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ABSTRACT
Our research considers the problem of enabling persistent execution

of a multi-drone task under energy limitations. The drones are given

a set of locations and their task is to ensure that at least one drone

will be present, for example for monitoring, over each location

at any given time. Because of energy limitations, drones must be

replaced from time to time, and fly back home where their batteries

can be replaced. Our goals are to identify the minimum number of

spare drones needed to accomplish the task while no drone battery

drains, and to provide a drone replacement strategy.
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1 INTRODUCTION
Aerial drones are emerging as an effective and efficient tool for

monitoring and surveillance. Applications include civil security op-

erations, continuous surveillance of a disaster scene such as flooding

and forest fires [12], traffic monitoring [7], and event photography

[15]. The main limitation in deploying drones for such applications

is their short flight times: commonly used drones, equipped with

evenminimal sensors, have amaximumflight time of approximately

20 to 30 minutes, usually less than that. To overcome this severe

limitation in persistence monitoring tasks, spare drones should be

available to replace drones that are running low on battery. The

replaced drones could fly to a location where their batteries can

be charged or replaced, enabling them to continue in their task

[13]. To our knowledge, this research concentrate on a problem

that has not yet been considered so far, in two aspects: (i) Persistent

operation, in the sense of non-stop continuous service. (ii) Deter-

mining the minimal number of robots to accomplish the persistent

operation, from an energetic point of view. While this research

focus is the possible solutions for persistent monitoring for drones,

it is valid for any robot type having energy constraints, performing

any persistent task, as long as the travel cost of the robots in the

environment satisfies the triangle inequality. The various existing

approaches for multi-robot persistent task performance lack one or
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both of the two aspects, addressed in our research. Among them are

the variants of the Vehicle Routing Problem (VRP) [1, 2, 4, 8–11, 14].

2 MINIMAL SPARE DRONE FOR PERSISTENT
MONITORING PROBLEM, MSDPM

The drones are given a set of locations l ofk locations, l = {l1, l2, . . . , lk }.
We define the Minimal Spare Drone for Persistent Monitoring Prob-

lem, MSDPM, for determining the minimal number of spare drones,

as well as finding a schedule of drone replacements that guarantees

both that the persistent monitoring tasks are fulfilled indefinitely,

and that no drone battery is drained. Thus drones must be replaced

with enough energy to return safely to their home denoted by h1
for battery exchange. The required number of drones necessary to

ensure persistent monitoring is greater than k . We refer to the p
extra drones, that is, the drones used for replacing the drones in

the monitoring task, as spare drones. There are several cases for the
MSDPM problem, some of them (2,4,7,8) we’ll consider in future work:

(1) Homogeneous drones. (2) Heterogeneous drones. (3) One home

for battery exchange. (4) Several homes for battery exchange. (5)

Off-line, the set of location l is given in advance. (6) On-line, the set

of locations is given one by one over time. When a location is given

it must be assigned immediately to one of the spare drones, which

are added as needed. (7) Dynamic, locations may be discarded or

changed. (8) Drones may be cut off due to technical problems or

attack.

The formal definition of the MSDPM in the case of homogeneous

drones with one home is as follows:

Given a set of k locations that require persistent monitoring, a set of
k+p, p > 0 homogeneous drones with maximal battery capacity
L < ∞, and one home locationh1 in which the drones replace batteries.
Determine whether the p spare drones are sufficient for assuring that
each location is monitored indefinitely by at least one drone, and that
no drone’s battery will drain unless it is in h1.

The above description is the decision-version of the MSDPM problem.

Our goal is to find theminimal number of spare drones satisfying the

persistent monitoring task, that is, the minimal numberp∗ such that
MSDPM is true. In the full paper [6] we give detailed full definitions

and proofs. The drone replacement pattern (or drone replacement, in
short), is the possible scheduling of replacements of drones at each li .
The drone replacement patterns set the building blocks for analysis

of the MSDPM problem. We distinguish between four different switch

types of possible drone replacements at location li . To encompass

all possibilities of drone replacements we define a mathematical

notation: replacement scheme R = (i1, i2, . . . , i j , . . . , ik1 ) is a series
of time consecutive drone replacements until all the batteries of all
k drones are replaced at h1. R=(2, 1, 3, 4, 5, 2, 1, 3, 4, 5, 5) is the
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Figure 1: An illustration of a replacement scheme.

