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ABSTRACT
The computation of electrical flows is a crucial primitive for many

recently proposed optimization algorithms on weighted networks.

While typically implemented as a centralized subroutine, the ability

to perform this task in a fully decentralized way is implicit in a

number of biological systems. Thus, a natural question is whether

this task can provably be accomplished in an efficient way by a

network of agents executing a simple protocol.

We provide a positive answer, proposing two distributed ap-

proaches to electrical flow computation on a weighted network:

a deterministic process mimicking Jacobi’s iterative method for

solving linear systems, and a randomized token diffusion process,

based on revisiting a classical random walk process on a graph

with an absorbing node. We show that both processes converge to

a solution of Kirchhoff’s node potential equations, derive bounds

on their convergence rates in terms of the weights of the network,

and analyze their time and message complexity.
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tions; Jacobi’s method

ACM Reference Format:
Luca Becchetti, Vincenzo Bonifaci, and Emanuele Natale. 2018. Pooling or

Sampling: Collective Dynamics for Electrical Flow Estimation. In Proc. of the
17th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2018), Stockholm, Sweden, July 10–15, 2018, IFAAMAS, 9 pages.

1 INTRODUCTION
The computation of currents and voltages in a resistive electrical

network, besides being an interesting problem on its own, is a cru-

cial primitive in many recently proposed optimization algorithms

on weighted networks. Examples include the fast computation of

maximum flows [6, 14], network sparsification [24], and the gener-

ation of random spanning trees [12].

Solving the electrical flow problem requires solving a system

of linear equations, whose variables are the electrical voltages, or

“potentials”, at the nodes of the network (equivalently, the currents

traversing its edges). Performing this task can be computationally

nontrivial, and is typically achieved in a centralized fashion.

At the same time, the ability to perform this task in a fully

decentralized way is implicit in a number of biological systems

by virtue of the electronic-hydraulic analogy [13], including the P.
polycephalum slime mold [4, 25, 26] and ant colonies [17]. These
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organisms have been showed to implicitly solve the electrical flow

problem in the process of forming food-transportation networks.

Such capability of biological systems naturally raises the following

questions, which motivate our paper:

(Q1) Can this task be collectively accomplished by the network

itself, if every node is an agent that follows an elementary

protocol, and each agent can only interact with its immedi-

ate neighbours, otherwise possessing no knowledge of the

underlying topology?

(Q2) In case of a positive answer to Q1, what is the involved com-

putational effort for the network, in terms of convergence

time and communication overhead?

We address the two aforementioned questions by providing ana-

lytical bounds which are of interest for many bio-inspired multi-

agent systems in swarm robotics and sensor networks (e.g. [11, 21]).

1.1 Our Contribution
We propose two complementary, fully decentralized approaches to

electrical flow computation on a weighted network. In particular,

Towards question (Q1), we make the following contributions:

(1) We consider a deterministic distributed process, based on

Jacobi’s iterative method for solving linear systems. This

process converges to a solution of Kirchhoff’s node potential

equations. We bound the convergence rate of this process in

terms of a graph-theoretic parameter of the network – graph
conductance.

(2) Driven by a natural probabilistic interpretation of the afore-

mentioned process, we further consider a randomized token
diffusion process, implementing Monte Carlo sampling via

independent random walks. This process also converges to a

solution of Kirchhoff’s node potential equations, but differ-

ently from the deterministic algorithm, randomized token

diffusion does not involve any arithmetics on real numbers:

each agent/node simply maintains a counter of the number

of random walks currently visiting it, from which a simple

unbiased estimator of the node’s potential can be derived.

We derive a bound on the convergence rate of this process

in terms of another graph-theoretic parameter – edge expan-
sion.

With respect to question (Q2), while the strong connection be-

tween electrical flows and random walks has been known for a

while and has been extensively investigated in the past [8, 27], any

effective exploitation of electrical flow computation crucially re-

quires explicit and plausible bounds on the efficiency and accuracy

of the algorithm(s) under consideration. In this respect, besides

establishing the correctness of the two algorithmic approaches
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above, our core contribution is to derive detailed bounds on their

time and communication complexities in terms of fundamental

combinatorial properties of the network.

Finally, our results highlight the algorithmic potential of classical

models of opinion formation, as discussed in more detail in the next

section.

1.2 Related Work
We briefly review contributions that are most closely related to the

spirit of this work.

Computing electrical flows. The problem of computing voltages

and currents of a given resistive network, that is, the question of

solving Kirchhoff’s equations, is a classical example of solving a

linear equation system with a Laplacian constraint matrix [30].

While Jacobi’s method is a well-known approach to the solution

of a class of linear systems that subsumes Laplacian systems, its

complexity analysis in the literature (for example, in [22, 29]) is

generic, and does not exploit the additional matrix structure that is

inherent in Laplacian systems. In our setting, existing results on

the convergence of Jacobi’s method could be leveraged to prove

convergence to a correct solution, but they would fail to provide

explicit bounds on convergence rate.

Electrical flows and random walks. Relations between electrical

quantities and statistical properties of random walks have been

known for a long time, and are nicely discussed, for example, in

Doyle and Snell [8], Lovasz [16], and Levin, Peres and Wilmer [15].

