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ABSTRACT
In domains with continuous action spaces, one characteristic of an
agent is their precision in executing intended actions. An agent’s
execution skill significantly impacts their success as it determines
how much executed actions deviate from intended actions. We in-
troduce the problem of estimating an agent’s execution skill level
given only observations of their executed actions. The main dif-
ficulty is that while executed actions are observed, the intended
actions are not, thus the amount of action deviation due to imperfect
execution skill is not obvious. We introduce a simple experimental
domain in which this problem can be studied and present a method
that focuses on observed rewards to estimate execution skill. This
method is experimentally evaluated and shown be able to estimate
an agent’s execution skill under certain conditions.
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1 INTRODUCTION
Many decision-making settings require agents to select actions
from a continuous action space. Examples of this can be found in
robotics and in other real-world settings like golf, billiards [2, 4, 13],
and curling [1, 17], the latter two of which have been investigated
in recent years as challenging domains for computer agents.

In domains with continuous action spaces, it is typically unre-
alistic to assume that an agent has the ability to perfectly execute
a planned action. In computer billiards and curling, as examples,
noise is added to actions before they are executed in a deterministic
simulator. Dealing with imperfectly executed actions is one of the
challenges faced by computational agents in these domains.

This execution uncertainty has been identified as a unique aspect
of settings with continuous action spaces, where it has been called
an agent’s execution skill [3]. Execution skill can be viewed as
a property of an agent that potentially differs between agents. It
stands in contrast to the notion of strategic, or planning skill, which
refers to an agent’s ability to select a quality action for execution,
given understanding of their own execution skill level. Furthermore,
it can have a large impact on the success of an agent [3] and thus,
knowledge of this attribute is vital when an agent’s performance
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must be predicted. This is especially important in game settings,
like billiards or curling, where knowledge of an agent’s execution
skill level can impact the strategies selected by an opponent.

Execution uncertainty has been explored in several settings,
including auctions [16], general games [5, 9], and security games
[12, 18]. The area of opponent modeling, also has a rich history,
especially in imperfect information games like poker [6–8, 11], but
this work focuses on strategic characteristics and limitations of
the opponents and there is no execution uncertainty. Opponent
modeling has also been done in general multi-agent systems [10],
real-time strategy games [14], and n-player games [15].

We introduce the problem of estimating an agent’s execution
skill level given only observations of their executed actions. This
problem would be trivial if observations included the intended
actions of an agent. In general, this information is not accessible to
outside observers and so any determinations of an agent’s execution
skill level must be based solely on the final “noisy” executed action.
We propose a method for estimating execution skill from observa-
tions and evaluate such in a simple experimental domain. Results
demonstrate that it is possible to estimate an agent’s execution skill
level under certain conditions.

2 PROBLEM DEFINITION
We utilize traditional Markov Decision Processes (MDPs) to model
domains with continuous action spaces where agents have an im-
perfect ability to execute intended actions, requiring only that the
set of actions must be a compact subset of Rm . An agent possesses
strategic skill and execution skill. Strategic skill refers to the action
selection method π which specifies the planned or intended action
for a given state. The execution skill refers to a distribution over
random perturbations. A sample from this distribution is added to
each attempted action before it is executed in a state. We assume
that an agent’s execution skill distribution is independent of both
the state and the planned action, as this noise is meant to model
uncertainties and imperfections in the agent over which the agent
has no control. We also assume that such distribution is fully known
to the planning component of an agent, allowing it to be considered
zero-mean without loss of generality. With these assumptions, the
main property of interest regarding an agent’s execution skill is its
standard deviation, which will be referred to as σ .

Let an observation consist of a tuple (s,a, r , s ′) which specifies a
state s , the action a that was actually executed in s , the subsequent
reward r and the next state s ′ that resulted from executing a in s .
The execution skill estimation problem is: given a set of observations
of an agent acting in an environment, can the agent’s execution
skill parameter σ be determined?

The main difficulty is due to only observing the executed action,
not the intended one. The interaction between the strategic skill
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and execution skill makes it challenging in general to estimate each
component independently. As an example, consider the case where
the agent has minimal strategic skill and utilizes a uniform random
strategy π . In such a setting it is impossible to determine, simply
by observing executed actions, the amount of noise that results
from the agent’s imperfect ability to execute actions. We focus
on a constrained version of the execution skill estimation problem
with only perfectly rational planning agents, i.e. agents for whom
π (s ) = a∗ results in an optimal action in each state. If π for an agent
is rational in this way, can σ be accurately estimated?

If execution skill cannot be accurately estimated for an agent in
this circumstance, then little hope lies in being able to complete
the task when an agent has less planning acumen. The hope is
that a successful method for the rational case will give insight and
direction for future attempts in determining σ for agents whose π
is of bounded or limited rationality.