Figure 2: An illustration of a proper replacement scheme.
replacement scheme illustrated in figure 1, RS=(B, C, C, C, D, B,
D, A, B, D, A) is the corresponding series of replacement switch

types. RT =(10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110) can be the

corresponding series of replacement timings, if all travel times equal

10 time units. A replacement scheme in which drones goes only

back and forth to h1 is most useful, and we refer to it as a proper
replacement scheme. R = (2, 1, 3, 4, 5) is the proper replacement

scheme illustrated in figure 2.

3 PRELIMINARY RESULTS
The following theorem gives the general requirement on the battery

capacity of the drones, L, to enable k drones to perform persistent

monitoring on a set of locations l with a single spare drone. We

denote by c the rate of discharge per time unit. t i B
dist(li ,h1)

v
is the drone’s travel time between h1 and li . Therefore c ·t i is the
amount of charge units it takes a drone to get from h1 to li .

Theorem 3.1. In order to keep persistent monitoring on a location
set l using the set of k + 1 drones with maximum battery charge L, it
is sufficient and necessary that the following requirement be satisfied:

L−2c ·t i ≥
k∑
j=1

2c ·t j for i = 1, . . . ,k

If the requirement is satisfied, then any proper replacement

scheme guarantees that the persistent monitoring task will be per-

formed indefinitely. If the requirement is not satisfied, then one

spare drone is not enough for performing persistent monitoring

over the given locations. Thus this requirement solves the MSDPM
problem for p = 1.

When one spare drone is not enough, we can find the minimum

number of spare dronesp, and allocate locations to the spare drones,
by solving a variation of the Bin-Packing problemwith an additional

constraint: in each bin, items are packed such that the maximum

item in this bin is packed twice. The reason for this is that by a

Lemma we prove in [6], If p spare drones are needed in order to

keep persistent monitoring on locations set l , using a set of k + p
drones with maximum battery charge L, performing any series of

drones replacements, then it can also be achieved by dividing l
into p disjoint subsets l = S1 ⊎ S2 ⊎ . . . ⊎ Sp such that for each

subset Si , persistentmonitoring is achieved using one spare drone to

repeatedly perform a proper replacement scheme over the locations

in Si . The requirement of theorem 3.1 implies that in each set, each

drone, and in particular the one with maximum distance from h1,
has to wait for all other drones to be replaced by a spare dronewhich

travels back and forth to h1, and then travels back and forth to h1
one more time to start the next replacement scheme. The items to

be packed are the battery charge amounts: 2c·t
1
, 2c·t

2
, . . . , 2c·tk .We

name this new variant Bin Maximum Item Doubled Packing (BMIDP).
We consider two versions of the BMIDP problem: (i) The offline
version, in which all items are known in advance. It solves the offline

version of the MSDPM problem where the set of locations is given in

advance; and (ii) The online version, in which items are given one

by one. It solves the online version of the MSDPM problem where

the locations are given one by one over time. Since Bin-Packing

is NP-Hard [3, 5], BMIDP is presumably hard as well. Therefore:

(i) We adjust First Fit (FF) online Bin-Packing approximation and

call it Max Item Doubled First Fit (MIDFF) for the BMIDP online
version; (ii) We adjust First Fit Decreasing (FFD) offline Bin-Packing

approximation and call it Max Item Doubled First Fit Decreasing

(MIDFFD) for the BMIDP offline version.
For MIDFFD we prove an approximation factor ≤ 1.5: theorem.

Max Item Doubled First Fit Decreasing (MIDFFD) uses at most 1.5B
bins if the optimal packing for BMIDP (OPT) uses B Bins.

For MIDFF we hypothesize that the approximation factor is ≤ 2

and show an average approximation factor of 1.7 via extensive

experiments with various parameter settings. In order to avoid

intractable computation of the BMIDP optimal value, we used the

minimal number of spare drones instead of OPT. Therefore the

approximation factor our experimental results yields is a strict

upper bound of the real approximation factor. In all the graphs,

upper line is the MIDFF results and lower (better) is the MIDFFD.

(a) expr. approx. factor (b) spare drones
Figure 3: Influence of increasing battery capacity L.

(a) expr. approx. factor (b) spare drones
Figure 4: Influence of increasing k , the number of locations.

(a) expr. approx. factor (b) spare drones
Figure 5: Influence of increasing the minimum distance from h1.
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