In particular, in their monograph, Doyle and Snell point out the

interpretation of the electrical current along an edge as the expected
number of net traversals of the edge by a random walker that is

injected at the source node and absorbed at the sink node of the

flow. While our randomized token diffusion algorithm refers to the

same underlying process, it crucially differs from the former in the

interpretation of electrical current, as it links the electric potential

of a node to the expected number of randomwalks currently visting

the node (see Section 4).

This connection has been also explored by Chandra et al. [5],

who characterized the cover time of the randomwalk in terms of the

maximal effective resistance of the network, as well as by Tetali [27],

who characterized the hitting time of the random walk in terms of

the effective resistance between source and sink. Tetali [27] also

proved that the expected number of visits to a node by a random

walker injected at the source and absorbed at the sink is related

to the electrical potential of the node in a simple way. In principle,

like the one discussed by Doyle and Snell, this characterization

could be used as the basis for another random walk-based approach

to the estimation of electric potentials, with essentially the same

complexity as the method we propose. Still, this is a static charac-

terization that, by itself, does not provide an iterative algorithm

or error bound. On the contrary, our interpretation results in an

estimator, which depends solely on the number of tokens at each

node and is thus entirely local, as opposed to previous methods,

which entail tracking an event that depends on global properties
of the network (such as the hitting time of a specific node or the

absorption at the sink). Hence, we believe our proposed random-

ized diffusion process is more suitable to accommodate dynamic

changes in the weights of the network when coupled with other

processes, such as the Physarum dynamics [4, 17].

Electrical flows and complex systems. Understanding how electri-

cal flows are computed in a decentralized fashion can help explain

the emergent behavior of certain social and biological systems. For

example, foraging behaviors of the P. polycephalum slime mold

[4, 25, 26] and of ant colonies [17] can both be formulated in terms

of current-reinforced randomwalks, seeMa et al. [17]. In this respect,

our results can be seen as a step towards a more thorough under-

standing of these complex biological processes, at the microscopic
scale. Moreover, the simple processes we propose shed new light

on the computational properties of models of opinion dynamics

in social networks [1, 7, 20]. In particular, the classical model of

opinion formation proposed by DeGroot [7] essentially corresponds

to the decentralized version of Jacobi’s iterative method presented

in this paper.
1
This is a hint that opinion dynamics are extremely

versatile processes, whose algorithmic potential is not completely

understood.

Distributed optimization. Since the electrical flow is one of min-

imum energy, the decentralized computation of electrical flows

can be seen as an instance of distributed optimization, akin to the

problems considered within the multiagent framework introduced

by Tsui and Liu [28] and of potential interest for the class of dis-

tributed constraint optimization problems considered, for example,

in Modi et al. [19]. Although for other distributed problems it has

been suggested that Laplacian-based approaches are not the most

computationally effective [9], as we have mentioned in the previ-

ous paragraph current-reinforced random walks are considered a

feasible model, at least for certain biological systems [10, 17]. In

this paper, we leveraged the specific structure of electrical flows to

prove the effectiveness of our decentralized solutions. In particular,

the dependency of convergence rates on the size of the network

is polynomial, which cannot be claimed for other more generic

approaches to distributed optimization.

Finally, in the rather different context of social choice and agents

with preferences (as opposed to our perspective motivated by nat-

ural processes for network optimization), [23] investigate mecha-

nisms for social choice on social networks as a weighted form of

classical preference aggregation. One of the update processes they

consider is loosely related to our Jacobi process.

1.3 Outline
The rest of this paper is organized as follows. In Section 2 we

discuss some preliminaries about electrical networks and flows and

set up the necessary notation and terminology. In Section 3 we

describe and analyze the deterministic distributed algorithm based

on Jacobi’s method for the solution of Kirchhoff’s equations. In

Section 4 we propose and analyze our randomized token-diffusion

method for the estimation of the electric potentials. We conclude

by summarizing our findings in Section 5.

1
The only difference is the presence of two “special” agents (the source and the sink),

whose behaviours slightly differ from the others, in that they exchange information

with the exterior in the form of a current flow.
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2 PRELIMINARIES ON ELECTRICAL
NETWORKS AND NOTATION

We consider a graph G = (V, E,w ), with node setV , edge set E,

and positive edge weights (we )e ∈E representing electrical conduc-

tances. We also denote the weight of an edge by wuv if u,v ∈ V
are the endpoints of the edge; if no edge corresponds to the pair

(u,v ), wuv = 0. We use n andm to denote the number of nodes

and edges, respectively, of the graph. Without loss of generality we

assume thatV = {1, 2, . . . ,n}.
The (weighted) adjacency matrix of G is the matrix A ∈ Rn×n

whose (u,v )-entry is equal towuv if {u,v} ∈ E, and to 0 otherwise.
The volume (or generalized degree) of a nodev is the total weight of

the edges incident to it, and is denoted by vol(v ). The generalized
degree matrix D ∈ Rn×n is the diagonal matrix with Duu = vol(u).

The matrix P
def

= D−1A is the transition matrix of G; we denote its

eigenvalues (which are all real) by ρ1 ≥ . . . ≥ ρn . We use volmin

and volmax to denote the smallest and largest volume, respectively,

of the nodes of G.

We adhere to standard linear algebra notation, and we reserve

boldface type for vectors. We denote by χ i the i-th standard basis

vector, that is, a vector whose entries are 0 except for the i-th entry

which is 1. With 0 and 1 we denote vectors with entries all equal

to 0 and 1, respectively.

