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ABSTRACT
In iterative voting systems, candidates are eliminated in consecutive

rounds until either a fixed number of rounds is reached or the

set of remaining candidates does not change anymore. We focus

on iterative voting systems based on the positional scoring rules

plurality, veto, and Borda and study their resistance against shift

bribery attacks. In constructive shift bribery, an attacker seeks to

make a designated candidate win the election by bribing voters to

shift this candidate in their preferences; in destructive shift bribery,

the briber’s goal is to prevent this candidate’s victory. We show

that many iterative voting systems, including those due to Hare

(a.k.a. single transferable vote, instant-runoff voting, or alternative

vote), Coombs, Baldwin, and Nanson, are resistant to these types

of attack, i.e., the corresponding problems are NP-hard.
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1 INTRODUCTION
One of the main themes in computational social choice is to study

the complexity of manipulative attacks on voting systems, in the

hope that proving computational hardness of such attacks may

provide some sort of protection against them. Besides manipulation

(also referred to as strategic voting) and electoral control, much

work has been done to study bribery attacks. For a comprehensive

overview, we refer to the book chapters by Conitzer and Walsh [6]

for manipulation, by Faliszewski and Rothe [13] for control and

bribery, and by Baumeister and Rothe [3] for all three topics.

Bribery in voting was introduced by Faliszewski et al. [10] (see

also [11]). We will focus on shift bribery, a special case of swap

bribery, which was introduced by Faliszewski et al. [11] in the

context of so-called irrational voters for Copeland elections and

was then studied in detail by Elkind et al. [9] for the constructive

variant and studied by Kaczmarczyk and Faliszewski [15] in the

destructive variant. In swap bribery, the briber has to pay for each

swap of any two candidates in the votes. Shift bribery additionally

requires that swaps always involve the designated candidate that

the briber wants to see win.
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Swap bribery generalizes the possible winner problem [16, 24],

which itself is a generalization of unweighted coalitional manipula-

tion. Therefore, each of the many hardness results known for the

possible winner problem is directly inherited by the swap bribery

problem. This was the motivation for Elkind et al. [9] to look at

restricted variants of swap bribery such as shift bribery.

Even though shift bribery possesses a number of hardness re-

sults [9], it has also been shown to allow exact and approximate

polynomial-time algorithms in a number of cases [8, 9, 21]. For

example, Elkind et al. [9] provided a 2-approximation algorithm for

shift bribery when using Borda voting. This result was extended by

Elkind and Faliszewski [8] to all positional scoring rules; they also

obtained somewhat weaker approximations for Copeland and maxi-

min voting. For Bucklin and fallback voting, the shift bribery prob-

lem is even exactly solvable in polynomial time [21].
1
In addition,

Bredereck et al. [5] analyzed shift bribery in terms of parameterized
complexity.

We study shift bribery for six iterative voting systems that each

proceed in rounds, eliminating after each round the candidates per-

forming worst: The system of Baldwin [1] eliminates the candidates

with lowest Borda score and the system of Nanson [18] eliminates

the candidates whose scores are lower than the average Borda

score, while the system of Hare eliminates the candidates with low-

est plurality score, the system called iterated plurality eliminates

the candidates that do not have the highest plurality score (both

Hare voting and iterated plurality are defined, e.g., in the book by

Taylor [22]), and the system of Coombs (defined, e.g., in the paper

by Levin and Nalebuff [17]) eliminates the candidates with lowest

veto score. The last system that we consider differs from the rest

because it always uses exactly two rounds: Plurality with runoff
eliminates the candidates that do not have the highest plurality

score (except in the case where there is a unique plurality winner,

it then eliminates all candidates that do not have the highest or

second-highest plurality score, see the book by Taylor [22]). Among

the systems we consider, Hare voting and variants thereof (some

of which are called single transferable vote, instant-runoff voting,

or alternative vote) are most widely used, for example in Australia,

India, Ireland, New Zealand, Pakistan, the UK, and the USA.

We show NP-completeness of the shift bribery problem for each

of these iterative voting systems for both the constructive and the

destructive case.
2
Our results complement results byDavies et al. [7]

who have shown unweighted coalitional manipulation to be NP-

complete for Baldwin and Nanson voting (even with just a single

1
Faliszewski et al. [12] have complemented these results on Bucklin and fallback voting.

In particular, they studied a number of bribery problems for these rules, including a

variant called “extension bribery,” which was previously introduced by Baumeister et

al. [2] in the context of campaign management when the voters’ ballots are truncated.

2
As shown by Xia [23], destructive bribery is closely related to the margin of victory, a

critical robustness measure for voting systems. Reisch et al. [20] add to this connection

by showing that the former problem can be easy while the latter is hard.
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Table 1: Summary of complexity results

Hare Coombs Baldwin

C NP-c (Thm. 3.1) NP-c (Thm. 3.4) NP-c (Thm. 4.1)

D NP-c (Thm. 3.3) NP-c (Thm. 3.5) NP-c (Thm. 4.2)

Nanson Iterated Plurality Plurality with Runoff

C NP-c (Thm. 4.3) NP-c (Thm. 5.1) NP-c (Thm. 5.1)

D NP-c (Thm. 4.4) NP-c (Thm. 5.2) NP-c (Thm. 5.2)

manipulator)—and also for the underlying Borda system (with two

manipulators; for the latter result, see also the paper by Betzler et

al. [4]). Davies et al. [7] also list various appealing features of the

systems by Baldwin and Nanson, including that they have been

applied in practice (namely, in the State of Michigan in the 1920s,

in the University of Melbourne from 1926 through 1982, and in

the University of Adelaide since 1968) and that (unlike Borda) they

both are Condorcet-consistent.
3
Table 1 gives an overview of our

complexity results for constructive (“C”) and destructive (“D”) shift

bribery in our six voting systems (“NP-c” stands for NP-complete).

2 PRELIMINARIES
Below, we provide the needed notions and notation.

Elections and voting systems. An election is specified as a pair

(C,V ) with C being a set of candidates and V a profile of the vot-

ers’ preferences over C , typically given by a list of linear orders

of the candidates. A voting system is a function that maps each

election (C,V ) to a subset of C , the winner(s) of the election. An
important class of voting systems is the family of positional scoring

rules whose most prominent members are plurality, veto, and Borda

count, see, e.g., the book chapters by Zwicker [25] and Baumeister

and Rothe [3]. In plurality, each voter gives her top-ranked can-

didate one point; in veto (a.k.a. antiplurality), each voter gives all

except the bottom-ranked candidate one point; in Bordawithm can-

didates, each candidate in position i of the voters’ rankings scores
m − i points; and the winners in each case are those candidates

scoring the most points.

