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ABSTRACT
Aggregating preferences over combinatorial domains has several

applications in artificial intelligence. Due to the exponential na-

ture of combinatorial preferences, compact representations are

needed, and (m)CP-nets are among the most studied formalisms.

Unlike CP-nets, which received an extensive complexity analy-

sis,mCP-nets, as mentioned several times in the literature, lacked

such a thorough characterization. An initial complexity analysis for

mCP-nets was carried out only recently. In this paper, we further

investigate the complexity ofmCP-nets. In particular, we show the

ΣP
3
-completeness of checking the existence of max optimal out-

comes, which was left as an open problem. We furthermore prove

that various tasks known to be feasible in polynomial time are

actually P-complete. This shows that these problems are inherently

sequential and cannot benefit from highly parallel computation.
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1 INTRODUCTION
Managing and aggregating agent preferences have attracted ex-

tensive interest given their importance in AI applications, such as

recommender systems [47], (group) product configuration [6, 16],

(group) planning [5, 50, 52], (group) preference-based constraint

satisfaction [2, 4, 8], and (group) preference-based query answer-

ing/information retrieval [15, 40, 41]. In computer science, prefer-

ence aggregation has often been based on social choice theory [10].

In this theory, agents’ preferences are usually assumed to be ex-

tensively represented. Although this is reasonable with a small set

of candidates, this is not feasible with a combinatorial domain, i.e.,

when the set of candidates, or outcomes, is the Cartesian product

of finite value domains for each of a set of features [30, 33].
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Combinatorial domains contain an exponential number of out-

comes in the number of features. Hence, compact representations

for combinatorial preferences are needed [30, 33]. CP-nets [3] are

among the most studied of these representations, as proven by a

vast literature on them. In CP-nets, vertices of a graph represent

features, and an edge from vertexA to vertex B models the influence

of the value of feature A on the choice of the value of feature B.
This model captures preferences like “if the rest of the dinner is the

same, with a fish dish (A’s value), I prefer a white wine (B’s value)”.
CP-nets were used to model preferences of groups, obtaining the

mCP-nets [48]. AnmCP-net is a set of CP-nets, one for each agent.

The preference semantics ofmCP-nets is defined via voting: through

their own individual CP-nets, each agent votes whether an outcome

is preferred to another. Various voting schemes were proposed for

mCP-nets [37, 48] and different voting schemes give rise to different

dominance semantics formCP-nets. In the voting schemes proposed

formCP-nets, the voting protocol adopted, i.e., the actual way in

which votes are collected [13], is global voting [31] over the CP-nets

of the single players. In this protocol, the results of the vote are

computed by having in input the whole CP-nets (see Section 7

for related works on sequential voting, which is a different voting

protocol). In the literature, a comparison between global voting and

sequential voting over CP-nets was explicitly asked for and stated

to be highly promising [31]. However, global voting over CP-nets

has not been thoroughly investigated as sequential voting (see

Section 7). In fact, unlike CP-nets, which were extensively analyzed,

a precise complexity analysis ofmCP-nets was missing for long

time, as explicitly mentioned several times in the literature [31, 34–

37]. An initial complexity analysis of voting tasks overmCP-nets

was carried out only recently [38]. For example, deciding Pareto

dominance was shown co-NP-complete, and deciding the existence

of majority optimal outcomes was proven ΣP
2
-complete. The aim of

this paper is to further explore the complexity ofmCP-nets (and

hence the complexity of global voting over CP-nets).

Contributions. We focus on acyclic binary polynomially con-

nectedmCP-nets whose constituent are standard CP-nets. Hence,

in this paper the dominance semantics of mCP-nets is precisely

global voting over CP-nets. Our contributions are briefly as follows:

◃ We show the ΣP
3
-completeness of deciding the existence of

max optimal outcomes inmCP-nets;

◃ We prove that various voting tasks overmCP-nets known

to be feasible in polynomial time are actually P-complete.

Furthermore, as a side result of our investigation:

◃ We define the problem Th-CVP: given a Boolean circuit C ,

a Boolean vector x, and an integer k , decide whether the

number of gates of C evaluating to true when x is given

in input to C is at most (resp., at least) k . Th-CVP is here

Session 43: Social Choice Theory 3 AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

1540 



shown P-complete, and hence it can be useful in reductions

showing P-hardness of problems involving counting tasks.

Organization of the paper. In Section 2, we provide an overview

of our results. Preliminaries on CP-nets andmCP-nets are given

in Section 3. We show P-completeness results over CP-nets and

mCP-nets in Sections 4 and 5, respectively. In Section 6, we study

max voting. Related works are discussed in Section 7. We draw our

conclusions and outline possible future research in Section 8. For

space reasons, we provide only proof intuitions for various results.

2 OVERVIEW OF THE RESULTS
In Tables 1 and 2 there is a summary of our results. Definitions of the

concepts mentioned in this section are given in the preliminaries.

We prove that deciding the existence of max optimal outcomes

is ΣP
3
-complete. This supports that, in mCP-nets, max voting is

computationally more demanding than majority voting, for which

deciding the existence of optimal outcomes is ΣP
2
-complete [38].

The increase in the complexity is due to the need in max dominance

of precisely counting the number of agents preferring an outcome

to another, whereas this precision is not required in majority voting

(majority and max dominance are NP-complete and ΘP

2
-complete,

respectively [38, 39]). Hence, this dissimilarity in the complexity of

dominance checking carries over to the complexity of deciding the

existence of optimal outcomes.

Besides this, we obtain several P-completeness results, which

are quite interesting. Let us consider a group planning scenario [5],

in which multiple autonomous agents have to agree upon a shared

plan of actions to reach a goal that is preferred by the group as a

whole, such as a group of autonomous robots coordinating during

the exploration of a remote area/planet. Each robot has a specific

task to accomplish, and the group as a whole coordinates to achieve

a common goal. That is, the robots have their own specific pref-

erences over a vast amount of variables/features emerging from

the contingency of the situation to complete their individual tasks,

however, their individual preferences have to be blended in all to-

gether, so that the course of action of an agent does not interfere

with the tasks of the other agents, and the mission is successful.