In the next sections, we make use of the following fact.

Fact 2.1. The transition matrix P
def

= D−1A is similar to the sym-

metric matrix N
def

= D−1/2AD−1/2 via conjugation by the matrix

D−1/2. In particular, we have

P t = (D−1A)t = (D−
1

2ND
1

2 )t = D−
1

2N tD
1

2 .

Moreover, thanks to the fact that N is symmetric, N has n orthonor-

mal eigenvectors x1, . . . , xn , which correspond to the eigenvectors

y
1
, . . . , yn of P via the similarity transformation xi = D1/2yi for

each i . Observe also that both xi and yi , for each i , are associated
to the same eigenvalue ρi of P .

The Laplacian matrix of G is the n × n matrix L
def

= D − A. We

denote by Λ1 ≤ . . . ≤ Λn the eigenvalues of L. We often use the

facts that Λ1 = 0 and that L · 1 = 0.
In our setting, one node of the graph acts as the source, and one

as the sink of the electrical flow. Kirchhoff’s equations for a network
G are then neatly expressed by the linear system

Lp = b,

where p is the unknown vector of electric potentials, and b ∈ Rn

is a vector such that bsource = 1, b
sink
= −1, and bu = 0 if u <

{source, sink}. The electrical flow is easily obtained from the vector

p: the electrical flow along an edge {u,v}, in the direction from u
to v , equalswuv · (pu − pv ).

For a given weighted graph with a source and a sink, the electri-

cal flow is uniquely defined. We remark however that Kirchhoff’s

equations have infinite solutions, since electric potentials are de-

fined up to any constant offset: if Lp = b, then L(p + c1) = b for

any constant c (since L1 = 0.) We call the (unique) solution p such

that p
sink
= 0 the grounded solution to Kirchhoff’s equations.

The graph conductance (or bottleneck ratio) of graph G is the

constant

ϕ (G)
def

= min

S ⊂V : vol(S )≤vol(V )/2

w (S,V \ S )

vol(S )
,

where vol(S ) denotes the total volume of the nodes in S , andw (S,V\
S ) denotes the total weight of the edges crossing the cut (S,V \ S ).
The edge expansion of G is the constant

θ (G)
def

= min

S ⊂V : |S | ≤n/2

w (S,V \ S )

|S |
.

The graph conductance is a number between 0 and 1, while the

edge expansion is a number between 0 and volmin.

3 JACOBI’S METHOD
The potentials p are a solution of the linear system

Lp = b. (1)

A classic parallel iterative algorithm for solving such a system is

Jacobi’s method [22, 29], which goes as follows. System (1) can be

rewritten as Dp −Ap = b, which is equivalent to

p = D−1 (Ap + b) . (2)

The idea underlying Jacobi’s method is to introduce the related

linear recurrence system

p̃ (t + 1) = D−1 (Ap̃ (t ) + b) . (3)

For any node u ∈ V , (3) becomes

p̃u (t + 1) =
bu +

∑
v∼u wuv p̃v (t )∑
v∼u wuv

, (4)

where the sums range on all neighbors v of u. Note that the denom-

inator in (4) equals vol(u).
Indeed, from (2) we know that p̃ is a fixed point of (4) when-

ever Lp̃ = b. This suggests running the following message-passing

algorithm at every node u ∈ V (Algorithm 1).

Parameter: u ∈ V
1 while true do

// Step 1: Send potentials

2 for every neighbor v of u do
3 send p̃u to v

4 end
// Step 2: Receive potentials

5 for every neighbor v of u do
6 receive p̃v from v

7 end
// Step 3: Update potentials

8 p̃u =
1

vol(u ) (bu +
∑
v∼u wuv p̃v )

9 end
Algorithm 1: Jacobi’s method for solving Lp = b.

Algorithm 1 does not specify an initial value for p̃: any initial

value can be used. There is also no explicit termination condition.

Terminating the algorithm sooner or later has only an effect on the

numerical error, as explained in the next subsection.
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3.1 Correctness and rate of convergence
To study the convergence of Algorithm 1, fix any solution p of (1),

and define the error at step t as

e (t ) def= p − p̃ (t ) = e⊥ (t ) + α (t ) · 1, (5)

where e⊥ (t ) is the projection of p−p̃ (t ) on the subspace orthogonal
to 1, i.e.,

e⊥ (t ) =
(
I −

1

n
11⊤

)
e (t ) ,

while α (t ) · 1 is the component of p − p̃ (t ) parallel to 1, i.e.,

α (t ) · 1 =
1

n
11⊤e (t ) .

The reason we decompose e (t ) as in (5) is that p is defined

in (1) up to translation along 1, since 1 is in the kernel of L: any
vector p+ β · 1 satisfies L (p + β · 1) = b as well. Therefore, one has
converged to a solution of (1) as soon as p̃ = p + β · 1 for any β ,
which implies that in (5) we do not care about the value of α , we
only care about e⊥ (t ) having a small norm. This becomes clear by

plugging the decomposition (5) in (3):

p − e⊥ (t + 1) − α (t + 1) · 1 def

= p̃ (t + 1)

= D−1 (Ap̃ (t ) + b)

= D−1 (A (p − e⊥ (t ) − α (t ) · 1) + b)
(a)
= p − Pe⊥ (t ) − α (t ) · 1, (6)

where in (a) we used that for any transition matrix P
def

= D−1A it

holds P1 = 1 and (2). From (6) it follows that e⊥ (t + 1) = Pe⊥ (t ) −
(α (t + 1) − α (t ))1.