Iterative voting systems. The voting systems we study are based

on plurality, veto, and Borda, but their election winner(s) are de-

termined in consecutive rounds. In each round, all candidates with

the lowest score are eliminated.
4
If in a round all remaining candi-

dates have the same score (there may be only one candidate left),

those candidates are proclaimed winners of the election (with the

exception of plurality with runoff). We use six different scoring

methods: The voting systems due to Hare, Coombs, and Baldwin use,
respectively, plurality, veto, and Borda scores. The Nanson system

eliminates in every round all candidates that have less than the

average Borda score, and iterated plurality eliminates all that do

not have the highest plurality score. As an exception, plurality with

3
ACondorcet winner is a candidate who defeats every other candidate in a pairwise com-

parison. Such a candidate does not always exist. A voting rule is Condorcet-consistent
if it chooses only the Condorcet winner whenever there exists one.

4
In the original sources stated in the Introduction, certain tie-breaking schemes are

used if more than one candidate has the lowest score in some round. For the sake of

convenience and uniformity, however, we prefer eliminating them all and disregarding

tie-breaking issues in such a case.

runoff always uses two rounds and in the first round eliminates all

candidates that do not have the highest plurality score, except when

there is a unique plurality winner, it then eliminates all candidates

except those with the highest or second-highest scores.

Shift bribery. For any given voting system E, we now define

the problem E-Shift-Bribery, which is a special case of E-Swap-
Bribery, introduced by Faliszewski et al. [11] in the context of

so-called irrational voters for Copeland and then comprehensively

studied by Elkind et al. [9]. Informally stated, given a profile of

votes, a swap-bribery price function exacts a price for each swap

of any two candidates in the votes, and in shift bribery only swaps

involving the designated candidate are allowed.

E-Constructive-Shift-Bribery

Given: An election (C, V ) with n votes, a designated candidate

p ∈ C , a budget B , and a list of price functions ρ =
(ρ1, . . . , ρn ).

Question: Is it possible to make p the unique E winner of the elec-

tion by shifting p in the votes such that the total price

does not exceed B?

In the corresponding problems E-Destructive-Shift-Bribery, we
ask whether it is possible to prevent p from being a unique winner.

Membership in NP is obvious for all considered problems.

Regarding the list of price functions ρ = (ρ1, . . . , ρn ) with ρi :
N→ N, in the constructive case ρi (k) indicates the price the briber
has to pay in order to move p in vote i by k positions to the top

(respectively, to the bottom in the destructive case). For all i , we
require that ρi is nondecreasing (ρi (ℓ) ≤ ρi (ℓ+1)), ρi (0) = 0, and if

p is at position r in vote i then ρi (ℓ) = ρi (ℓ − 1) whenever ℓ ≥ r in
the constructive case (respectively, ℓ ≥ |C | −r + 1 in the destructive

case). The latter condition ensures that p can be shifted upward no

farther than to the top (respectively, the bottom).
5
When the voter

i in ρi is clear from the context, we omit the subscript and simply

write ρ.
Our proofs use the following notation: A vote of the form a b c

indicates that the voter ranks candidate a on top position, then can-

didate b, and last candidate c . If a set S ⊆ C of candidates appears

in a vote as

−→
S , its candidates are placed in this position in lexico-

graphical order. By

←−
S we mean the reverse of the lexicographical

order of the candidates in S . If S occurs in a vote without an arrow

on top, the order in which the candidates from S are placed here

does not matter for our argument. We use · · · in a vote to indicate

that the remaining candidates may occur in any order.

Computational complexity.We assume familiarity with the stan-

dard concepts of complexity theory, including the classes P and

NP, polynomial-time many-one reducibility, and NP-hardness and

-completeness. We will use the following NP-complete problem:

Exact-Cover-by-3-Sets (X3C)

Given: Sets X = {x1, . . . , x3m } and S = {S1, . . . , Sn } such
that Si ⊆ X and |Si | = 3 for all Si ∈ S.

Question: Does there exist an exact cover ofX , i.e., a subset S′ ⊆ S
such that |S′ | =m and

⋃
Si ∈S′ Si = X ?

5
If p is in the first (respectively, the last) position of a vote, this voter cannot be bribed

and we tacitly assume a price function of ρ(t ) = 0 for each t ≥ 0. We will disregard

these voters when setting price functions for the other voters in our proofs.
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We assume that each x j ∈ X is contained in exactly three sets

Si ∈ S; thus |X | = |S|. Gonzalez [14] showed that X3C under this

restriction remains NP-hard. Note that if not stated otherwise, we

will use (X ,S) to denote anX3C instance, whereX = {x1, . . . ,x3m },
S = {S1, . . . , S3m }, and Si = {xi,1,xi,2,xi,3}. Also note that we

assume xi,1 to be the x j ∈ Si with the smallest subscript and xi,3
to be the x j ∈ Si with the largest subscript.

3 HARE AND COOMBS
We start by showing hardness of shift bribery for Hare elections.

Theorem 3.1. Hare-Constructive-Shift-Bribery is NP-hard.

Proof. Hardness follows from a reduction from X3C. Construct

from (X ,S) an instance ((C,V ),p,B, ρ) of Hare-Constructive-
Shift-Bribery with candidate set C = X ∪ S ∪ {p}, designated
candidate p, budget B, list ρ of price functions, and the following

list V of votes, with # denoting their number:

# vote for

1 Si xi,1
−−−−−−−−→
X \ {xi,1} · · · 1 ≤ i ≤ 3m

1 Si xi,2
−−−−−−−−→
X \ {xi,2} · · · 1 ≤ i ≤ 3m

1 Si xi,3
−−−−−−−−→
X \ {xi,3} · · · 1 ≤ i ≤ 3m

4 xi
−−−−−−−→
X \ {xi } · · · 1 ≤ i ≤ 3m

1 Si p · · · 1 ≤ i ≤ 3m

4 p · · ·
For voters with votes of the form Si p · · · , we use the price

function ρ(0) = 0, ρ(1) = 1, and ρ(t) = 1 for all t ≥ 2; and for

every other voter, we use the price function ρ with ρ(0) = 0 and

ρ(t) = B + 1 for all t ≥ 1. Finally, set the budget B =m.

