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ABSTRACT

Complex robot behaviors are often structured as state machines,
where states encapsulate actions and a transition function switches
between states. Since transitions depend on physical parameters,
when the environment changes, a roboticist has to painstakingly
readjust the parameters to work in the new environment. In this
demo we present Interactive SMT-based Robot Transition Repair
(SRTR): instead of manually adjusting parameters, we ask users to
identify a few instances where the robot is in a wrong state and
what the right state should be. A lightweight automated analysis of
the transition function’s source code then 1) identifies adjustable
parameters, 2) converts the transition function into a system of
logical constraints, and 3) formulates the constraints and user-
supplied corrections as a MaxSMT problem that yields adjustments
to parameter values. This demo uses a simulated RoboCup Small
Size League platform, allows users to correct faulty behaviors, and
then uses SRTR to adjust parameters automatically.
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1 INTRODUCTION

Complex robot control software is typically structured as a state
machine, where each state encapsulates a feedback controller. Even
if each state is correct, the transitions between states depend on pa-
rameters that are hard to get right, even for experienced roboticists.
It is very common for parameter values to work in simulation but
fail in the real world, to work in one physical environment but fail
in another. For example, Figure 1 shows the trajectory of a robotic
soccer player as it tries to kick a moving ball. A very small change
to its parameter values determines whether or not it succeeds.

Even a simple robot may have a large parameter space, which
makes exhaustive-search impractical. Moreover, robot performance
is usually non-convex with respect to parameter values, which
makes general optimization techniques susceptible to local min-
ima. For some cases, there exist calibration procedures to adjust
parameters automatically (e.g., [3, 7]), but these are not general
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(a) Attacker state machine (b) Execution traces
Figure 1: A robot soccer attacker a) state machine, with b)
successful (blue) and unsuccessful (red) traces to Intercept a
ball (orange) and Kick at the goal. The green box isolates the
error: the successful trace transitions to Kick, the unsuccess-
ful trace remains in Intercept.

procedures. Other work on adjusting state machines for new en-
vironments [1, 6] synthesizes new state machines or transitions
in state machines instead of correcting existing transitions. There-
fore, roboticists usually resort to adjusting parameters manually—a
tedious task that can result in poor performance.

We make the following observations: a roboticist debugging a
robot can identify when something goes wrong, and what should
have happened. When the robot control software is structured as
a state machine, this corresponds to identifying when the robot is
in the wrong state and what the correct state should be. This is a
partial specification of expected behavior: the roboticist does not
need to enumerate a complete sequence of states, the parameters
to adjust, how to adjust them, or even identify all errors.

Based on these observations, we have developed a semi-automated
procedure for adjusting the parameters of robot state machines,
which we call SMT-based Robot Transition Repair (SRTR) [4]. We
demo SRTR using behaviors from a RoboCup Small Size League
(SSL) team. SRTR execution trace of the transition function for a
faulty behavior. Users provide corrections to this execution trace,
and SRTR converts the set of corrections and the transition func-
tion into a logical MaxSMT formula. A solution to this MaxSMT
formula is the minimal adjustment to the parameters that satisfies
the maximum number of corrections. We then demonstrate the
RSM performance after SRTR adjustment.

2 APPROACH

The SRTR algorithm has four inputs: 1) the transition function,
2) a map from parameters to their values, 3) an execution trace,
and 4) a set of user-provided corrections. The result of SRTR is an
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adjustment to parameters that maximizes the number of corrections
satisfied and minimizes the changes to the input parameters.

SRTR has three major steps. 1) It parses the transition function
code and converts it to an abstract syntax tree for repair. 2) It uses
a lightweight program analysis to identify parameters that can be
repaired, and for each user-provided correction, it partially evalu-
ates the transition function for the inputs and variable values at the
time of correction, yielding residual transition functions. 3) Finally, it
uses the residual transition functions to formulate an optimization
problem for an off-the-shelf MaxSMT solver [2]. The solution to
this problem is an adjustment to the parameter values.

Execution Trace and Corrections. To abstract away language-
specific details of our procedure, we first parse the source code
and convert it into an idealized imperative language that only has
features essential for transition functions. We use this language
to record the execution trace of the transition function. A trace
element records the values of sensor inputs, ordinary variables,
and the state at the start the time-step. A user-provided correction
specifies the expected state at the end of the time-step. To adjust
parameters, SRTR establishes constraints that relate the initial state,
the expected output state, and the trace elements.

Program Analysis and Partial Evaluation. SRTR needs to translate
the transition function into a logical formula for the SMT solver.
However, SMT solvers do not have decision procedures for non-
linear arithmetic and trigonometry, which are both very common
in robot transition functions. Partial Evaluation is a technique that
specializes programs to work on specific inputs. For example, if
we partially evaluate the program cos(x) + y for x — 0, we get
the program 1 + y. In general, partial evaluation first substitutes
identifiers with concrete values and then simplifies the program
as much as possible. SRTR uses a canonical partial evaluator for
transition functions.

We refer to the specialized transition function for a particular
trace element as a residual transition function. To calculate the
residual transition function we first partially evaluate the transition
function with respect to all the sensor inputs and variable values
recorded in the trace element. This eliminates most functions that
the solver cannot represent. However, it is possible for the transition
function to use a parameter in a context that the solver cannot
represent. To address this, we use a lightweight program analysis to
calculate the set of parameters that cannot be repaired and partially
evaluate once again with respect to their concrete values.

2.1 Transition Repair as a MaxSMT Problem

To formulate a MaxSMT problem SRTR uses three steps 1) It trans-
lates each correction into an independent formula. A solution to
this formula corresponds to parameter adjustments that satisfy the
correction. 2) It combines the formulas from the previous step into
a single formula with independent weights for each sub-formula.
3) Finally, we formulate a MaxSMT problem that minimizes the
magnitude of adjustments and the weight of violated sub-formulas.

To transform a single correction into a formula, SRTR 1) calcu-
lates the residual transition function, 2) determines the repairable
parameters, and 3) produces a formula with adjustable variables
that correspond to the adjustments for each repairable parameter.
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For multiple corrections we iteratively build a conjunctive formula,
where the weight is the cost of violating a clause.

Finally, SRTR invokes the MaxSMT solver with the conjuctive
formula of all corrections. SRTR directs the solver to minimize the
sum of weights and the sum of the magnitude of parameter changes,
and returns adjustments to repairable parameters.

3 DEMONSTRATION

We demonstrate SRTR by repairing Robocup SSL behaviors using
corrections provided by conference participants as follows:

(1) We provide participants a basis for identifying failures by
demonstrating the correctly functioning behavior.

(2) We demonstrate the complexity of manual parameter tuning
by providing participants with an example of the transition
function and parameters.

(3) We show the effect of poor parameter tuning by running the
behavior with poorly modified parameters.

(4) We ask participants to identify and correct failures using an
interactive log viewer (Figure 2). This log viewer visualizes
the field and robot behavior, displays a text log of internal
behavior state, the trace of the transition function, and allows
control of playback for providing corrections.

(5) We use SRTR to find new parameter values using participant-
provided corrections.

(6) We show that SRTR-adjusted parameters perform well.

A video of this demo is available online [5] and a full explanation
and performance analysis of SRTR can be found in the full paper [4].

Figure 2: The SRTR tool. Main panel visualizes world state,
right panel is a log of internal state, and bottom drop down
box selection of desired transition.
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