By projecting, it also follows that

e⊥ (t + 1) =
(
I −

1

n
11⊤

)
Pe⊥ (t )

=

(
I −

1

n
11⊤

)
P

(
I −

1

n
11⊤

)
Pe⊥ (t − 1)

(a)
=

(
I −

1

n
11⊤

) (
P −

1

n
11⊤

)
Pe⊥ (t − 1)

(b )
=

(
I −

1

n
11⊤

)
P2e⊥ (t − 1),

where in (a) we used again that P1 = 1 and in (b) we used that(
I − 1

n 11
⊤
)
1

n 11
⊤ = 0. By repeating steps (a) and (b) above we can

unroll the previous equation and get

e⊥ (t ) =
(
I −

1

n
11⊤

)
P t e⊥ (0). (7)

Recall Fact 2.1, which implies that x1 = ∥D1/21∥−1D1/21, and that

we can write

N = ∥D
1

2 1∥−2D
1

2 1(D
1

2 1)⊤ +
n∑
i=2

ρixix⊤i .

Combining the previous observations with (7), we get

∥e⊥ (t )∥ =






(
I −

1

n
11⊤

)
P t e⊥ (0)






=






(
I −

1

n
11⊤

)
D−

1

2N tD
1

2 e⊥ (0)






(a)
=









(
I −

1

n
11⊤

)
D−

1

2 *
,

n∑
i=2

ρti xix
⊤
i
+
-
D

1

2 e⊥ (0)








(b )
≤







(
I −

1

n
11⊤

)



 



D− 1

2















n∑
i=2

ρti xix
⊤
i













D
1

2





 ∥e⊥ (0)∥

(c )
≤

√
volmax

volmin

ρt∗ ∥e⊥ (0)∥ , (8)

where in (a) we used the fact that

(
I − 1

n 11
⊤
)
D−1/2x1 = 0, in (b)

we used the submultiplicativity of the norm and in (c ) we used that

∥D−1/2∥ ≤ (volmin)
−1/2

, that ∥D1/2∥ ≤ (volmax)
1/2

and where by

definition ρ∗ = maxi,1 |ρi | = max(��ρ2�� , ��ρn ��).

3.2 Time and message complexity
In summary, the arguments in the previous subsection prove the

following.

Theorem 3.1. After t rounds, the orthogonal component of the
error of the solution p̃(t ) produced by Algorithm 1 is reduced by a
factor

∥e⊥ (t )∥
∥e⊥ (0)∥

≤

(
volmax

volmin

)
1/2

ρt∗, (9)

where ρ∗ is the second largest absolute value of an eigenvalue of P .
The message complexity per round is O (m).

Proof. The first claim follows by (8). For the second part of the

claim, note that at any round of Algorithm 1, each node sends its

estimated potential value to each of its neighbors. Therefore, the

number of exchanged messages is O (m) per round. □

Observe that in typical applications we have ρ∗ = ρ2. This is the
case, for example, when one considers the lazy variant of a tran-

sition matrix in order to avoid pathological cases [15, Section 1.3].

The condition ρ∗ = ρ2 implies, in particular, that (9) in Theorem 3.1

can be bounded in terms of the graph conductance of the network,2

since for any graph G, ρ2 (G) ≤ 1 − ϕ (G)2/2 [15, Theorem 13.14].

4 A TOKEN DIFFUSION METHOD
Following a well-known analogy between electrical flows and ran-

dom walks [5, 8, 15, 27], in this section we propose a random walk-

based approach to approximate electric potentials. The process is

described by Algorithm 2. In each round, the algorithm starts K
new, mutually independent random walks at the source node. Each

random walker (or token) moves one step during each round of the

algorithm, until it reaches the sink node, where it is absorbed. The

independent parameter K controls the accuracy of the process.

Let Z
(t )
K (u) denote the number of tokens at vertex u at the end

of round t , when K new independent random walks are started at

the source. Our estimator of the potential at node u at time t will be

V
(t )
K (u)

def

=
Z
(t )
K (u)

K · vol(u)
.

We next show that in expectation, our estimator evolves following

a recurrence that, though not identical, is very close to (4).

2
We remark that here the term conductance refers to the graph-theoretic notion also

known as bottleneck ratio [15], and shall not be confused with the notion of electrical
conductance in the theory of electrical networks [8].
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Parameters: u ∈ V , K ∈ N
// Step 1: Send tokens

1 for every token T on u and every neighbour v of u do
2 with prob ∝wuv do
3 send T to v

4 Z (u) = Z (u) − 1

5 end
// Step 2: Receive tokens

6 for every token T received do
7 Z (u) = Z (u) + 1

8 end
// Step 3: Replenish source, deplete sink

9 if u = source then
10 Z (u) = Z (u) + K // inject K new tokens at u

11 end
12 if u = sink then
13 Z (u) = 0 // absorb all tokens at u

14 end
Algorithm 2: Random walk algoritm.