Note that all candidates score exactly four points, so p is not a

unique winner without bribing voters.

We claim that (X ,S) is in X3C if and only if ((C,V ),p,B, ρ) is in
Hare-Constructive-Shift-Bribery.

(⇒) Suppose (X ,S) is a yes-instance of X3C. Then there exists

an exact cover S′ ⊆ S of sizem. We now show that it is possible

for p to become a unique Hare winner of an election obtained by

shifting p in the votes without exceeding the budget B. For every
Si ∈ S′, we bribe the voter with the vote of the form Si p · · · by
shifting p once, so her new vote is of the form p Si · · · ; each such

bribe action costs us only 1 from our budget, so the budget will

not be exceeded. In the first round, p now hasm + 4 points, every
candidate from S′ has 3 points, and every other candidate has 4

points. Therefore, all candidates in S′ are eliminated. In the second

round, all candidates in X now gain one point from the elimination

of S′, since it is an exact cover. Therefore, p and all candidates in X
proceed to the next round and the remaining candidates S \ S′ are
eliminated. In the next round with only p and the candidates from

X remaining, p has 3m+4 points, while every candidate inX scores

7 points (recall that every xi ∈ X is contained in exactly three

members of S). Since all candidates from X have been eliminated

now, p is the only remaining candidate and thus the unique Hare

winner.

(⇐) Suppose (X ,S) is a no-instance of X3C. Then no subset

S′ ⊆ S with |S′ | ≤ m coversX . We now show that we cannot make

p become a unique Hare winner of an election obtained by bribing

voters without exceeding budget B. Note that we can only bribe at

mostm voters with votes of the form Si p · · · without exceeding the
budget. Let S′ ⊆ S be such that Si ∈ S′ exactly if the voter with

the vote Si p · · · has been bribed. Clearly, |S′ | ≤ m and in all those

votesp has been shifted once to the left, so she is now ranked first in

these votes. Therefore, p now has 4+ |S′ | points and every Si ∈ S′
scores 3 points. Since every other candidate scores as many points

as before the bribery (namely, 4 points), the candidates in S′ are
eliminated in the first round. LetX ′ = {xi ∈ X | xi <

⋃
Sj ∈S′ Sj } be

the subset of candidates xi ∈ X that are not covered by S′. We have

X ′ , ∅ (otherwise, S′ would be an exact cover of X ). In the second

round, unlike the candidates from X \ X ′, the candidates in X ′

will not gain additional points from the elimination the candidates

in S′. Thus, in the current situation, the candidates from X ′ and
S \ S′ are trailing behind with 4 points each and are eliminated in

this round. Therefore, in the next round, only p and the candidates

from X \ X ′ are remaining in the election. Let xℓ ∈ X \ X ′ be
the candidate from X \ X ′ with the smallest subscript. Since all

candidates from S are eliminated, p has 3m + 4 points and every

candidate from X \ X ′ except xℓ has 7 points. On the other hand,

xℓ gains additional points from eliminating the candidates from X ′;
therefore, xℓ survives this round by scoring more than 7 points. In

the final round with only p and xℓ remaining, p is eliminated, since

3m · 7 > 3m + 4 form > 1. □

Example 3.2. Let (X ,S) be a yes-instance of X3C defined by X =
{x1, . . . ,x6} and S = {{1, 2, 3}, {4, 5, 6}, {2, 3, 6}, {2, 4, 5}, {1, 3, 4},
{1, 5, 6}}. Construct ((C,V ),p,B, ρ) from (X ,S) as in the proof of

Theorem 3.1; in particular, the budget is B = 2. If we bribe the

voters with S1 p · · · and S2 p · · · to shift p to the top of their vote,

p will be the unique winner of the election that proceeds as follows:

Round p x ∈ X S1, S2 S3, S4, S5, S6
1 6 4 3 4

2 6 5 out 4

3 10 7 out out

Now consider a no-instance (X ,S) with X = {x1, . . . ,x6} and
S = {{1, 2, 4}, {4, 5, 6}, {2, 3, 6}, {2, 3, 5}, {1, 3, 4}, {1, 5, 6}}. If we
bribe no voter, every candidate has four points and wins, so p
does not win alone. If we bribe one voter, say the one with vote

S1 p · · · , p loses the direct comparison in the last round of the

election proceeding as follows:

Round p x1 x2, x4 x3, x5, x6 S1 Si ∈ S \ {S1}
1 5 4 4 4 3 4

2 5 5 5 4 out 4

3 10 28 7 out out out

4 10 42 out out out out

Since (X ,S) is a no-instance of X3C, no matter which two subsets

Si , Sj we choose, at least one xk is in both subsets, so p again loses

the direct comparison in the last round. For example, if we bribe the

voters with S1 p · · · and S2 p · · · , the election proceeds as follows:

Round p x1 x3 x4 x2,x5,x6 S1, S2 S3, S4, S5, S6
1 6 4 4 4 4 3 4

2 6 5 4 6 5 out 4

3 10 14 out 7 7 out out

4 10 42 out out out out out
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Theorem 3.3. Hare-Destructive-Shift-Bribery is NP-hard.

Proof. Again, we use a reduction from X3C. Construct from

(X ,S) aHare-Destructive-Shift-Bribery instance ((C,V ),p,B, ρ)
as follows. Let D = {d1, . . . ,d3m } be a set of 3m dummy candidates.

The candidate set is C = X ∪ S ∪ D ∪ {w,p} with designated can-

didate p, budget B, and list ρ of price functions. The list V of votes

is constructed as follows:

# vote for

2 Si xi,1
−−−−−−−−→
X \ {xi,1} w p · · · 1 ≤ i ≤ 3m

2 Si xi,2
−−−−−−−−→
X \ {xi,2} w p · · · 1 ≤ i ≤ 3m

2 Si xi,3
−−−−−−−−→
X \ {xi,3} w p · · · 1 ≤ i ≤ 3m

7 xi
−−−−−−−→
X \ {xi } w p · · · 1 ≤ i ≤ 3m

1 p Si · · · 1 ≤ i ≤ 3m

12 w p · · ·
18m p · · ·

6 di Si p · · · 1 ≤ i ≤ 3m

For voters with votes of the form p Si · · · , we use the price

function ρ(0) = 0, ρ(1) = 1, and ρ(t) = B + 1 for all t ≥ 2; and for

every other voter, we use the price function ρ with ρ(0) = 0 and

ρ(t) = B + 1 for all t ≥ 1. Finally, set the budget B =m.