Managing huge amount of data could be tackled by using parallel

algorithms. However, some problems are inherently sequential and

do not benefit from highly parallel processing [25]. Saying that

a problem L does not benefit from parallel processing does not

mean that L does not admit parallel algorithms for its solution,

but it means that parallel algorithms for L would not provide a

speedup comparable with the increase in the amount of processing

hardware [25]. Decision problems of this kind are the P-hard ones,

which are often said to be non-parallelizable [25]. For this reason,

P-complete problems are quite interesting, because they are in P,

and hence they are regarded as “easy”, but they are not parallelizable,

which could be an issue when the input is of remarkable size.

P-time voting has attracted extensive consideration. However,

to the best of our knowledge, P-hardness has not carefully been

investigated so far in the computational social choice literature

(see Section 7). In fact, it may well be the case that P-time voting

schemes are actually P-hard, which would be a sign that these

voting procedures would not scale up over huge input instances.

Here we show that this is the case for some voting tasks over

Table 1: Summary of the results for CP-nets.

Problem Complexity

Feat-Value-Opt P-complete

Same-Opt P-complete

Rank-Bound P-complete

Compare-Rank P-complete

Table 2: Summary of the results formCP-nets. *Membership
shown in [38].

Problem Complexity

Exists-Pareto-Optimum P-complete
*

Rank-Dominance P-complete
*

Is-Rank-Optimal P-complete
*

Is-Rank-Optimum P-complete
*

Exists-Rank-Optimum P-complete
*

Exists-Max-Optimal ΣP
3
-complete

*

Exists-Max-Optimum in ΣP
3

mCP-nets. Hence, the P-completeness results reported here, not

only characterize more precisely the complexity ofmCP-nets, but

they also point out a significant issue, which is whether P-time

voting schemes can benefit from parallel algorithms or not.

Observe that we show P-completeness already for the evaluation

of the optimal outcome and the rank of outcomes on single CP-nets.

Therefore, the P-completeness of preference aggregation based on

these concepts derives from the P-hardness of the underlying con-

cepts on single CP-nets. This points out that, to have parallelizable

preference aggregation semantics, we need simpler semantics that

are parallelizable (e.g., in LogSpace) already on single CP-nets.

3 PRELIMINARIES
CP-nets. A CP-net N is formally defined as a triple ⟨GN ,DomN ,

(CPT F
N
)F ∈FN

⟩, where GN = ⟨FN , EN ⟩ is a directed graph whose

vertices FN represent the features of the combinatorial domain,

DomN is a function, and (CPT F
N
)F ∈FN

is a family of functions. For

a feature F , DomN associates a (value) domain DomN (F ) with F ,
while CPT

F
N
is the so called “CP table” of F .

The domain of a feature F is the set of values that F may have

in the outcomes. Here, we assume features to be binary, i.e., each

feature’s domain contains two values.We denote by f and f the two
values of F , called the overlined and the non-overlined value (of F ),
respectively. For a feature setS ⊆ FN ,DomN (S) = ×F ∈SDomN (F ).
An outcome is an element of the set ON = DomN (FN ). For a feature

F ∈ FN and an outcome α , α[F ] is F ’s value in α . For a feature set
S ⊆ FN and an outcome α , α[S] is the projection of α over S.

CP tables encode preferences over feature values. The CP table of

feature F has a row for any possible combination of values of all the

parent features of F in GN ; in each row there is a total order over

DomN (F ). This order encodes agent’s preferences for F ’s values

when specific values of F ’s parents are considered: f ≻ f denotes

f being preferred to f . If F has no parents, its CP table has only one

Session 43: Social Choice Theory 3 AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

1541 



row with a total order over DomN (F ). Note that indifferences be-
tween features values are not admitted in (classical) CP-nets. When

we will report CP tables in figures, we will use a logical notation to

identify, for which values of the parents of the features, a particular

CP table row has to be considered. Although this is the notion

which generalized propositional CP-nets are based on [17], in this

paper it is used only for notational convenience. Here we always

assume that CP tables are extensively and explicitly represented in

the input instances. We denote by ∥N ∥ the size of CP-net N , i.e.,

the space in terms of bits required to represent the whole net N

(which includes, features, links, feature domains, and CP tables).

CP-nets’ preference semantics is based on “improving flips”. Let

F be a feature, and let α , β be two outcomes differing only on F ’s
value. Flipping F from α[F ] to β[F ] is an improving flip (of F in

N ) iff, in the row of F ’s CP table associated with the values in

α of the parents of F , β[F ] ≻ α[F ]. Outcome β is preferred to α ,
or β dominates α (in N ), denoted β ≻N α , iff there is a sequence

of improving flips from α to β , otherwise β does not dominate α ,
denoted β ̸≻N α ; β and α are incomparable, denoted β ◃▹N α , iff
β ̸≻N α and α ̸≻N β . Observe that, since there are no indifferences

between features values in (classical) CP-nets, for any two outcomes

α and β , either one dominates the other, or they are incomparable.

A CP-net N is binary iff all its features are binary; N is singly

connected iff, for any two features G and F of N , there is at most

one path from G to F in GN . A class F of CP-nets is polynomially

connected iff there exists a polynomial p such that, for any CP-net

N ∈ F and for any two features G and F of N , there are at most

p(∥N ∥) distinct paths fromG to F inGN . A CP-netN is acyclic iffGN

is acyclic. Acyclic CP-nets N have a unique optimum outcome oN ,

dominating all others, that can be computed in polynomial time [3].