Input: u ∈ V , K ∈ N

1 Return
Z(u )

Kvol(u )

Algorithm 3: Estimator.

Lemma 4.1. Consider Algorithm 2 with K = 1. Define inductively
p(t ) ∈ RV by

p
(0)
u = 0, for all u ∈ V , (10)

p
(t+1)
u =




1

vol(u )

(∑
v∼u wuvp

(t )
v + bu

)
if u , sink,

0 if u = sink.
(11)

Then, for every time t = 0, 1, 2, . . . and for every u ∈ V we have:

E
[
V
(t )
1

(u)
]
= p

(t )
u .

Proof. The claim is proved by induction. It clearly holds when

t = 0, since at that time there are no tokens and thusV
(t )
1
= 0 = p (0) .

For t ≥ 1, and for every u ∈ V \ {sink }:

E
[
Z
(t+1)
1

(u) | Z
(t )
1

]
=

∑
v∽u

Z
(t )
1

(v )wvu

vol(v )
+ bu

=
∑
v∽u

wvuV
(t )
1

(v ) + bu ,

where we used V
(t )
1

(v ) = Z
(t )
1

(v )/vol(v ). Dividing both sides by

vol(u), we obtain:

E
[
Z
(t+1)
1

(u) | Z
(t )
1

]

vol(u)
=

1

vol(u)
*
,

∑
v∽u

wvuV
(t )
1

(v ) + bu+
-
.

By recalling that V
(t+1)
1

(u) = Z
(t+1)
1

(u)/vol(u) and by the law of

iterated expectations we obtain:

E
[
V
(t+1)
1

(u)
]
=




1

vol(u )

(∑
v∽u wvuE

[
V
(t )
1

(v )
]
+ bu

)
if u , sink,

0 if u = sink.

(12)

Recurrence (12) has the very same form as (11). In particular, from

the inductive hypothesis E
[
V
(t )
1

]
= p(t ) we obtain E

[
V
(t+1)
1

]
=

p(t+1) . This completes the proof. □

The following corollary justifies our estimator in Algorithm 3,

when K > 1:

Corollary 4.2. Let

V
(t )
K (u)

def

=
Z
(t )
K (u)

Kvol(u)
,

for every t = 0, 1, 2, . . . and u ∈ V . Then:

E
[
V
(t )
K (u)

]
= p

(t )
u .

Proof. First of all observe that, obviously:

E
[
Z
(t )
K (u)

]
= KE

[
Z
(t )
1

(u)
]
.

As a consequence:

E
[
Z
(t )
K (u)

]

vol(u)
= K
E
[
Z
(t )
1

(u)
]

vol(u)
= Kp

(t )
u ,

from Lemma 4.1. This proves the claim. □

Note that the definition of p(t ) in Lemma 4.1 is akin to that of p̃(t )
in Equation 4. One might thus reasonably expect that, like p̃(t ), p(t )

also converges to a solution of Kirchhoff’s equations. Nevertheless,

the two definitions are different and establishing this requires a

separate proof, which we give in Section 4.1.

That result will justify the interpretation of p(t ) , and hence of the
vector V(t )

K , as an iterative approximation of the correct Kirchhoff

potentials. Note that there are two sources of inaccuracy in this

estimation. One is intrinsic to the iterative process, i.e., the rate

with which p(t ) converges to a solution of Kirchhoff’s equations;

this will be the subject of Section 4.2. The second source of error is

stochastic and reflects the accuracy of the estimator itself; it will

be discussed in Section 4.3, where we show that for a large enough

K , the estimator yields an accurate approximation of the potential

with high probability, and not only in expectation.

4.1 Correctness of the token diffusion method
We can reexpress the system (11) as




p(0) = 0,
p(t+1) = P p(t ) + D−1b,

(13)

where P is obtained from P
def

= D−1A by zeroing out all entries on

the row and column corresponding to the sink node. Likewise, b is

obtained from b by zeroing out the entry corresponding to the sink

node. We next prove that the spectral radius of P is strictly between
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0 and 1. Using this fact, we prove that the token diffusion method

converges to a feasible potential vector.

Lemma 4.3. The spectral radius of P , ρ, satisfies 0 < ρ < 1. More
precisely, ρ = 1 −

∑n
i=1vi · Pi,sink/ ∥v∥1, where v is the left Perron

eigenvector of P .

Proof. First of all, observe that P is diagonalizable: if we let A
be the matrix obtained fromA by zeroing out the entries on the row

and column corresponding to the sink node, then P = D−1A, and

thus P is similar to the symmetric real matrix N = D−1/2AD−1/2.
Moreover, P is nonnegative and the Perron-Frobenius theorem

for nonnegative matrices (for example, see [18, Section 8.3]) guaran-

tees the existence of a nonnegative row vector v such that vP = ρv.
Without loss of generality, assume that ∥v∥

1
= 1.

Now observe that

ρ = ���ρ
��� =




ρv



1 =




vP



1 =

n∑
i=1

n∑
j=1

viP i j .

Let ϵi j
def

= Pi j − P i j ≥ 0 be the nonnegative “gaps” between P

and P . Then we can continue,

ρ =
n∑
i=1

n∑
j=1

viP i j =
∑
i

∑
j
vi (P i j + ϵi j − ϵi j )

=
∑
i

∑
j
viPi j −

∑
i

∑
j
viϵi j = ∥vP ∥1 −

∑
i
vi

∑
j
ϵi j

= 1 − v · γ , (14)

where γ is the vector of row gaps, i.e., γi
def

=
∑
j ϵi j , and for the last

equality we also used the fact that every row of P sums to 1. Note

that, for i , sink, γi is the same as Pi,sink, that is, the probability
that a token at node i reaches the sink in one step.