Without bribing, the election (C,V ) proceeds as follows:
Round p w xi ∈ X Si ∈ S di ∈ D

1 21m 12 7 6 6

2 39m 12 13 out out

3 39m + 12 out 13 out out

It follows that p has won the election after three rounds.

We claim that (X ,S) is in X3C if and only if ((C,V ),p,B, ρ) is in
Hare-Destructive-Shift-Bribery.

(⇒) Suppose (X ,S) is a yes-instance of X3C. Then there exists

an exact cover S′ ⊆ S of sizem. We now show that it is possible

to eliminate p from an election obtained by shifting p in the votes

without exceeding the budget B. For every Si ∈ S′, we bribe the
voter with the vote of the form p Si · · · by shifting p once, so her

new vote is of the form Si p . . . ; each such bribe action costs us

only 1 from our budget, so the budget will not be exceeded. Now

the election proceeds as follows:

Round p w xi ∈ X Si ∈ S′ Si ∈ S \ S′ di ∈ D
1 20m 12 7 7 6 6

2 32m 12 11 13 out out

3 32m 33m + 12 out 13 out out

4 39m 39m + 12 out out out out

We see that p is eliminated in the fourth round.

(⇐) Suppose (X ,S) is a no-instance of X3C. Then no subset

S′ ⊆ S with |S′ | ≤ m covers X . We now show that p will not

be eliminated in an election obtained by bribing voters without

exceeding budget B. Note that we can only bribe at mostm voters

with votes of the form p Si · · · without exceeding the budget.

Let S′ ⊆ S be such that for every Si ∈ S′ we have bribed the

voter whose vote is p Si · · · . We can assume that |S′ | > 0. Every

candidate in S′ will gain an additional point and therefore survives

the first round. All candidates from D and S \S′ will be eliminated,

since p only loses at mostm points.

In the second round, the remaining candidates from S will gain

additional six points from the elimination of candidates in D and

score 13 points in this round (and in all subsequent rounds with

p still standing). If a candidate Si ∈ S was eliminated in the last

round, every xi ∈ Si gains two additional points in this round.

Partition X into sets X0, X1, X2, and X3 so that xi ∈ Xl ⇔ |{Sj ∈
S′ | xi ∈ Sj }| = l . Note that X0, X1, X2, and X3 are disjoint and

|X0 | > 0, but one or two of X1, X2, and X3 may be empty. Then

xi ∈ X j scores 7 + (6 − 2j) ∈ {7, 9, 11, 13} points depending on how

many times xi is covered by S′.
Therefore, every xi ∈ X0 scores more points than w who has

12 points. So, there are candidates from X that survive this round

and other candidates from X (i.e., candidates from X1, X2, or X3),

who are eliminated. In the third round, the candidate xℓ ∈ X with

the smallest subscript who is still standing gains at least 7 points

from the eliminated candidates so that she scores at least 14 points.

All other candidates still score the same points as in the last round.

Therefore, p scores at least 20m points, w scores 12 points, every

Si ∈ S′ scores 13 points, and every still standing candidate from X
except xℓ scores at most 13 points. Sincew can only gain additional

points when all candidates from X are eliminated and only xℓ
gains points from the elimination of candidates from X \ {xℓ} in
the subsequent rounds, all candidates X \ ({xℓ} ∪ X0) and w are

eliminated. Then all still standing candidates from X0 \ {xℓ} and
candidates from S′ who each score 13 points are eliminated, which

leaves p and xℓ in the last round. In this round, p scores 39m + 12
points and xℓ scores 39m points, so p wins the election. □

Next, we turn to shift bribery for Coombs elections.

Theorem 3.4. Coombs-Constructive-Shift-Bribery is NP-hard.

Proof. To prove NP-hardness, we now describe a reduction from

X3C to Coombs-Constructive-Shift-Bribery. We construct an

election (C,V ) with the set C = {p,w,d1,d2,d3} ∪ X ∪ Y of candi-

dates, where p is the designated candidate and Y = {yi | xi ∈ X }.
We construct the following list V of votes:

# vote for

1 · · · xi,1 xi,2 xi,3 p 1 ≤ i ≤ 3m

2m · · · p
−−−−−−→
Y \ {yi } yi xi 1 ≤ i ≤ 3m

2m · · · p −→Y w d1 d2 d3

1 · · · p −→Y w X d1 d2 d3

m · · · p −→Y w

For the voters with a vote of the form · · · xi,1 xi,2 xi,3 p, we
use the price function ρ(0) = 0, ρ(1) = ρ(2) = ρ(3) = 1, and

ρ(t) = B + 1 for all t ≥ 4 and for all the remaining voters, we use

the price function ρ(0) = 0 and ρ(t) = B + 1 for all t ≥ 1. The

candidates have the following number of vetoes: p has 3m, each

xi ∈ X has 2m,w hasm,d3 has 2m+1, and the remaining candidates

each have 0 vetoes. Furthermore, our budget is B =m.

We claim that (X ,S) is in X3C if and only if ((C,V ),p,B, ρ) is in
Coombs-Constructive-Shift-Bribery.

(⇒) Assume that (X , S) is in X3C. This means that there exists

a subset S′ ⊆ S with |S′ | = m and

⋃
Si ∈S′ Si = X . So we have a
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partition of X into three sets, X = X1 ∪ X2 ∪ X3, such that:

X1 = {xi ∈ Si | xi has the lowest subscript in Si ∈ S′ },
X3 = {xi ∈ Si | xi has the highest subscript in Si ∈ S′ },
X2 = X \ (X1 ∪ X3).

LetY = Y1∪Y2∪Y3 be the corresponding partition ofY . We bribe

the voters with votes of the form · · · xi,1 xi,2 xi,3 p and Si ∈ S′ so
that they change their votes to · · · p xi,1 xi,2 xi,3. It follows that
p now has a total of 2m vetoes, whereas each xi,3 ∈ X receives an

additional veto for a total of 2m + 1. The number of vetoes for the

remaining candidates remain unchanged.

If a candidate has the highest number of vetoes then she has

the fewest number of points and cannot proceed to the next round.

Here, the candidates in X3 and d3 have the fewest number of points

and are eliminated in this round.