The rank of an outcome α in a CP-net N , RankN (α), is the length of

the shortest improving flipping sequence from α to oN [48]. Unless

stated otherwise, we consider acyclic binary CP-nets.

mCP-nets. AnmCP-net is a set ofm CP-nets defined over the same

set of features having, in turn, the same domain. The “m” of an

mCP-net is the agents’ number, so a 3CP-net is anmCP-net with

m = 3. Originally, partial CP-nets were allowed to be constituent

ofmCP-nets [48]. Here, we assume only standard CP-nets to be

part ofmCP-nets, and we do not assume CP-nets to be O-legal (i.e.,

we de not assume that the CP-nets of anmCP-net have a common

topological order of the features).mCP-nets’ semantics is based on

voting. LetM = ⟨N1, . . . ,Nm⟩ be anmCP-net, and let α , β be two

outcomes.We define the sets S≻
M
(α , β) = {i | α ≻Ni β}, S

≺
M
(α , β) =

{i | α ≺Ni β}, and S
◃▹
M
(α , β) = {i | α ◃▹Ni β}, as the sets of agents

preferring α to β , preferring β to α , and for which α and β are

incomparable, respectively. RankM (α)=
∑
1≤i≤m RankNi

(α) [48].
The dominance semantics considered are [48]:

Pareto: β Pareto dominates α , denoted by β ≻
p

M
α , iff all the agents

of M prefer β to α , i.e., |S≻
M
(β ,α)| =m.

Majority: β majority dominates α , denoted by β ≻
maj

M
α , iff the

majority of the agents ofM prefers β to α , i.e., |S≻
M
(β ,α)| >

|S≺
M
(β,α)| + |S◃▹

M
(β ,α)|.

Max: β max dominates α , denoted by β ≻max

M
α , iff the group of the

agents ofM preferring β to α is the biggest, i.e., |S≻
M
(β ,α)| >

max(|S≺
M
(β ,α)|, |S◃▹

M
(β ,α)|).

Rank: β rank dominates α , denoted by β ≻r

M
α , iff RankM (β) <

RankM (α).

For a voting scheme s , an outcome α is s optimal in M iff β ̸≻s

M
α

for all β , α , whereas α is s optimum in M iff α ≻s

M
β for all

β , α . Optimum outcomes, if they exist, are unique.

AnmCP-net is acyclic, binary, and singly connected, iff all its

CP-nets are acyclic, binary, and singly connected, respectively. A

classF ofmCP-nets is polynomially connected iff the set of CP-nets

constituting themCP-nets in F is polynomially connected. Unless

stated otherwise, the consideredmCP-nets are acyclic, binary, and

belong to polynomially connected classes ofmCP-nets.

Complexity Classes. We assume basic knowledge of computa-

tional complexity and of the polynomial hierarchy; see [27, 45]. A

language L is P-hard iff, for all languages L′ in P, there is a log-space
reduction from L′ to L; L is P-complete iff L is in P and is P-hard.

4 P-COMPLETE PROBLEMS ON CP-NETS
In this section, we show the P-completeness of various tasks over

CP-nets. To prove these results, we will exploit the P-completeness

of the classical CVP problem defined below.

In the Circuit Value Problem (CVP) [29], for a Boolean circuit C
and a Boolean vector x, we have to decide whether C ’s output is

true when receiving x as input. In the literature, various ways to

represent circuits were illustrated. Here, we use a representation

that is a mix of those in [29, 44, 49]. A circuit C = {C1, . . . ,Cm } is

a sequence of logic gates, which are represented through formulas:

(i) if Ci = x j , Ci is an input gate fed with the jth input bit; (ii) if

Ci = Cj ∧Ck (resp., Ci = Cj ∨Ck ), Ci is an AND (resp., OR) gate,

whose inputs are the outputs of Cj and Ck (with j,k < i); (iii) if
Ci = ¬Cj , Ci is a NOT gate, whose input is the output of Cj (with

j < i). The Boolean values of gates Ci when x is given in input to

C , denoted by vC (Ci , x), are defined in the natural way.

We assume that the problem CVP is defined as in [25]. A CVP

instance I = ⟨C , x,Cout⟩, where C = {C1, . . . ,Cm } is a circuit,

x = {x1, . . . ,xn } is a vector, and Cout ∈ C is the output gate, is a

‘yes’-instance iffvC (Cout , x) = true. CVP is known to be P-complete

and its hardness holds even if various restrictions are issued over the

circuit structure and even if the output is fixed to beCm [25, 29, 44].

For the following results, we need CP-nets mimicking the be-

havior of circuits when specific vectors are given in input. Let

C = {C1, . . . ,Cm } be a circuit and let x = {x1, . . . ,xn } be an input

vector. The CP-net N (C , x), defined from C and x, is as follows. For
each gateCi ∈ C , there is a feature Di ∈ F

N (C ,x), and Di ’s domain

is {di ,di }. The intuition of the transformation is that values di and
di of Di are associated with gate Ci evaluating to true and false,

respectively, when x is given in input to C .

• If Ci is an input gate with Ci = x j , there is no edge entering

in Di ; if x j = true, di ≻ di ; if x j = false, di ≻ di .
• If Ci is an AND (resp., OR) gate, with Ci = Cj ∧ Ck (resp.,

Ci = Cj ∨Ck ), then there are two edges entering in Di , one

from D j and one from Dk . If Ci = Cj ∧Ck , for Di , di ≻ di
iff both D j and Dk have overlined values. If Ci = Cj ∨Ck ,

for Di , di ≻ di iff D j or Dk has an overlined value.

• If Ci is a NOT gate with Ci = ¬Cj , there is an edge from D j

to Di ; for Di , di ≻ di if D j has value dj , di ≻ di otherwise.
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Observe that N (C , x) is binary, acyclic, and can be computed

in logarithmic space from C and x (because the indegree of each

feature is at most 2, i.e., it is bounded by a constant, and hence the

number of rows in the CP tables ofN (C , x) is bounded by a constant
as well). Therefore, all the hardness results shown here hold even

on acyclic binary (m)CP-nets with indegree 2. Via induction on the

gates’ levels in C , it can be shown that, in N (C , x), a feature Di
has value di in the optimum outcome iff vC (Ci , x) = true.

Lemma 4.1. Let C = {C1, . . . ,Cm } be a circuit, and let x be an

input vector. For any gate Ci , vC (Ci , x) = true iff o
N (C ,x)[Di ] = di .

From this key property follows the P-hardness of the problem

Feat-Value-Opt: for a CP-net N , a feature F ∈ FN , and a value

v ∈ DomN (F ) for F , decide whether the value of F in the optimum

outcome of N is v , i.e., oN [F ] = v .

Theorem 4.2. Feat-Value-Opt is P-complete.