We claim that the spectral radius is strictly positive. To see that,

observe that, similarly to Fact 2.1, P is similar to N and thus shares

the same eigenvalues. If the spectral radius ρ were zero, N would be

a null matrix, i.e., a matrix whose entries are all zeros (this follows

by looking at the diagonalized form of N ). Since P is similar to N ,

P would be a null matrix as well, which is clearly not the case for

any nonempty graph.

Observe also that 0 = v · 0 = vPχ
sink
= ρv · χ

sink
= ρv

sink

and therefore v
sink
= 0. To show that ρ < 1, assume by contra-

diction that ρ = 1. Then, v
sink
= 0 and (14) implies

∑
i,sinkviγi =∑

i viγi = 0, i.e., vi = 0 whenever γi , 0; in particular, vi = 0 for

each node i adjacent to the sink. Continuing this argument would

yield that vi = 0 for each i adjacent to a node adjacent to the sink,

(since the ith entry of vP equals ρvi ), and so on. Since the original

graph is connected, this contradicts the fact that v , 0. □

In the proof of next theorem, we make use of the following fact,

which is analogous to Fact 2.1.

Fact 4.1. The matrix P is similar to the matrix N obtained from

N by zeroing out its last column and row. In particular, P t =

D−
1

2N tD
1

2 , andN hasn orthonormal eigenvectors x
1
, . . . , xn which

correspond to the eigenvalues ρ
1

≥ . . . ≥ ρ
n
of P .

Theorem 4.4. The iterates of (11) converge to a feasible solution
of the linear system (1). The rate of convergence is proportional to ρ.

Proof. Since ρ < 1, the matrix I −P is invertible, and its inverse

can be expressed as

(I − P )−1 =
∞∑
k=0

Pk .

If we recursively expand the updates p(t+1) = Pp(t ) + D−1b, we
get, for any t ≥ 1,

p(t ) = P tp(0) +
t−1∑
k=0

PkD−1b = *.
,

t−1∑
k=0

Pk +/
-
D−1b, (15)

where we used that in (13) p(0) = 0. As t → ∞, this yields

p(∞) def

= lim

t→∞
p(t ) = (I − P )−1D−1b, (16)

which shows that in the limit, the iterates satisfy the linear system

(I − P )p(∞) = D−1b, or, recalling that P def

= D−1A,

(D −A)p(∞) = b. (17)

To conclude that p(∞)
also satisfies the original system (1), notice

the following. The two matrices L = D − A and D − A, as well as
the two vectors b and b, differ only in the row corresponding to

the sink node, and the difference of the sink-th rows of the two

matrices is given by the row vector

χ⊤
sink

((D −A) − L) = 1⊤ (A −A) = 1⊤ (D −A),

where in the last equality we used 1⊤ (D − A) = 0⊤. Therefore,
using (17),

χ⊤
sink

(D −A)p(∞) − χ⊤
sink

(D −A)p(∞)

= 1⊤ (D −A)p(∞) = 1⊤b = 1 = χ⊤sink (b − b),

which, after rearranging terms, together with (17) implies that

0 = χ⊤
sink

((D −A)p(∞) − b) = χ⊤
sink

((D −A)p(∞) − b).

This proves that (D −A)p(∞) = Lp(∞) = b.
The second part of the theorem follows from Fact 4.1, (15) and

(16), which yield

∥p(t ) − p(∞) ∥ =










*.
,

∞∑
k=t

Pk +/
-
D−1b









≤

∞∑
k=t




P
kD−1b




(a)
≤

√
volmax

volmin

∑∞
k=t ρ

k

vol(source )
=

√
volmax

volmin

ρt

(1 − ρ)

1

vol(source )
,

where in (a) we performed a calculation analogous to (8). □

4.2 Convergence rate of token diffusion
In Section 4.1 we showed that the token diffusion system converges

to one of the solutions of Kirchhoff’s equations. Moreover, its rate

of convergence is dictated by the spectral radius of the transition

matrix P = D−1A (Theorem 4.4), which is similar to the original

transition matrix P , except for the fact that all entries of the row
and column corresponding to the sink are equal to 0 in P .
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For simplicity of exposition, in the remainder we simply remove

the row and column of P corresponding to the sink. Assumewithout

loss of generality that the sink corresponds to the n-th row/column

index. Given an n × n matrix M , consider the (n − 1) × (n − 1)
matrix gr(M ), obtained fromM by grounding the n-th index, that

is, removing the n-th row and n-th column. The next fact shows

that this operation does not affect the spectral radius of P .

Proposition 4.5. AssumeM is an n × n matrix where each entry
of the n-th row and of the n-th column is zero. Then:

(1) for every eigenpair ((x1, . . . ,xn−1), µ ) of gr(M ) there is an
eigenpair ((x1, . . . ,xn−1, 0), µ ) ofM ;

(2) (χn , 0) is an eigenpair ofM ;
(3) the spectral radius ofM and gr(M ) is the same.