Without the candidates in X3 each candidate in X2 gets an ad-

ditional veto and the candidates in Y3 each take the vetoes of the

eliminated candidates X3. As a consequence, in this round the can-

didates in X2 and d2 have the fewest number of points and are

eliminated. Similarly to the first round, vetoes from candidates

in X2 and d2 are passed on to candidates in X1, Y1, and d1. Thus
the candidates receive the following number of vetoes in the third

round: p and each y ∈ Y2∪Y3 receive 2m vetoes,w receivesm, each

y ∈ Y1 receives 0, and d1 and each xi ∈ X1 receive 2m + 1 vetoes.
Consequently, all the candidates xi ∈ X3 and d1 are eliminated

in this third round, so in the next round there are no candidates

from X and no di with 1 ≤ i ≤ 3. It follows thatw receives 2m + 1
additional vetoes in this round, so w has the most vetoes in the

fourth round and is eliminated. We need 3m further rounds until

p ends up as the last remaining candidate and sole winner of the

election. In each of these rounds, the candidate in Y that is still

alive and has the highest subscript receives at least 2m+ 2m+ 1+m
vetoes, while p always gets only 3m vetoes.

(⇐) Suppose that (X , S) is a no-instance for X3C. Observe that
if we want to make p a unique winner of the election, we have to

bribe at leastm voters with a vote of the form · · · xi,1 xi,2 xi,3 p.
If we do not bribe these voters, p has at least 2m + 1 vetoes and

would be eliminated in the first round. Due to our budget we have

to bribe exactlym such voters and cannot bribe further voters. Let

S′ ⊆ S be such that Si ∈ S′ exactly if the voter with the vote of

the form · · · xi,1 xi,2 xi,3 p has been bribed. The best case for p
is that those voters change their vote from · · · xi,1 xi,2 xi,3 p to

· · · p xi,1 xi,2 xi,3, where Si ∈ S′. Note that |S′ | =m and S′ does
not cover X because we have a no-instance of X3C. Now p has only

2m vetoes and will not be eliminated in the first round.

Let X1 be the set of candidates xi ∈ Si for Si ∈ S′ with the

smallest subscript in Si , let X2 be the set of candidates xi ∈ Si for
Si ∈ S′ with the second smallest subscript in Si , and let X3 be the

set of candidates xi ∈ Si for Si ∈ S′ with the highest subscript

in Si . Note that X1 ∪ X2 ∪ X3 , X , since S′ does not cover X .

For w to have more vetoes than p, the candidates d1, d2, and
d3 need to be eliminated. For that to happen, there must be three

rounds in which no other candidate has more than 2m + 1 vetoes.
In the round where di , 1 ≤ i ≤ 3, is eliminated, all still standing

candidates in Xi are eliminated as well. Assume there were three

rounds in which 2m + 1 was the maximal number of vetoes for a

candidate. Then d1, d2, d3, and all candidates in X1 ∪ X2 ∪ X3 are

eliminated. Note that those candidates that were not covered by S′
always had only 2m vetoes and are still participating in the election.

Therefore, in the next round, p and w have 3m vetoes each, the

remaining candidates from X have at most 2m + 1 vetoes, and the

candidates from Y have at most 2m vetoes. So even if p survives the

first rounds with the candidates d1, d2, and d3 still present, she will
then surely be eliminated in the following round. If there is at least

one voter who shifts p only one or two positions upward, then p
has to drop out with d1 or even before d1 drops out, because at the
latest after two rounds (with 2m + 1 being the maximal number of

vetoes for a candidate) p receives another veto and thus has at least

the same number of vetoes as d1. □

Finally, we state the following result for the destructive case

in Coombs elections. Due to space limitations, we omit the proof,

which also uses a reduction from X3C.

Theorem 3.5. Coombs-Destructive-Shift-Bribery is NP-hard.

4 BALDWIN AND NANSON
We now showNP-hardness of shift bribery for Baldwin and Nanson

elections. Note that similar reductions were used by Davies et al. [7]

to show NP-hardness of the unweighted manipulation problem for

these election systems.

For a preference profile V over a set of candidates C , let avg(V )
be the average Borda score of the candidates in V (i.e., avg(V ) =
( |C |−1) |V |

2
). To conveniently construct votes, for a set of candidates

C and c1, c2 ∈ C , let

W(c1,c2) = (c1 c2
−−−−−−−−−→
C \ {c1, c2},

←−−−−−−−−−
C \ {c1, c2} c1 c2).

Under Borda, from the two votes inW(c1,c2) candidate c1 scores

|C | points, c2 scores |C | − 2 points, and all other candidates score

|C | − 1 points. Also, observe that if a candidate c∗ ∈ C is eliminated

in some round and c∗ < {c1, c2} then all other candidates lose one

point due to the votes inW(c1,c2). If c
∗ = c1 then c2 loses no points

but all other candidates lose one point, and if c∗ = c2 then c1 loses
two points and all other candidates lose one point. Therefore, if c∗

is eliminated, the point difference caused by this elimination with

respect to the votes inW(c1,c2) remains the same for all candidates,

with two exceptions: (a) If c∗ = c1 then c2 gains a point from every

other candidate, and (b) if c∗ = c2 then c1 loses a point to every

other candidate. Furthermore let score(C,V )(x) denote the number

of points candidate x obtains in a Borda election (C,V ), and let

dist(C,V )(x ,y) = score(C,V )(x) − score(C,V )(y).

Theorem 4.1. Baldwin-Constructive-Shift-Bribery is NP-hard.

Proof. To prove NP-hardness, we reduce the NP-complete prob-

lem X3C to Baldwin-Constructive-Shift-Bribery.

From (X ,S), we construct an election (C,R) with the set of can-

didates C = {p,w,d} ∪ X ∪ S, where p is the designated candidate

and R consists of two lists of votes, R1 and R2. R1 contains the

following votes:

# votes for # votes for

1 W(Sj ,p) 1 ≤ j ≤ 3m 2 W(x j,3,Sj ) 1 ≤ j ≤ 3m

2 W(x j,1,Sj ) 1 ≤ j ≤ 3m 2 W(w,xi ) 1 ≤ i ≤ 3m

2 W(x j,2,Sj ) 1 ≤ j ≤ 3m 7 W(w,p)

Session 43: Social Choice Theory 3 AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

1571 



The votes in R1 give the following scores to the candidates in C :

score(C,R1)(xi ) = avg(R1) + 4 for every xi ∈ X ,
score(C,R1)(Sj ) = avg(R1) − 5 for every Sj ∈ S,
score(C,R1)(p) = avg(R1) − 3m − 7,
score(C,R1)(w) = avg(R1) + 6m + 7,
score(C,R1)(d) = avg(R1).

