significantly

over time, about 20% workers and 50% workers are guided to be

malicious in the first 12 rounds and the last 13 rounds, respectively.

Comparison of gold ratio over rounds. Figure 5 compares the

gold ratio of different methods with the optimal gold ratio, which

is derived by the GR-Control function with the worker distribution

known. From the figure, we find that optimal gold ratio is 0 in round

1 – 12 and is around 0.7 in round 13 – 25. Hence, GE and GP have

insufficient gold tasks in round 13− 25. Compared with GE, GP, the

gold ratio of CrowdEval is much closer to the optimal gold ratio

over the whole 25 rounds.

Comparison of x2 tracking. Figure 6 compares how close GE, GP,

PE, GI, and CrowdEval can track the proportion of malicious work-

ers x2. Not surprisingly, the estimated x̂2 of GE fluctuates around

the actual x2. It is because that GE solely relies on gold evaluation

with an insufficient source. Compared with GE, PE and GP have

more accurate estimation in round 1–12. It can be attributed to the

use of peer evaluation, which has a very high probability of being

accurate when the proportion of malicious workers is low. How-

ever, both PE and GP underestimate x2 in round 13–25, because

peer evaluation has a non-null probability to overestimate workers’

accuracy (Property 4.2), especially when x2 is high. Although the

gold tasks assigned by GP can decrease the deviation caused by

peer evaluation, the estimation errors of peer evaluation still cannot

be avoided since GP’s gold ratio is still not high enough. Differ-

ent from GP, CrowdEval can accurately track x2 in the whole 25

rounds since 1) CrowdEval increases the gold ratio when detecting

more malicious workers in round 13–25, and 2) CrowdEval adds

correlation factor to eliminate the error generated by peer evalua-

tion. Finally, it takes GI around 6-7 rounds to detect the increase of

x2. GI specifies the gold ratio for each individual according to his

own accuracy in the last attendance. Since workers’ participation is

probably inconsistent (e.g. workers may complete a few rounds, log

off and later work on additional tasks), the workers’ performance

that GI uses to infer gold ratio may be outdated, leading to GI’s

slower response to the immediate change of workers’ distribution.

Overall comparison in different metrics. We compare the total

WDEE, total REE, total cost, and relative cost of the above methods

GE PE GP CE GI0
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300

350
total WDEE
total REE
total gold cost
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Figure 7: Overall comparison

*CE denotes CrowdEval
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Figure 8: Performance of

CrowdEval with different α

in Figure 7. For WDEE, we find that CrowdEval and GE have sig-

nificant advantage over PE, GP, and GI, since both CrowdEval and

GE can estimate x2 more accurately in round 13–25. As for total

REE, we have: CrowdEval < GE 
 GP < GI < PE, which is con-

sistent with the observations in Figure 6. Specifically, CrowdEval

reduces 59.1% REE compared to GE and reduces at least 81.3% REE

compared to the other three methods. We also find that, compared

with GP, CrowdEval can achieve higher performance in terms of

REE and WDEE with lower gold cost. Referring to Figure 5, GP

overuses the gold tasks in round 1-12, while CrowdEval always

keeps the gold ratio in a suitable level. Finally, CrowdEval reduces

the relative cost by at least 23.7% compared to the other methods.

CrowdEval’s performance with different α . Recall that when
defining the objective function of the GR-Control problem (Equa-

tion (5)), we assign weights α and β to the cost and the estimation

error REE, respectively. Requesters can adjust these two weights

according to their own preference to cost and accuracy. To observe

how these two weights affect the optimal gold ratio, we change

α from 1 to 20, and depict the total gold cost and the total REE of

CrowdEval in Figure 8. We can observe that, with the increase of α
the total REE increases and the total gold cost decreases, indicating

that the more the requester focus on the cost, the gold ratio control

function will be less accurate.

5.2 Synthetic analysis

We evaluate the performance of different methods through simula-

tions on up to 50,000 synthetically generated data. We still consider

binary questions and assume that the objectives of reliable workers

and malicious workers are to provide correct and incorrect answers,

respectively.

Comparison of cost efficiency. Intuitively, the budget spent for

GE PE GP GI CE0

100

200

300
(a) total REE

GE PE GP GI CE0

50

100

150
(b) Relative cost

Figure 9: Comparison of cost

efficiency.

gold tasks could be used

to hire more workers, as

an alternative way to in-

crease the overall task ac-

curacy [9]. Accordingly,

it is interesting to ascer-

tain whether the use of

gold tasks in CrowdEval

is worthwhile, as opposed

to hiring extra workers.

Given the same total bud-

get (100 USD), we compare

the total REE of GE, PE, GP,

GI, and CrowdEval in 25 rounds in Figure 9(a), where the total bud-

get includes the compensation paid to both normal tasks and gold
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tasks. Here, each round has 20 tasks and we paid 10 cents for each

task. Note that GE and GP have to hire fewer workers than CrowdE-

val because GE and GP need to allocate more gold tasks as their

average gold ratio (r = 0.3) is higher than CrowdEval’s (r = 0.26).