Consider now the problem Same-Opt: given two (different)

CP-nets N1 and N2 defined over the same set of features, which,

in turn, have the same domain in the two nets, decide whether

the optimum outcome of N1 equals the optimum outcome of N2,

i.e., oN1
= oN2

. We can show that Same-Opt is P-complete. The

intuition behind the P-hardness proof (a reduction from CVP) is to

encode the same circuit in N1 and N2 with an additional feature O .

In N1,O is attached to the feature corresponding to the output gate

and replicates its value, instead, in N2, O has a specific preferred

value, say o. In this case, oN1
= oN2

iff the circuit outputs true.

Theorem 4.3. Same-Opt is P-complete.

Let TG(C , x) denote the number of C ’s gates evaluating to true

when x is given in input to C . Consider the problem Th-CVP

(Threshold CVP): given a Boolean circuit C , an input vector x, and
an integer k , decide whetherTG(C , x) ≤ k . Th-CVP can be seen as

the decision version of the computation problem ϵ-CTGP in [49].

We show that Th-CVP is P-hard via a reduction similar to the one

used to prove the P-hardness of ϵ-CTGP.

Theorem 4.4. Th-CVP is P-complete. Hardness holds even if the

threshold number k is such that k < ⌊|C |/2⌋.

Proof. Th-CVP is in P, because gates’ values can be evaluated

in polynomial time [25, 29], and then we can count those evaluating

to true and compare the count with k (in polynomial time).

Hardness can be shown via a reduction from CVP. Consider

the following reduction transforming an instance ⟨C , x,Cout⟩ of

CVP, where C = {C1, . . . ,Cm }, into an instance ⟨C ′, x′,k⟩ of Th-
CVP. C ′

consists of 2m gates, whose first m gates are identical

(for function and wiring) to those of C . The remaining m gates

of C ′
replicate the value of C ′

out
= Cout . More formally, C ′

m+1 =

C ′
out

∧C ′
out

, and, for all 2 ≤ i ≤ m, C ′
m+i = C

′
m+i−1 ∧C ′

m+i−1. The

input vector x′ equals x, and k =m−1. Clearly, the reduction can be

computed in logarithmic space. Observe that k =m − 1 < ⌊2m/2⌋,

where 2m = |C ′ |. Given that P is closed under complement, in this

case we assume that ‘yes’-instances of CVP are those in which the

output of the circuit is false.

(⇒) If ⟨C , x⟩ is a ‘yes’-instance of CVP, i.e., vC (Cout , x) = false,

then vC ′(C ′
out
, x′) = vC ′(C ′

m+1, x
′) = · · · = vC ′(C ′

2m , x
′) = false.

Hence,TG(C′, x′) ≤ |C ′ |−(m+1) =m−1 = k , and thus ⟨C ′, x′,k⟩
is a ‘yes’-instance of Th-CVP as well.

(⇐) On the other hand, if ⟨C , x⟩ is a ‘no’-instance of CVP, i.e.,
vC (Cout , x) = true, then vC ′(C ′

out
, x′) = vC ′(C ′

m+1, x
′) = · · · =

vC ′(C ′
2m , x

′) = true. Hence, TG(C′, x′) ≥ m + 1 > m − 1 = k , and
thus ⟨C ′, x′,k⟩ is a ‘no’-instance of Th-CVP as well. �

Observe that, since P is closed under complement, also deciding

whether TG(C , x) ≥ k is P-complete.

Consider the problem Rank-Bound: for a CP-net N , an outcome

α ∈ ON , and an integer k , decide whether RankN (α) ≤ k . For an
acyclic CP-net N , it is known that

RankN (α) = |{F | F ∈ FN ∧ α[F ] , oN [F ]}|, (1)

i.e., α ’s rank in N is the number of features whose value in α differs

from their respective values in oN [38]. Rank-Bound’s P-hardness

follows from Theorem 4.4 and from Lemma 4.1 and Equation (1),

by which the number of overlined values in the optimum outcome

of N (C , x) equals TG(C , x).

Theorem 4.5. Rank-Bound is P-complete.

Consider the problem Compare-Rank: for a CP-net N and two

outcomes α , β ∈ ON , decide whether RankN (β) < RankN (α).

Theorem 4.6. Compare-Rank is P-complete.

Proof. Membership in P follows from the fact that computing

outcome ranks in acyclic CP-nets is feasible in polynomial time [38],

and then we can compare them (in polynomial time).

Hardness can be shown via a reduction from Feat-Value-Opt.

Consider the reduction transforming an instance ⟨N , F ,v⟩ of Feat-
Value-Opt into the instance ⟨N ′,α , β⟩ of Compare-Rank as fol-

lows (assume w.l.o.g. thatv = f ): N ′ = N , α and β are the outcomes

assigning non-overlined values to all features but F , and α[F ] = f ,
while β[F ] = f . By Equation (1), and since α and β differ only on the

value assigned to feature F , there is a difference of exactly 1 between
the rank of the two outcomes, i.e., |RankN ′(β) − RankN

′(α)| = 1.

(⇒) If ⟨N , F ,v⟩ is a ‘yes’-instance of Feat-Value-Opt, oN [F ] =
f = v . Hence, RankN ′(β) < RankN

′(α).
(⇐) If ⟨N , F ,v⟩ is a ‘no’-instance of Feat-Value-Opt, oN [F ] =

f , v . Hence, RankN ′(α) < RankN
′(β). �

5 P-COMPLETE PROBLEMS ONmCP-NETS
First, we focus on a Pareto voting task. Consider the problem Exists-

Pareto-Optimum: given anmCP-net M, decide whether M has

a Pareto optimum outcome. AcyclicmCP-nets have a Pareto opti-

mum outcome iff all their individual CP-nets have the very same

individual optimum outcome [38]. By this, the P-hardness of Exists-

Pareto-Optimum follows from the P-hardness of Same-Opt.

Theorem 5.1. Exists-Pareto-Optimum is P-hard. Hardness holds

even on 2CP-nets.

Exists-Pareto-Optimum is also in P [38], hence it is P-complete.

We now prove the hardness of rank voting tasks overmCP-nets.