Furthermore, R2 contains the following votes:

# votes for # votes

2m + 1 W(d,Sj ) 1 ≤ j ≤ 3m 1 W(p,d )
2m + 9 W(d,xi ) 1 ≤ i ≤ 3m 2m + 14 W(d,w )

The votes in R2 give the following scores to the candidates in C :

score(C,R2)(xi ) = avg(R2) − (2m + 9) for every xi ∈ X ,
score(C,R2)(Sj ) = avg(R2) − (2m + 1) for every Sj ∈ S,
score(C,R2)(p) = avg(R2) + 1,
score(C,R2)(w) = avg(R2) − (2m + 14),
score(C,R2)(d) = avg(R2) + 12m2 + 32m + 13.

Let R = R1 ∪ R2 and avg(R) = avg(R1) + avg(R2). Then we have

the following Borda scores for the complete profile R:

score(C,R)(xi ) = avg(R) − 2m − 5 for every xi ∈ X ,
score(C,R)(Sj ) = avg(R) − 2m − 6 for every Sj ∈ S,
score(C,R)(p) = avg(R) − 3m − 6,
score(C,R)(w) = avg(R) + 4m − 7,
score(C,R)(d) = avg(R) + 12m2 + 32m + 13.

Regarding the price function, for every first vote ofW(Sj ,p) (i.e., a
vote of the form Sj p C \ {Sj ,p}), let ρ(1) = 1 and ρ(t) = 1 for every

t ≥ 2. For every other vote, let ρ(t) = B + 1 for every t ≥ 1. Finally,

we set the budget B =m. It is easy to see that p is eliminated in the

first round in the election (C,R).
We claim that (X ,S) is in X3C if and only if ((C,R),p,B, ρ) is in

Baldwin-Constructive-Shift-Bribery.

(⇒) Suppose there is an exact cover S′ ⊆ S. Then we bribe

the first votes ofW(Sj ,p) for every Sj ∈ S′ by shifting p to the

left once. Note that we won’t exceed our budget, since shifting

once costs 1 in those votes and |S′ | = m. Additionally, for every

Sj ∈ S′, the two votes inW(Sj ,p) are now symmetric to each other

and can be disregarded from now on, as all candidates gain the

same number of points from those votes and all candidates lose

the same number of points if a candidate is eliminated from the

election. After thosem votes have been bribed, only the scores of

p and every Sj ∈ S′ change. With score(C,R)(p) = avg(R) − 2m − 6
and score(C,R)(Sj ) = avg(R) − 2m − 7, all candidates in S′ are tied
for the last place. If any Sj ∈ S′ is eliminated in a round, the three

candidates x j,1, x j,2, and x j,3 will lose two points more than the

candidates fromS′\{Sj } that were in the last position before Sj was
eliminated. Therefore, those three candidates from X will then be

in the last position in the next round. This means that all candidates

S′ and every xi ∈ X that is covered by S′ will be eliminated in

the subsequent rounds. Since S′ is an exact cover, now there is no

candidate from X left. Thus the point difference between p andw is

1 and between p and the remaining Sj ∈ (S \ S′) is −6. Note that p

can beat d only if no candidate ofC \ {p,d} is still participating. So
in the next round,w is eliminated. From this p gains seven points

on all Sj ∈ (S \ S′), so these are tied for the last place. Therefore,

the remaining candidates from S are eliminated, which leaves p
and d for the next and final round, where d is eliminated and p wins

the election alone.

(⇐) Suppose there is no exact cover. It is obvious that at most

m of the first votes of W(Sj ,p) can be bribed without exceeding

the budget. Without bribing, p is in the last place and the point

difference to the second-to-last candidate(s) is dist(C,R)(p, Sj ) =m,

1 ≤ j ≤ 3m. By bribing, as explained above, p gainsm + 1 points
onm candidates from S, which then will be eliminated from the

election. This leads to the elimination of all xi ∈ X that are covered

by the set S′ ⊆ S of candidates that were eliminated. Since there is

no exact cover, S′ doesn’t cover X . So there are candidates X ′ ⊆ X ,

|X ′ | ≥ 1, who were not eliminated before, as for every candidate

xi ∈ X ′ all three candidates Sj ∈ (S \ S′) with xi ∈ Sj are still in
the election. With the candidates C1 = {p,w,d} ∪ (S \ S′) ∪ X ′
still standing, the point differences of p to the other remaining

candidates are as follows:

dist(C1,V )(p,d) = −2m + 1 − 2m(2m + 1)
− |X ′ |(2m + 9) − (2m + 14) < 0,

dist(C1,V )(p,w) = 1 − 2|X ′ | < 0,

dist(C1,V )(p,xi ) = −1 for every xi ∈ X
′, and

dist(C1,V )(p, Sj ) < −12 for everySj ∈ S \ S
′.

Therefore, p is in the last place and is eliminated. □

The following theorem uses a similar proof idea as Theorem 4.1.

Theorem 4.2. Baldwin-Destructive-Shift-Bribery is NP-hard.

Proof Sketch. To proveNP-hardness, we reduce theNP-complete

problem X3C to Baldwin-Destructive-Shift-Bribery.

Using (X ,S), we construct an election (C,R) with the set of

candidatesC = {p,w,b,d}∪X∪S, whered is the despised candidate
and R consists of two lists of votes, R1 and R2. R1 contains the

following votes:

# votes for # votes for

1 W(d,Sj ) 1 ≤ j ≤ 3m 2 W(w,xi ) 1 ≤ i ≤ 3m

2 W(Sj ,x j,1) 1 ≤ j ≤ 3m 3m + 7 W(w,p)
2 W(Sj ,x j,2) 1 ≤ j ≤ 3m m + 10 W(b,Sj ) 1 ≤ j ≤ 3m

2 W(Sj ,x j,3) 1 ≤ j ≤ 3m

Furthermore, R2 contains the following votes:

# votes for # votes

1 W(p,d ) 6m + 14 W(d,w )
2m + 7 W(d,Sj ) 1 ≤ j ≤ 3m 3m2 + 33m + 12 W(d,b)
3m + 3 W(d,xi ) 1 ≤ i ≤ 3m

Let R = R1 ∪ R2. Then we have the following Borda scores for

the complete profile R:

score(C,R)(xi ) = avg(R) − 3m − 11 for every xi ∈ X ,
score(C,R)(Sj ) = avg(R) − 3m − 12 for every Sj ∈ S,
score(C,R)(p) = avg(R) − 3m − 6,
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score(C,R)(w) = avg(R) + 3m − 7,
score(C,R)(b) = avg(R) − 3m − 12,
score(C,R)(d) = avg(R) + 18m2 + 69m + 25.

