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ABSTRACT
Ongoing digitization of all kinds of human enterprise is allowing
sophisticated pricing strategies to be used in domains where previ-
ously this has not been feasible. In the mobility domain, commodi-
ties such as shared cars or electric vehicle charging services have
multiple free parameters that determine their utility to customers.
Additionally, sales of individual service items are interdependent,
meaning each sale of a service items impacts all consecutive sales.
In this thesis, our goal is to concisely describe structure of these
commodities and to develop pricing algorithms that improve rev-
enue of service providers and the quality of allocations of these
commodities. To this end, we describe the interdependent commodi-
ties multi-agent pricing problem model and develop markov decision
process based pricing strategy that improves both service provider
revenue and resource utilization in the electric vehicle charging
domain.
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1 DYNAMIC PRICING OF INTERDEPENDENT
COMMODITIES

Dynamic pricing is a pricing strategy in which the seller determines
the price of its product dynamically, as opposed to setting a fixed
price. The price adjustments can happen at regular intervals or at
some non-regular prompt. Dynamic pricing has been studied in
multiple scientific fields [3, 8] and can be applied in various markets
in many forms, such as the end-user energy market [1], sales of
airline tickets [2, 7], hotel bookings[5] and recently also electric
vehicle charging services[10].

Digital technology has made it possible for business to use dy-
namic pricing in circumstances where this was previously not fea-
sible. Digitization provides means of adjusting prices easily as well
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as means for disseminating the price information to consumers and
also to collect data needed for pricing optimization.

In this work, we focus on the dynamic pricing strategy for per-
ishable interdependent structured commodities with multiple free
parameters. By structured interdependent commodities we mean
non-uniform commodities that consist of interdependent parts that
can have number of free parameters. Example of such comoddities
are electric vehicle (EV) charging services or shared vehicles.

Defined by multiple parameters, each commodity (existing in
possibly continuousproduct parameter space) is unique and varying
the parameters of the commodity can significantly change its utility
to the customer. For example, price, charging rate, and time of
charging define the EV charging process and changing any of these
parameters can deter user from purchasing the service.

Furthermore, these commodities are interdependent, meaning
that sale of one can impact all following sales. For example, sale of
one charging session can block other charging sessions in time as
well as through reduced grid capacity.

To allocate these commodities efficiently, we need to define ways
of efficiently describing and pricing them.

2 THESIS GOALS
In this thesis, we aim to explore consise ways of describing inter-
dependent commodities and how to price these commodities in
different environmental settings.

Research goals for this doctoral thesis are thus following:

(1) Develop a formal method for describing structured commodi-
ties and encoding their properties in the models of environ-
ment.

(2) Devise set of algorithms for dynamic pricing of structured
commodities that naturally operate with their structure.

(3) Experimentally evaluate these algorithms in realistic domains
with primary focus on the mobility domain and determine
the effect of the environmental parameters on the choice of
pricing algorithm.

Primary use cases for our dynamic pricing strategy are in the
mobility domain. Allocation of charging resources to EV drivers
and allocation of vehicles in car-sharing are examples of domains
we focus on. Both EV charging resources and shared cars are struc-
tured commodities in a sense that each commodity has different
geographical location, varying availability and varying quality of
service.

With dynamic pricing we focus on developing a pricing strat-
egy for a seller in established market and not on the design of the
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market. Nor do we consider optimization of the commodities them-
selves, such as optimization of the charging station placement[9].
Currently, we do not consider the competitive aspects of the prob-
lem, neither on supply side[10], nor on demand side (such as [4]).
However, we would like to extend this work to the game-theoretic
setting in the future.

We expect the environment to determine to some degree the
complexity of the pricing strategy. We want to explore this relation-
ship in our work. To give an example, in the EV charging domain,
complex dynamic pricing strategy that permits reservations might
not be welcomed by the drivers if the environment contains a lot
more available charging stations than drivers.

We want to employ large agent based simulations to evaluate our
pricing strategy algorithms in different environmental settings. Us-
ing simulator based on the AgentPolis [6], we can evaluate different
pricing strategies in different settings with relative ease.

3 INTERDEPENDENT COMMODITIES
PRICING PROBLEM MODEL

Currently we model the pricing problem as multiagent system with
n customer agents and single service provider.The model is for-
mally defined as tuple M = ⟨D, c,ϕ1, . . . ,ϕn ,Φ⟩. D = (r1, . . . , rn )
is a demand expressed as a sequence of service requests ri sent by
the customer agents to the service provider agent in a sequence.
Each service request ri contains parameters of the service based on
which the service providers pricing strategy Φ determines the price
pi = Φ(ri ). The pricing strategy is subject to capacity constraints c .
Customers decision processes ϕ1, . . . ,ϕn determine the customers
decision ϕi (pi ), which is either to accept the offered price or reject
it.

An execution of the model is a sequence of prices and decisions
(⟨p1,ϕ1(p1)⟩, . . . , ⟨pn ,ϕn (pn )⟩) for all agents and their charging
requests ri . The goal of the service provider is to maximize its
revenue by optimally setting prices with Φ:

Φ∗ = argmax
Φ

ρ(D, c,ϕ1, . . . ,ϕn ,Φ). (1)

The maximization task is subject to the capacity constraints c
that need not be static.

4 MDP BASED DYNAMIC PRICING
STRATEGY

We developed dynamic pricing strategy that provides pricing strat-
egy Φ for the model described above.

This dynamic pricing strategy maximizes revenue of the service
provider by using Markov Decision Processes (MDPs) to determine
price. In our current version of pricing strategy, we partition the
pricing period into time slots. In each time slot, we use one MDP to
determine the price. States in each MDP are are determined by the
triplet of time to the service realization, price level and capacity level.
Possible actions are to increase or reduce price. Expected demand
is incorporated in the MDP naturally through the structure of the
MDPs transition function.

Finding optimal pricing for full problem 1 is difficult as the state
space can become very large. Splitting the full problem into indepen-
dent time windows allows us to find tractable solutions. However,

these solutions are only a bound to the optimal solutions to the full
problem. In future version of the method, we plan to implement
this structure of the commodity into the MDPs.

Our pricing method currently aggregates customer decision pro-
cesses ϕ1, . . . ,ϕn into parametric price elasticity model used within
the transition function function of the MDPs. This is motivated
by the domain that we apply our model to. In the market for EV
charging services and shared vehicles, dynamic pricing is not yet
widely deployed. As such, there does not exist data that could be
used to model users behavior with finer granularity. However, pric-
ing strategy such as ours, with minimal number of free parameters,
could be used to collect this data. Parameters for the system could
be tuned using reinforcement learning.

5 RESULTS OF DYNAMIC PRICING
STRATEGY

In our experiments with the MDP based dynamic pricing strategy
using a charging station datasets, we found that our method could
improve charging station revenues by tens of percentage points
over non-dynamic baselines and across wide ranges of demand and
price elasticity parameters. Significant added benefit of dynamic
pricing is that it improves utilization of resources. This is because
unlike non-dynamic pricing strategies, dynamic pricing propagates
information about resource availability into the utility functions of
customers.

In the future, we would like to expand our work by formally de-
scribing structured commodities and developing ways of encoding
these descriptions into the design of the pricing MDPs. We also
plan to expand the experimental evaluation into the car-sharing
domain. Within the pricing strategy, we want to include game-
theoretic models of competition and of customers and to explore
the possibility of learning the demand and price elasticity models
with reinforcement learning.
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