Consider the problem Rank-Dominance: for anmCP-netM and

two outcomes α , β ∈ OM , decide whether β ≻r

M
α , i.e., de-

cide whether RankM (β) < RankM (α). Remember that, for an

mCP-net M = ⟨N1, . . . ,Nm⟩, RankM (α) =
∑
1≤i≤m RankNi

(α).
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Hence, Rank-Dominance’s hardness follows from the P-hardness

of Compare-Rank on CP-nets.

Theorem 5.2. Rank-Dominance is P-hard. Hardness holds even

on 1CP-nets.

Rank-Dominance is also in P [38], hence it is P-complete.

Consider now the problem Is-Rank-Optimal (resp., Is-Rank-

Optimum): for anmCP-net M and an outcome α ∈ OM , decide

whether α is rank optimal (resp., optimum) in M. We recall some

definitions from [38]. A value v of a feature F is average optimal iff

v is in argminv ∈DomM (F ) |{i | 1 ≤ i ≤ m ∧ v , oNi [F ]}|, i.e., iff v
minimizes the number of agents i for which v is different from the

value of F in the optimum outcome of agent i’s CP-net. An outcome

α is average optimal iff, for each feature F , α[F ] is average optimal.

An outcome is rank optimal iff it is average optimal [38]. Since

mCP-nets have always average optimal outcomes,mCP-nets have

always rank optimal outcomes.
1
Computing average optimal out-

comes ofmCP-nets is feasible in polynomial time (we just need to

compute the individual optimal outcomes to perform the counting

operations). Observe that, if anmCP-net M has two average opti-

mal outcomes, then M has two rank optimal outcomes, and hence

M has no rank optimum outcome, because different rank optimal

outcomes do not rank dominate each other (which is required to

be rank optimum). Thus, binarymCP-nets with an odd number of

CP-nets, since they have a unique average optimal outcome, have

only one rank optimal outcome which is also rank optimum.

In the reductions to prove the P-hardness of Is-Rank-Optimal

and Is-Rank-Optimum, we use a CP-net that is designed to have a

desired optimum outcome. Let S be a set of binary features, and let

α ∈ Dom(S) be an outcome. The “direct” net D(α) has as features

the set S and has no edge. The CP table of feature F is f ≻ f , if

α[F ] = f ; the CP table of feature F is f ≻ f , if α[F ] = f .

Theorem 5.3. Is-Rank-Optimal and Is-Rank-Optimum are P-hard.

Hardness holds even on 3CP-nets.

Proof. Hardness can be shown via a reduction from Feat-Value-

Opt. Consider the reduction transforming an instance ⟨N , F ,v⟩ of
Feat-Value-Opt into the instance ⟨M,α⟩ of Is-Rank-Optimal
(resp., Is-Rank-Optimum) as follows (assume w.l.o.g. that v = f ):
M = ⟨N1,N2,N3⟩ is a 3CP-net, where N1 = N , N2 = D(α), where
α is the outcome defined over the features in N and assigning non-

overlined values to all features, and N3 = D(β), with β assigning

non-overlined values to all features but F , for which β[F ] = f .
Observe that the value α[G] is the average optimal value for all

features G , F , because, for all features G , F , α[G] = β[G], and
α and β are the optimum outcomes of D(α) and D(β), respectively.

Since α[F ] = f and β[F ] = f , α is rank optimal in M iff oN [F ] =
f = v . To conclude, sinceM contains an odd number of CP-nets, α
is rank optimum in M iff α is rank optimal in M (see above). �

Is-Rank-Optimal and Is-Rank-Optimum are also in P [38],

hence they are P-complete.

Consider the problem Exists-Rank-Optimum: for anmCP-net

M, decide whether M has rank optimum outcomes.

1
A different proof ofmCP-nets always having rank optimal outcomes is in [48].

Theorem 5.4. Exists-Rank-Optimum is P-hard. Hardness holds

even on 4CP-nets.

Proof. Hardness can be shown via a reduction from Feat-Value-

Opt. Consider the reduction transforming an instance ⟨N , F ,v⟩ of
Feat-Value-Opt into the instance ⟨M⟩ of Exists-Rank-Optimum

as follows (assume w.l.o.g. that v = f ): M = ⟨N1,N2,N3,N4⟩ is a

4CP-net, where N1 = N2 = N , N3 = D(α), with α being an outcome

defined over the features in N and assigning non-overlined values

to all features, and N4 = D(β), with β assigning overlined values to

all features but F , for which β[F ] = f .
M has a rank optimum outcome iff M has a unique average

optimal outcome (see above). For any featureG , F , since N1[G] =
N2[G], N3[G] = д, and N4[G] = д, the average optimal value is

unique and it is oN [G]. Therefore,M has a unique average optimal

outcome iff the average optimal value for feature F is unique inM.

(⇒) If ⟨N , F ,v⟩ is a ‘yes’-instance of Feat-Value-Opt, oN [F ] =
f = v . Hence, oN1

[F ] = oN2
[F ] = oN3

[F ] = oN4
[F ] = f , and f is

the unique average optimal value for F in M. This implies that M

has a unique average optimal outcome which is rank optimal and

optimum, and thus M has a rank optimum outcome.

(⇐) If ⟨N , F ,v⟩ is a ‘no’-instance of Feat-Value-Opt, oN [F ] =

f , v . Hence, oN1
[F ] = oN2

[F ] = f and oN3
[F ] = oN4

[F ] = f , and

both f and f are average optimal values for F inM. This implies

thatM has two distinct average optimal outcomes, which are rank

optimal, and thus M has no rank optimum outcome. �

Exists-Rank-Optimum is also in P [38], hence it is P-complete.

6 MAX VOTING
We now show the ΣP

3
-completeness of deciding the existence of max

optimal outcomes inmCP-nets. To prove this we need an involved

reduction, for which we will just give intuitions on the purpose of

the key pieces. The starting problem for the reduction is deciding

the validity of quantified Boolean formulas Φ = (∃X )(∀Y )(∃Z )ϕ(X ,
Y ,Z ), whereX ,Y , andZ , are three disjoint sets of Boolean variables,
and ϕ(X ,Y ,Z ) is a non-quantified Boolean formula. This problem

is ΣP
3
-complete, and it is ΣP

3
-hard even if ϕ is in 3CNF [53, 54].