Regarding the price function, for every first vote ofW(d,Sj ) (i.e.,
a vote of the form d Sj C \ {Sj ,d}), let ρ(1) = 1 and ρ(t) = B + 1 for
every t ≥ 2. For every other vote, let ρ(t) = B + 1 for every t ≥ 1.

Finally, we set the budget B = m. It is easy to see that d wins the

election (C,R).
We claim that (X ,S) is in X3C if and only if ((C,R),d,B, ρ) is in

Baldwin-Destructive-Shift-Bribery.

(⇒) Suppose there is an exact cover S′ ⊆ S. Then we bribe the

first votes ofW(d,Sj ) for every Sj ∈ S′ by shifting d to the right

once. With a similar argument as in the proof of Theorem 4.1, p
wins the election, i.e., d is not among the winners.

(⇐) Suppose there is no exact cover. Then, for every S′ ⊆ S
with |S′ | ≤ m, there is at least one xi ∈ X that is not covered by S′.
It is obvious that at mostm of the first votes ofW(d,Sj ) can be bribed
without exceeding the budget.

We can show that p will always be eliminated before w and

therefore d cannot be prevented from winning the election. □

Finally, we turn to Nanson elections. The reduction below will

only use pairs of votes of the formW(c1,c2). The average Borda

score for those two votes is |C | − 1. The candidate c1 scores one
point more than the average and c2 scores one point fewer than the

average. The other candidates score exactly the average Borda score.

If a candidate is eliminated in a round, the average Borda score

required to survive the next round decreases by one. Regardless

of which candidate is eliminated, all remaining candidates that are

not c1 or c2 lose one point and still have exactly the average Borda

score. If c2 is eliminated, c1 loses its advantage with respect to the

average and now scores exactly the average Borda score as well. If

one of the other candidates is eliminated, c1 continues to have one

point more than the average Borda score. This is analogous for c2:
If c1 is eliminated, c2 scores the average Borda score, and if one of

the other candidates is eliminated, c2 still has one point fewer than
the average Borda score.

Theorem 4.3. Nanson-Constructive-Shift-Bribery is NP-hard.

Proof. To prove NP-hardness, we reduce the NP-complete prob-

lem X3C to Nanson-Constructive-Shift-Bribery.

Again, using (X ,S) we construct an election (C,R) with the set

of candidatesC = {p,w1,w2,d} ∪X ∪S, where p is the designated

candidate. Then we construct two sets of votes, R1 and R2. R1
contains the following votes:

# votes for # votes for

1 W(Sj ,p) 1 ≤ j ≤ 3m 1 W(x j,3,Sj ) 1 ≤ j ≤ 3m

1 W(xi ,p) 1 ≤ i ≤ 3m 4 W(Sj ,w1) 1 ≤ j ≤ 3m

1 W(x j,1,Sj ) 1 ≤ j ≤ 3m 15m W(w1,w2)
1 W(x j,2,Sj ) 1 ≤ j ≤ 3m 3m W(p,w1)

Furthermore, R2 contains the following votes:

# votes for

2m W(p,d )
2 W(d,Sj ) 1 ≤ j ≤ 3m

4 W(d,xi ) 1 ≤ i ≤ 3m

Let R = R1 ∪ R2. Then we have the following Borda scores for

the complete profile R:

score(C,R)(xi ) = avg(R) for every xi ∈ X ,
score(C,R)(Sj ) = avg(R) for every Sj ∈ S,
score(C,R)(p) = avg(R) −m,

score(C,R)(w1) = avg(R),
score(C,R)(w2) = avg(R) − 15m,
score(C,R)(d) = avg(R) + 16m.

The price function is again defined as follows. For every first

vote ofW(Sj ,p) (i.e., a vote of the form Sj p C \ {Sj ,p}), let ρ(1) = 1

and ρ(t) = 1 for every t ≥ 2. For every other vote, let ρ(t) = B + 1
for every t ≥ 1. Finally, we set the budget B =m. It is easy to see

that p is eliminated in the first round in the election (C,R).
We claim that (X ,S) is in X3C if and only if ((C,R),p,B, ρ) is in

Nanson-Constructive-Shift-Bribery.

(⇒) Suppose there is an exact cover S′ ⊆ S. Then, for every
Sj ∈ S′, we bribe the first vote ofW(Sj ,p) by shifting p to the left

once in all those votes. Note that we won’t exceed our budget, since

this bribe action costs 1 per vote and |S′ | =m. With the additional

m points, p reaches the average Borda score and is not eliminated

in the first round. However, all candidates in S′ lose one point and
are eliminated. Additionally,w2 will be eliminated as well.

In the next round,w1 will be eliminated, since she has 11m points

fewer than the average score required to survive this round. Since

the candidates in S′ were eliminated in the last round and S′ is an
exact cover, every candidate in X now has fewer points than the

average and is eliminated.

In the third round, only p, d , and the candidates in S \S′ are still
standing. Therefore, the only pairs of votes that are not symmetric

areW(Sj ,p), twiceW(d,Sj ) for every Sj ∈ (S \ S′), and 2m pairs

ofW(p,d ). Since |S \ S′ | = 2m, we have that p scores exactly the

average score and survives this round, just as d . Every Sj ∈ (S \S′)
has one point fewer than the average and is eliminated. This leaves

only p and d in the last round, which p wins.

(⇐) Suppose there is no exact cover. Then, for every S′ ⊆ S
with |S′ | =m, there is at least one xi ∈ X that is not covered by S′.
Note that we can only bribe the first votes of anyW(Sj ,p) without
exceeding the budget. For p to survive the first round, we need to

bribem of those votes by shifting p to the left once. Let S′ ⊆ S be

such that S′ contains Sj exactly if the first vote ofW(Sj ,p) has been
bribed. Then every Sj ∈ S′ has a score of avg(R) − 1 and p has a

score of avg(R). Therefore, in the first round, every candidate from

S′ andw2 are eliminated from the election.