Proof. Point (1) follows from the assumption that the n-th col-

umn ofM is identically zero and thus the i-th entry ofM (x1, . . . ,
xn−1, 0) is equal to the i-th entry of gr(M ) (x1, . . . ,xn−1) for any
i < n. Point (2) follows from Mχn = 0. Point (3) is a direct conse-
quence of the first two. □

Since P satisfies the hypothesis of Proposition 4.5, we can equiva-

lently study the spectral radius of gr(P ) (= gr(P )). To simplify (and

with a slight abuse of) notation, in the remainder of this section we

writeM for gr(M ).

Additional notation. We denote by G the graph obtained from

G by removing the sink node and its incident edges. We denote

by L the Laplacian matrix of G, so that L = D − A, with A and D

respectively the adjacency and degree matrices of G. We also define

L
def

= D −A. Note that (A)i j = (A)i j for each i, j < n. On the other

hand L is not a proper graph Laplacian, since (D)ii , (D)ii for

some i < n.3 However, L can be viewed as a perturbed Laplacian,

since D = D + ∆, where ∆ = diag(w1,n , . . . ,wn−1,n ).
The rate of convergence of the token diffusion process is dictated

by ρ, the dominant eigenvalue of the matrix P
def

= D−1A = D−1A.

Thanks to Fact 4.1, we can equivalently study the matrix N =

D−1/2AD−1/2, which shares the same spectrum as P , or, equiva-

lently, the matrix L = I −N = D−1/2LD−1/2 = D−1/2 (L+∆)D−1/2.
Again, the matrix L can be interpreted as a perturbed normalized

Laplacian. The eigenvalue ρ of N corresponds to an eigenvalue

λ = 1 − ρ of L.

In this section we provide a lower bound on λ. Let x denote the

(unit norm) eigenvector ofL corresponding to λ and let y = D−1/2x.
Since L is symmetric, we have by definition:

λ = x⊤Lx = x⊤D−1/2LD−1/2x =

x⊤D−1/2 (L + ∆)D−1/2x = y⊤ (L + ∆)y,
(18)

Proposition 4.6. The following holds:

1

volmax

≤ ∥y∥2 ≤
1

volmin

. (19)

3
Precisely, this happens whenever i ∼ n in the original graph G.

Proof. We have:

∥y∥2 = ∥D−1/2x∥2 =
n−1∑
i=1

x2i
vol(i )

.

The claim then follows immediately since ∥x∥2 = 1. □

In the remainder, we decompose y as y = u+ z, with u and z the
components of y respectively parallel and orthogonal to the vector

1. The next fact highlights a general property of the perturbed

Laplacian matrix that affords a simplification of (18). The proof is

deferred to the full version [2].

Proposition 4.7. For any y ∈ Rn−1, it holds y⊤Ly = z⊤Lz, where
z = y − ((1⊤y)/(1⊤1)) · 1 is the component of y orthogonal to 1.

We can now give a lower bound on λ, in terms of y and z.

Lemma 4.8. The following holds:

λ ≥ y⊤∆y + λ2∥z∥2, (20)

where λ2 is the second smallest eigenvalue of L, the Laplacian of the
graph G.

Proof. From (18) and Proposition 4.7, we have

λ = y⊤ (L + ∆)y = y⊤∆y + z⊤Lz = y⊤∆y +
z⊤Lz
∥z∥2

∥z∥2

≥ y⊤∆y + ∥z∥2 min

w⊥1
∥w∥=1

w⊤Lw = y⊤∆y + λ2∥z∥2,

where the inequality follows by recalling that z ⊥ 1 by definition,

and by observing that the second term of the sum is the Rayleigh

quotient associated to L, multiplied by ∥z2∥. □

We can now prove the main result of this section.

Theorem 4.9. The following holds:

λ ≥
λ2

2volmax (n − 1)

∑
i

win

win + λ2
.

Proof. Since u is the component of y parallel to 1, we have

u2i = u
2/(n − 1) for some u ∈ R. Given u, we compute the vector z

that minimizes the right-hand side of (20). Let f (z) = (u+z)⊤∆(u+
z) + λ2∥z∥2, where u is regarded as a constant. We have:

∂ f

∂zi
= 2win (ui + zi ) + 2λ2zi ,

∂2 f

∂zi∂zj
= 0, i , j,

∂2 f

∂z2i
= 2win + 2λ2.

Sincewin , λ2 > 0 (the latter following since λ2 is the second eigen-

value of a Laplacian matrix), the determinant of the Hessian matrix

is positive, hence f (z) has a global minimum that is the critical

point. If we set the i-th first-order partial derivative to 0 we obtain

zi = −winui/(win + λ2). Substituting back into f (z) yields:

f (z) =
∑
i
win

(
ui −

winui
win + λ2

)
2

+ λ2
∑
i

(
winui

win + λ2

)
2
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= λ
2

2

∑
i

winu2i
(win + λ2)2

+ λ2
∑
i

(
winui

win + λ2

)
2

=
λ2u

2

n − 1

∑
i

win

win + λ2
(21)

Next, recall that ∥u∥2 + ∥z∥2 ≥ 1/volmax from Proposition 4.6. We

consider two cases. If ∥z∥2 ≥ 1/(2volmax), then we have:

λ ≥
λ2

2volmax

. (22)

Otherwise, u2 ≥ 1/(2volmax), and (21) immediately gives

λ ≥
λ2

2volmax (n − 1)

∑
i

win

win + λ2
. (23)

To conclude the proof, note that the latter bound is always the

worse case, sincewin/(win + λ2) ≤ 1. □

4.3 Stochastic accuracy of the estimator
In this subsection, we study how closely the estimator V

(t )
K (u)

approximates its expected value, the potential p
(t )
u . In a nutshell,

we show the following: i) the larger K (the independent parameter

controlling the number of tokens injected per round), the higher

the accuracy; ii) all the rest being equal, the higher the potential,

the higher the accuracy.