In the reduction, we use two CP-nets introduced in [38]: an

interconnecting net HC(m) “propagating the information” that all

them features of a set have been flipped to their overlined value;

and a net Fs(ϕ) encoding the satisfiability of a 3CNF non-quantified

Boolean formula ϕ. We also need direct nets introduced in Section 5.

For notational convenience, in this section we define direct nets as

follows: the direct net D(AB) is defined over feature sets A and

B, for features of A the non-overlined value is preferred, while for

features of B the overlined value is preferred.

To transform the validity problem into Exists-Max-Optimal,

we need to encode Boolean assignments into outcomes of a suitable

mCP-net. We use three sets of “variable features” X, Y, and Z, as-

sociated with the sets of Boolean variablesX , Y , and Z , respectively.
In particular, X = {XT

i ,X
F
i | xi ∈ X }, Y = {YTi ,Y

F
i | yi ∈ Y },

and Z = {ZTi ,Z
F
i | zi ∈ Z }. We use the following association

for the assignments. If we focus on the variables in X , for a (par-
tial) Boolean assignment σX over X , an outcome ασX encoding

σX over the features set X is such that, if σX [xi ] = true then

ασX [X
T
i X

F
i ] = xTi x

F
i , if σX [xi ] = false then ασX [X

T
i X

F
i ] = xTi x

F
i ,
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and if σX [xi ] is undefined then ασX [X
T
i X

F
i ] = xTi x

F
i . (An outcome

ασX with ασX [X
T
i X

F
i ] = xTi x

F
i will be dealt with so that it will

not give issues in the reduction). We use a similar encoding for the

variable sets Y and Z over feature sets Y andZ, respectively.

The idea of the reduction is to design an mCP-net such that

specific outcomes encoding assignments for variables X are max

optimal iff the encoded assignments are witnesses of the validity

of the quantified formula. All other outcomes that are not in the

specific form encoding assignments forX have to bemax dominated

(and hence not max optimal).

Besides the features associated with the Boolean variables, there

are various other features supporting the correctness of the reduc-

tion. Two of these additional features are U1 and U2, which are

features belonging to the net Fs(ϕ) (see, [38]).
In particular, the principles of our reduction are:

(a) For any assignment σX on X , the associated outcome is βσX ,

where σX is encoded over features X, βσX [U1U2] = u1u2,
and all other features have non-overlined values.

(b) Any outcome in a form different from the one described in

Principle (a) is max dominated.

(c) For a pair of assignmentsσX andσY onX andY , respectively,
the associated outcome is βσX ,σY , where σX and σY are en-

coded over features X and Y, respectively, βσX ,σY [U1U2] =

u1u2, and all other features have non-overlined values.

(d) Any outcome in a form different from the one of Principle (c)

does not max dominate an outcome of Principle (a).

(e) If βσX and βσ ′
X ,σY

are two outcomes such that σX , σ ′
X ,

then βσ ′
X ,σY

does not max dominate βσX . This imposes that

βσX might be max dominated only by an outcome encoding

the very same assignment for X of βσX .

(f ) For any assignment σY on Y , if βσX and βσX ,σY are two out-

comes (encoding the same assignment over X ), then βσX ,σY
max dominates βσX iff ϕ(X/σX ,Y/σY ,Z ) is not satisfiable.

A reduction following the principles above has the property that

only an outcome in the form βσX can be max optimal, and βσX is

max optimal iff σX is an assignment such that (∀Y )(∃Z )ϕ(X/σX ,Y ,
Z ) is valid, i.e., iff σX is a witness of the validity of the quantified

formula Φ. Therefore, anmCP-net obtained via this reduction has

a max optimal outcome iff the quantified formula is valid.

Let us now see the reduction. Let Φ = (∃X )(∀Y )(∃Z )ϕ(X ,Y ,Z )
be a quantified formula. From ϕ(X ,Y ,Z ) we define the 8CP-net

M(ϕ) = ⟨N1, . . . ,N8⟩ as follows. The features of M(ϕ) are:

• The features of a net Fs(ϕ) (see [38]) in which we distinguish

three variable feature sets X = {XT
i ,X

F
i | xi ∈ X }, Y =

{YTi ,Y
F
i | yi ∈ Y }, and Z = {ZTi ,Z

F
i | zi ∈ Z } (P and D

are the literal and clause feature sets, respectively, A is the

set of features of the interconnecting net embedded in Fs(ϕ)
and A is the apex of the interconnecting net);

• Features Y ′ = {Y ′
i | yi ∈ Y }, Y ′′ = {Y ′′

i | yi ∈ Y };
• Features in set B, which are the features Bi of an intercon-

necting net HC(|Y
′ |) (see [38]) and its apex is feature B.

To sum up,M(ϕ)’s features are: X ∪Y ∪Y ′ ∪Y ′′ ∪Z ∪P ∪D ∪

A ∪ B ∪ {U1,U2} (U1 andU2 are features of Fs(ϕ)).

Figure 1: A schematic representation for CP-net N4. The ex-
pression “(yTi ⊕ yFi )” in the CP table of Y ′

i is satisfied when
exactly one feature amongYTi andY F

i has an overlined value.

The CP-nets ofM(ϕ) are (we do not report the direct nets in the

figures with the schematic representations of these CP-nets):

• N1 is composed by a net Fs(ϕ) (for a schematic representa-

tion of this net see [38]), in which we distinguish three vari-

able feature sets X, Y, and Z, and a direct net D(Y ′Y ′′B).

This net supports Principle (f ). Indeed, we need a CP-net mimicking

a Boolean formula to encode the satisfiability of ϕ.

• N2 has, for each xi ∈ X , the link (XT
i ,X

F
i ), and a net D(Y

Y ′Y ′′ZPDAB{U1,U2}). The other CP tables are: for XT
i ,

xTi ≻ xTi ; for X
F
i , x

F
i ≻ xFi iff XT

i has value xTi .

• N3 is similar to N2, but with roles of XT
i and X F

i exchanged.