In the second round,w1 will be eliminated because of the 15m
pairs of votesW(w1,w2) and the elimination of w2. Furthermore,

a candidate xi ∈ X reaches the average score with p and d still

standing only if all three Sj ∈ S with xi ∈ Sj are also not yet elimi-

nated. Since the candidates in S′ were eliminated in the previous

round, for every Sj ∈ S′, all three xi ∈ Sj will be eliminated in this
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round. Since S′ is not an exact cover, there are candidates X ′ ⊆ X
that survive this round. d also reaches the average, as there are 2m
candidates S \ S′ and those candidates S \ S′ survive due tow1.

In the next round, the candidates still standing are p, d , X ′, and
S \ S′. Because |X ′ | ≥ 1, candidate p has |X ′ | points fewer than
the average score and is eliminated in this round. □

Our last result in this section shows that the destructive variant

of shift bribery in Nanson elections is intractable as well. The proof

is omitted due to space limitations.

Theorem 4.4. Nanson-Destructive-Shift-Bribery is NP-hard.

5 ITERATED PLURALITY AND PLURALITY
WITH RUNOFF

In this section, we show hardness of shift bribery for iterated plu-

rality and plurality with runoff, starting with the constructive case.

Theorem 5.1. For iterated plurality and plurality with runoff,
Constructive-Shift-Bribery is NP-hard.

Proof. To prove NP-hardness, we reduce X3C to Constructive-

Shift-Bribery for these two voting systems. Let (X ,S) be a given
X3C instance. We construct the Constructive-Shift-Bribery in-

stance ((C,V ),p,B, ρ) as follows. Let C = {p,d} ∪ X ∪ S ∪ D with

D = {di, j |1 ≤ i ≤ 3m and 1 ≤ j ≤ m − 4}. The list of voters is
constructed as follows:

# vote for

1 Si p · · · 1 ≤ i ≤ 3m

1 Si xi,1
−−−−−−−−→
X \ {xi,1} · · · 1 ≤ i ≤ 3m

1 Si xi,2
−−−−−−−−→
X \ {xi,2} · · · 1 ≤ i ≤ 3m

1 Si xi,3
−−−−−−−−→
X \ {xi,3} · · · 1 ≤ i ≤ 3m

1 Si di, j
−−−−−−−→
X \ {xi } · · · 1 ≤ i ≤ 3m, 1 ≤ j ≤ m − 4

m xi
−−−−−−−→
X \ {xi } · · · 1 ≤ i ≤ 3m

m di, j
−→
X · · · 1 ≤ i ≤ 3m, 1 ≤ j ≤ m − 4

2 d p · · ·
For voters with votes of the form Si p · · · , we use the price function
ρ(0) = 0, ρ(1) = 1, and ρ(t) = B + 1 for all t ≥ 2; and for every

other voter, we use the price function ρ(0) = 0 and ρ(t) = B + 1 for
t ≥ 1. Set the budget B =m.

We claim that (X ,S) is in X3C if and only if ((C,V ),p,B, ρ) is in
Constructive-Shift-Bribery for both voting systems.

(⇒) Suppose (X ,S) is a yes-instance of X3C. Then there exists

an exact cover S′ ⊆ S of sizem. We now show that it is possible

for p to become a unique iterated-plurality (respectively, plurality-

with-runoff) winner of an election obtained by shifting p in the

votes without exceeding the budget. For every Si ∈ S′, we bribe
the voter with the vote of the form Si p · · · once, so her new vote

is of the form p Si · · · . In the first round p, every xi ∈ X , every
di, j ∈ D, and every Si ∈ S \ S′ is a plurality winner, so only

these candidates participate in the next round. In the second round,

p receives two further points from the two voters whose vote is

d p · · · . Every candidate xi ∈ X receives one further point from the

voter with vote Si xi · · · . Every di, j with Si ∈ S′ and 1 ≤ j ≤ m−4
receives one additional point from the voters with vote Si di, j · · · .
It follows that p has the most points and therefore p is the unique

iterated-plurality (respectively, plurality-with-runoff) winner.

(⇐) Suppose (X ,S) is a no-instance of X3C. Then, for every

S′ ⊆ S with |S′ | = m, there is at least one x ∈ X that is not

covered and therefore one x ′ ∈ X which is at least in two sets

Si , Sj ∈ S′. We show that it is not possible for p to become a

winner of the election without exceeding the budget. To become a

winner of the election it is necessary for p to get at leastm points in

the first round. Due to the budget it is necessary to bribem voters

with a vote of the form Si p · · · with Si ∈ S′. It follows that p, each
x ∈ X , each Si ∈ S \ S′, and each d ∈ D participate in the second

round. At least one candidate x ∈ X receives at least two further

points due to the fact that S′ is not a cover of X . If we use iterated

plurality, the best case for p is that there is no candidate x ∈ X
who receives three points. Then p and some x ∈ X participate in

the third round in which the still standing x ∈ X with the smallest

subscript wins the election, so p is not a winner of the election. If

we use plurality with runoff, the second round is the last round. If

there is a candidate x ∈ X who receives three points then p is not

even a winner of the election; otherwise, p is not a unique winner

of the election. □

We have the same result in the destructive case. Our proof, omit-

ted due to space limitations, gives a reduction from a restricted ver-

sion of the problem One-in-Three-Positive-3SAT that Porschen

et al. [19] have shown to be NP-complete.

Theorem 5.2. For iterated plurality and plurality with runoff,
Destructive-Shift-Bribery is NP-hard.

6 CONCLUSIONS AND OPEN QUESTIONS
We have shown that shift bribery is NP-complete for each of the

iterative voting systems of Hare, Coombs, Baldwin, Nanson, iterated

plurality, and plurality with runoff, both for the constructive and

the destructive case. All our proofs except that of Theorem 3.1 can

be adapted so as to work also in the nonunique-winner case where

the bribery action is successful if the designated candidate is among

the winners in the constructive case (respectively, does not win in

the destructive case). While these are interesting theoretical results

complementing earlier work both on shift bribery and on these

voting systems, NP-hardness of course has its limitations in terms

of providing protection in practice. It would be interesting to also

study shift bribery for these systems in terms of approximation and

parameterized complexity and to do a typical-case analysis.

In the definition of shift bribery, the designated candidate can

only be shifted forward in the constructive case (respectively, back-

ward in the destructive case). However, in nonmonotonic voting

systems (such as those studied here), shifting backward (respec-

tively, shifting forward) could also be beneficial for this candidate in

the constructive case (respectively, hurtful in the destructive case).

It would be interesting to find out whether the complexity of our

problems changes when the nonmonotonicity of voting systems is

specifically allowed to use in bribing actions, or even required.
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