Notation. Starting at t = 0, we index tokens in increasing order

of their release dates. In more detail, any token released in the

(i + 1)-th round has an index in the interval {iK + 1, . . . , (i + 1)K },
with i = 0, 1, . . ., while the relative order of tokens released in

the same round is irrelevant and arbitrary. The main result of this

subsection is the following.

Theorem 4.10. For any given K , 0 < ϵ,δ < 1, for every t and for
every u, such that p (t )u ≥ 3

ϵ 2Kvol(u ) ln
2

δ , Algorithms 2 and 3 together

provide an (ϵ,δ )-approximation of p (t )u .4

Remark 1. Given the statistical and node-wise nature of the

counter estimator, there is a “resolution” limit for the minimum

value of a potential that can be estimated with desired accuracy and

confidence levels for a specific value of K . This is a consequence of
the law of large numbers (applied in the form of a Chernoff bound

in our case). A similar issue would arise if we used a different

estimator, e.g., one based on Tetali and Snell’s approach. On the

other hand, accuracy and confidence can be improved by increasing

K . This leads to an equivalent way of expressing Theorem 4.10 in

which, given the minimum potential value we want to estimate

with given accuracy and confidence levels, we can compute the

minimum K that achieves the desired performance. More formally,

an (ϵ,δ )-approximation of the potentials p
(t )
u greater than p

(t )
⋆ can

be achieved by setting K ≥ 3

ϵ 2p (t )
⋆ vol(u )

ln
2

δ .

Proof of Theorem 4.10. Let X
(t )
j (u) = 1 if the j-th token is at

node u at time t , X
(t )
j (u) = 0 otherwise. From Corollary 4.2 we

4
A random variable X gives an (ϵ, δ )-approximation of a non-negative quantity Y if

P ( |X − Y | > ϵY ) ≤ δ .

have:

K vol(u) p
(t )
u = E

[
Z
(t )
K (u)

]
= E



Kt∑
j=1

X
(t )
j (u)


.

The X (t ) (u)’s are independent Bernoulli variables and the ex-

pectation of their sum is Kvol(u)p
(t )
u . Hence, a simple application

of the multiplicative Chernoff bound yields

Pr

[����Z
(t )
K − Kvol(u)p

(t ) (u)
���� > ϵKvol(u)p (t ) (u)

]
≤

≤ 2e−
ϵ2
3
Kvol(u )p (t ) (u ) ≤ δ ,

whenever p
(t )
u ≥ 3

ϵ 2Kvol(u ) ln
2

δ . Finally, note that

����Z
(t )
K − Kvol(u)p

(t )
u

���� ≤ ϵKvol(u)p
(t )
u ⇐⇒

����V
(t )
K (u) − p

(t )
u

���� ≤ ϵp
(t )
u .

directly from definitions. This completes the proof. □

4.4 Time and message complexity
The arguments from previous sections lead to the following con-

clusions about the token diffusion process, whose proof is deferred

to the full version [2].

Theorem 4.11. The expected value of the estimator vector V(t )
K

constructed by Algorithms 2 and 3 converges to the grounded solution
p of the Kirchhoff equations at a rate

O ((1 − λ)t ) = O *.
,

*.
,
1 −

λ2
2n volmax

∑
u ∈V,u,n

wun

wun + λ2

+/
-

t
+/
-
. (24)

Note that the right hand side in (24) is decreasing with λ2. Thus,

any lower bound on λ2 yields an upper bound on the right hand

side in (24). By recalling that λ2 is the second smallest eigenvalue

of the graph G, this allows to connect the error term in (24) to the

edge expansion of G, since for any graph G it is known [3, Theorem

2.2] that

λ2 (G) ≥ volmax − (vol2
max
− θ (G)2)1/2.

Thus, the higher the edge expansion of G, the higher λ2, and the

faster the convergence of the token diffusion process.

We finally derive a bound on the expected message complexity

of Algorithm 2. The proof is again deferred to the full version [2].

Proposition 4.12. As t → ∞, the expected message complexity

per round of Algorithm 2 is O (K n volmax · E), where E
def

= p⊤Lp.

5 BEYOND POTENTIALS: AN OUTLOOK
Our results show that the effectiveness of decentralized, simple

processes for electrical flow computation can be quantitatively

analyzed, which is a step forward in the microscopic-level analysis

of social, biological and artificial systems that can be described in

terms of time-varying resistive networks or as current-reinforced

random walks.

On the other hand, while opinion dynamics were originally pro-

posed as elementary models of information exchange and manip-

ulation in social networks, our results highlight their potential

as versatile and powerful primitives for collective computing. We

believe this is a perspective that deserves further investigation.
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