The purpose of these two nets is achieved in conjunction with

nets N6 and N7 below. Their aim is supporting Principle (e). For

nets N2 and N6, their preferences restricted over {XT
i ,X

F
i } are

xTi x
F
i ≺ xTi x

F
i ≺ xTi x

F
i ≺ xTi x

F
i ; while, for nets N3 and N7, their

preferences restricted over {XT
i ,X

F
i } are x

T
i x

F
i ≺ xTi x

F
i ≺ xTi x

F
i ≺

xTi x
F
i . Therefore, for an outcome βσX , if we focus on a pair of

features {XT
i ,X

F
i }, some of the nets prefer to change the values of

{XT
i ,X

F
i } in a specific way, and the other nets prefer something

different. Hence, intuitively, there will never be a group of agents

big enough such that βσX can be max dominated by an outcome

βσ ′
X ,σY

with σX , σ ′
X . Only outcomes βσ ′

X ,σY
with σX = σ ′

X
may max dominate βσX , because there will not be contrasting

preferences among the agents.

• N4 (see Figure 1) has, for each yi ∈ Y , the links (U1,Y
T
i ),

(U1,Y
F
i ), (YTi ,Y

′
i ), (Y

F
i ,Y

′
i ), (Y

T
i ,Y

′′
i ), (Y F

i ,Y
′′
i ), (Y ′′

i ,Y
′
i ); the
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Figure 2: A schematic representation for CP-net N6.

links of a net HC(|Y
′ |) over features B and connected to fea-

tures Y ′
, with apex B linked to U2; and the link (U1,U2).

There is the direct net D(XZPDA). The other CP tables

are: forU1, u1 ≻ u1; for F ∈ Y, f ≻ f iffU1 has value u1; for

Y ′′
i ∈ Y ′′

, y′′i ≻ y′′i iff XT
i and X F

i have values yTi and yFi ;

for Y ′
i ∈ Y ′

, y′i ≻ y′i iff Y ′′
i has value y′′i and either YTi or

Y F
i has an overlined value; features B of the interconnecting

net have the usual CP tables; for U2, u2 ≻ u2 iff U1 and B
have values u1 and b, respectively.

• N5 is similar to N4, but with roles of U1 andU2 exchanged.

These two nets are devised to achieve two “contrasting” goals. They

are designed so that for an outcome βσX , if we focus on a pair of

features {YTi ,Y
F
i }, it is not possible to have improving flips toward

an outcome having overlined value for both YTi and Y F
i (this is

required by Principle (d), because such an outcome would not

properly encode an assignment for variables Y ). On the other hand,

these two nets allow improving flips toward outcomes properly

encoding an assignment σY for Y , and hence toward outcomes for

which either YTi or Y F
i have an overlined value (this is required

by Principle (f )). Since these two nets have to exhibit this mixed

behavior, N4 and N5 have this slightly intricate structure.

• N6 (see Figure 2) has, for each xi ∈ X , the link (XT
i ,X

F
i ); for

each yi ∈ Y , the links (U1,Y
T
i ), (U1,Y

F
i ), (U2,Y

T
i ), (U2,Y

F
i );

and the link (U2,U1). There is the direct net D(Y
′Y ′′ZPD

AB). The other CP tables are: XT
i and X F

i have CP tables

as in N2; for U2, u2 ≻ u2; for U1, u1 ≻ u1 iff U2 has value

u2; for F ∈ Y, f ≻ f iff U1 and U2 have values u1 and u2,
respectively.

• N7 has, for each xi ∈ X , the link (X F
i ,X

T
i ); and the link

(U2,U1). There is the direct net D(YY ′Y ′′ZPDAB). The

other CP tables are: XT
i and X F

i have CP tables as in N3; for

U2, u2 ≻ u2; forU1, u1 ≻ u1 iffU2 has value u2.
• N8 (see Figure 3) has, for each yi ∈ Y , the links (U1,Y

T
i ),

(U1,Y
F
i ), (U2,Y

T
i ), (U2,Y

F
i ); and the link (U1,U2). There is

the direct net D(XY ′Y ′′ZPDAB). The other CP tables

are: for U1, u1 ≻ u1; for U2, u2 ≻ u2 iff U1 has value u1;
for F ∈ Y, f ≻ f iff U1 and U2 have values u1 and u2,
respectively.

Figure 3: A schematic representation for CP-net N8.

The aim of these last three nets is supporting the correctness of

the reduction and realizing all the principles listed above. This is

achieved together with various parts of the other CP-nets.

M(ϕ) is acyclic, binary, its indegree is three, and can be com-

puted in polynomial time from Φ. Moreover, the class ofmCP-nets

derived from quantified formulas of the mentioned kind and ac-

cording to the reduction shown above is polynomially connected.

It is possible to prove the following crucial property of M(ϕ).

Lemma 6.1. Let Φ = (∃X )(∀Y )(∃Z )ϕ(X ,Y ,Z ) be a quantified for-
mula, where ϕ(X ,Y ,Z ) is a 3CNF formula defined over three disjoint

sets, X , Y , and Z , of variables. Then, Φ is valid iff M(ϕ) has a max

optimal outcome.

Lemma 6.1 implies the following theorem.

Theorem 6.2. Let M be anmCP-net. Deciding whether there is

a max optimal outcome in M is ΣP
3
-hard. Hardness holds even on

polynomially connected classes of acyclic and binarymCP-nets whose

indegree is three, and the number of agents is bounded to 8.

Exists-Max-Optimal is also in ΣP
3
[38], hence it is ΣP

3
-complete.

Regarding the complexity of deciding the existence of max opti-

mum outcomes, we narrow down the upper-bound shown in the

literature. In fact, in order to decide whether anmCP-net has a max

optimum outcome, it is sufficient to guess an outcome α , and then

check, via an oracle call, that α is actually max optimum. The oracle

answering the latter question is in ΠP

2
[38].

Theorem 6.3. Let M be anmCP-net. Deciding whether there is a

max optimum outcome in M is in ΣP
3
.