In contrast, PE and GI can afford to hire at least 30% and 12% more

workers than the other three approaches, as they include no gold

tasks and less gold tasks, respectively. We use the 10,947 answers

from the “news” trace as the workers’ answers. Considering that

we need more workers in PE and GI, we additionally generated

3,000 synthetic answers, of which the accuracy follows the same

distribution with the answer accuracy recorded in the “news” trace.

Figure 9(a) demonstrates that CrowdEval has the lowest REE and

hence it uses gold tasks most efficiently compared with the other

methods. We also compare the total cost of the four methods with

the same REE in Figure 9(b), which shows that GE, PE, GP costs

more than CrowdEval to achieve the same degree of accuracy.

5.3 Online Experiment on MTurk

We carried out an experiment to test CrowdEval’ performance on

MTurk, using actual workers. The experiment includes 16 rounds,

with each round composed of 20 “news” tasks. We hired 10 workers

to solve each task. We asked part of workers to introduce large

amount of erroneous responses to create a scenario where collu-

sive malicious workers decrease their accuracy simultaneously. As

malicious workers act in parallel, they "flip" the combined answers

in peer evaluation. More specifically, we asked 20% workers and

50% workers to be malicious in the first 9 rounds and the last 7

rounds, respectively. Under these settings, we collected a total of

32,000 answers from workers. The website for data collection is

built using Django [5], a python web framework, and hosted on

Amazon Web Services [1].

Before the experiment, we used the 10,947 traces of “news” tasks

(of which the worker type has been known) to learn the mean and

variance of reliable workers and malicious workers. Figure 10(a)

shows the average accuracy of workers’ answers, CrowdEval’s gold

ratio, and the optimal gold ratio over rounds. In the 10th round,

the average accuracy goes down immediately since half workers

become malicious, and CrowdEval adjusts the gold ratio from 0

to around 0.7 in round 9-10, correspondingly. We observe that the

gold ratio calculated by the GR-Control is close to the optimal

gold ratio, even when workers’ behavior changes. Figure 10(b)

compares the estimated proportion and the actual proportion of

malicious workers. This result is consistent with results obtained

in our simulations (Figure 6), and consequently demonstrates that

CrowdEval can accurately keep track of the proportion of malicious

workers in the real test when a large portion of workers turn to be

malicious together.

6 RELATEDWORK

A widely used approach for quality control of workers’ answers in

Crowdsourcing is to allocate tasks or select workers according to

workers’ reliability [4, 6, 7, 10, 11, 22]. For example, Cao et al. mod-

eled the worker selection process as the well-known Jury Selection

Problem [4], of which the objective is to select a jury from a set of

candidate jurors tomaximize the accuracy ofmajority voting, where

each candidate juror is associated with a payment and error rate.

Ho et al. [7] generalized this model to allow heterogeneous tasks,
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Figure 10: Online experiment on MTurk

so that the probability that a worker completes a task correctly may

depend on the particular task. However, all the above methods rely

on accurate real-time evaluation of workers’ reliability, which is

non-trivial to achieve. The closer related works to ours are from

[3, 6, 8, 12, 14], which focus on accurate evaluation of workers’ per-

formance. For example, Le et al. [12] studied how to inject the gold

tasks into work flow to improve the reliability of collected responses.

Oleson et al. [14] noticed that gold task is difficult and costly to get,

and solved this problem by using previous matched answers with

high confidence as “programmatic gold” to expand the size of gold

standard data. Instead of using gold task, Huang et al. [8] proposed

to use combined answers from workers as a standard to evaluate

each worker’ performance, namely peer consistent evaluation, or

shortly peer evaluation. Similarly, Estrada et al. [6] evaluated work-

ers by majority voting without gold tasks in Crowdsensing systems.

The drawback of peer evaluation is its risk of unfairly penalizing

workers who give accurate response when the answers determined

through peer evaluation are incorrect. As both gold evaluation and

peer evaluation have their merits and drawbacks, we believe that

striking a balance between these two methods will further improve

the estimation of workers’ reliability. In addition, Yu et al. proposed

a similar idea in [21], which dynamically adjusts the proportion of

various information sources in multi-agent trust system to improve

the overall estimation accuracy. However, Yu’s approach evaluates

different resources and always picks up the one with highest trust,

while our approach strikes a tradeoff between accuracy and cost,

by balancing the proportion of two evaluation methods.

7 CONCLUSIONS

In this paper, we presented a dynamic and efficient solution that can

keep tracking of workers’ reliability in real time. Different from the

existing works, we use both gold evaluation and peer evaluation to

measure each workers’ performance and adjust the proportion of

the two types of tests according to the estimatedworker distribution.

We demonstrate that our approach outperforms state-of-the-art

methods using the real-world data.

We plan to investigate the impact of the behavior of sophisticated

malicious workers (e.g., those who may eavesdrop or sniff to get

the information of gold tasks), and also consider collusive behavior

among malicious workers. On the other hand, we will consider how

to optimize the distribution of gold tasks in the work flow, rather

than randomly injecting the gold tasks.
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