7 RELATEDWORKS
The graphical structure of CP-nets evidences that, in general, pref-

erences may exhibit dependencies between features. Dependencies

certainly are a critical characteristic to model, however they can

become troublesome during preference aggregation. Whether de-

pendencies are actually problematic or not depends on the specific

ways in which agents’ votes are collected. Two ways of collecting

votes over combinatorial domains are the global voting and the

sequential voting [33]. In global voting, agents submit the entire

representation of their preferences, while, in sequential voting,

agents’ preferences are collected feature-by-feature. Global vot-

ing is the semantics of mCP-nets. Feature dependencies are not

an issue in global voting, because in this case all the information
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needed for the aggregation is available. However, global voting can

be expensive to evaluate (especially if preferences are extensively

unfolded before any further processing). This computational bur-

den can be limited by adopting sequential voting, for which, on

the other hand, dependencies can be quite detrimental, to the point

that sub-optimal outcomes can be selected [33]. Lacy and Niou

[28] showed that these issues in sequential voting can be (partly)

avoided if the considered preferences are separable, i.e., they do not

have dependencies among features. Clearly, this is a very strong

assumption, and it is unlikely to be met in practice [31, 32, 56, 57].

To overcome this limitation, O-legality was proposed by Lang

[31] as a weaker restriction. If O = (F1, . . . , Fn ) is a sequence of
features, a profile of agent preferences is O-legal if, for any agent

A, and any two features Fi and Fj , i < j implies that A’s prefer-
ences for Fi do not depends on Fj ’s value. When preferences are

represented via CP-nets, a profile of CP-nets is O-legal if O is a

topological order shared among all the CP-nets’ graphs. When O is

a common topological order of the CP-nets in a profile of CP-nets,

asking the agents to sequentially vote for the single features follow-

ing the order in O is very natural. In fact, sequential voting over

O-legal CP-nets has extensively been investigated [31, 32, 56, 57],

and O-legality of CP-nets was required in various other works,

e.g., [14, 18, 42, 43]. An interesting approach to preference aggrega-

tion over O-legal CP-nets was proposed in [14], where “probabilis-

tic” CP-nets were used to represent the result of the aggregation.

However, also O-legality is somewhat demanding [36, 51, 55], be-

cause it imposes that there are no inversions in the preference

dependencies. For example, if in a profile of CP-nets encoding pref-

erences for a dinner there were an agent whose choice of the starter

influences the choice of the main dish and another agent whose

choice of the main dish influences the choice of the starter, then

those CP-nets would not beO-legal. To overcome this limitation, the

hypercubewise preference aggregation was introduced, however

the semantics of hypercubewise aggregation is different from global

voting (see, e.g., [12, 36, 37, 55]). Another approach is computing

tailored voting agendas to circumvent preference dependencies [1].

Although it was explicitly stated in the literature that a theoreti-

cal comparison between global and sequential voting was highly

promising [31], global voting over (non-O-legal) CP-nets has not

thoroughly been investigated as sequential voting.

The first work studying global voting over (not necessarily

O-legal) CP-nets was the one of Rossi et al. [48], in whichmCP-nets

are defined (remember thatmCP-nets’ semantics is global voting

over CP-nets). Most of the algorithms considered in [48] were brute-

force, hence, those algorithms gave only exponential time upper

bounds for most of the global voting tasks over CP-nets, and no

hardness result was provided. Algorithms exploiting SAT solvers

to compute Pareto and majority optimal outcomes according to

global voting over profiles of CP-nets were proposed in [34, 35]. Li

et al. [36] extended those results to computing majority optimal

outcomes via SAT solvers on cyclic CP-nets, while Li et al. [37]

introduced the possibility of multivalued and incomplete CP-nets.

Although these works advanced the research on global voting over

CP-nets, they did not provide precise complexity results. As already

mentioned, the complexity of these problems was reported as open

several times [31, 34–37], and only recently a work characterized

the exact complexity of some voting tasks overmCP-nets [38].

Regarding the P-completeness results, to the best of our knowl-

edge there is only another P-completeness result in the computa-

tional social choice literature [9, 11], and it is the complexity of

checking the essential set, which is a specific solution concept, over

weak tournaments. Weak tournaments are graphs representing

incomplete preference relations, and they directly encode a domi-

nance relation (after vote aggregation, we could say). Intuitively, the

data structure in input, i.e., the weak tournament, reports whether

an alternative is preferred to another via some voting procedure

(e.g., majority), but the preferences of the single agents are not

explicitly represented in the input. This means that the aggregation

of the preferences is assumed to be pre-computed and provided

in input. In this respect, our work is different because we assume

that the input contains the preferences of the single agents. More-

over, the papers cited above do not mention the consequences of

P-completeness in terms of non-parallelizability.

8 SUMMARY AND OUTLOOK
In this paper, we have further analyzed the complexity ofmCP-nets,

whose dominance semantics is global voting over not necessarily

O-legal CP-nets. We have proven that deciding the existence of

max optimal and max optimum outcomes is ΣP
3
-complete and in

ΣP
3
, respectively. We have also shown that various polynomial-time

voting tasks over (m)CP-nets are actually P-complete, and hence

non-parallelizable. This points out a significant issue, which is

whether polynomial-time voting schemes are highly parallelizable,

so that parallel algorithms can scale up on big instances.

A possible direction for further research is showing the exact

complexity of deciding the existence of max optimum and Pareto

optimum outcomes inmCP-nets. AnalyzingmCP-nets when partial

CP-nets are allowed will also be important, given that the original

definition ofmCP-nets used the idea of partial CP-nets to model

influences between preferences of different agents. Having con-

straints on outcomes’s feasibility is another interesting direction

of investigation. Without any constraint, CP-nets model agents’

preferences when it is assumed that all outcomes are attainable.

However, this is not always the case. During the aggregation pre-

cess, we should take into account what outcomes are feasible. For

example, to decide whether an outcome is majority dominated

by another, we should check that the latter is actually feasible. A

similar idea characterized the solution concepts in NTU coopera-

tive games defined via constraints [19, 21]. This approach could be

merged with the definition of constrained CP-nets [4, 46], and a

concept of compact representation of constraints (see [24]) could

also be introduced. It will also be interesting investigating struc-

tural restrictions on the structure of CP-nets, in the spirit of what

was done in [7, 20, 22, 23, 26], to identify broader classes of CP-nets

where the dominance test is tractable, whereas, in general, over

acyclic CP-nets the dominance test is NP-hard.
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