3 EXPERIMENTAL DOMAIN
In order to experimentally investigate execution skill estimation
methods, we introduce the simple one-dimensional darts or 1D-darts,
domain. Random 1D-darts problem instances were created and
used for experimental validation. Each 1D-darts problem instance
consists of the same single state and a continuous action space
A = [−10, 10]. The reward function differs for each instance and is
defined by a sorted list of real values in which the reward function
alternates between 0 and 1. For example, given the list (−8,−1, 3, 7),
the reward will be 0 on intervals {[−10,−8), [−1, 3), [7, 10)} and 1
on {[−8,−1), [3, 7)}. Every reward-defining list has an even number
of points, so the action space is bounded at each end by a reward
interval with a reward of 0, allowing the action space to be wrapped.
Given a 1D-darts reward function an agent must select an action
which will have noise added to it from the agent’s execution noise
distribution. The agent then receives the reward corresponding
to the interval in which the executed action lies. Each intended
action has an associated expected reward with respect to the agent’s
execution noise distribution. The assumption of perfectly rational
strategic skill means the selected action will always maximizes this
expected reward.

4 ESTIMATION METHODS
How can we estimate an agent’s execution skill level, given ob-
servations that exclude the intended action? If the intended action
were included with observation t , the true noise value ϵt could be
determined. σ could then be estimated directly as the sample stan-
dard deviation of the observed ϵ values. This method, the True Noise
Method (TN ), cannot be used in practice as it relies on unavailable
information, but is introduced as a baseline for comparison.

We now introduce the Observed Reward Method (OR), which
focuses on the reward received by the agent as part of each obser-
vation. This is a single sample of the mean reward the agent would
receive from that state. Given knowledge of the structure of the
state and reward function, we can determine, for different possible
execution skill levels σ i , the maximum expected reward (MERi )
that an agent with that execution skill level could receive in the
observed state. As observations are processed at each time step t ,
the mean maximum expected reward (MMERi ) for each hypothesis

Figure 1: Method comparison (N = 320)

σ i can be computed as the sample mean ofMERi for that σ i across
all observed states. As actual rewards obtained by the agent are
observed, the sample mean of the observed rewards can be similarly
computed. This estimate is called the mean observed rewardMORt .
At time step t , the OR method predicts σ using MORt and all of
theMMERit values. This is done using linear interpolation on the
MMERit values to obtain a prediction σ̃OR of the execution skill
level that would result in observed rewardsMORt .

Under our current assumption that the acting agent is perfectly
rational, then this is equivalent to estimating the mean maximum
expected reward from a set of samples drawn from the true dis-
tribution. This estimate will converge to the true mean maximum
expected reward by the law of large numbers as the number of ob-
servations approaches infinity. Thus, the prediction of this method
will also converge to the correct value, limited only by the resolution
of our set of hypothesis execution skill levels.

5 EXPERIMENTS AND DISCUSSION
Experiments were carried out in the 1D-darts domain, using zero-
mean Gaussian noise for the execution noise distribution. The stan-
dard deviation of this is randomly generated between 0.25 and
4.5. The rational intended action for a state was computed as the
argmax of the convolution of the execution noise distribution with
the reward function, using a resolution of 0.001.

The OR method used 10 hypothesis σi values and computed the
expected reward of the rational action for each in each state. The TN
method’s estimate was also computed as described. Each method
produced an estimate after each new observation, in an online
manner, and the squared error of these estimates was computed.
This squared error was averaged at each time step over all the
experiments to give the mean squared error (MSE) for each method.

Figure 1 shows performance curves over 5000 observations, aver-
aged for 320 experiments. As the number of observations increases,
the OR method slowly converges, due to the increased variance
from only seeing a single sample of eachMER value. The TNmethod
is more accurate with fewer observations, but the OR method even-
tually converges to the same correct value. Thus, the OR method is
a feasible solution to the execution skill estimation problem.

In the future, we plan to explore other methods for this problem
without rationality assumptions and in new domains.

Main Track Extended Abstract AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

1860



REFERENCES
[1] Zaheen Farraz Ahmad, Robert C Holte, and Michael Bowling. 2016. Action

Selection for Hammer Shots in Curling.. In IJCAI. 561–567.
[2] Christopher Archibald, Alon Altman, Michael Greenspan, and Yoav Shoham.

2010. Computational Pool: A new challenge for game theory pragmatics. AI
Magazine 31, 4 (2010), 33–41.

[3] Christopher Archibald, Alon Altman, and Yoav Shoham. 2010. Success, strategy
and skill: an experimental study. In Proceedings of the 9th International Conference
on Autonomous Agents and Multiagent Systems. International Foundation for
Autonomous Agents and Multiagent Systems, 1089–1096.

[4] Christopher Archibald, Alon Altman, and Yoav Shoham. 2016. A Distributed
Agent for Computational Pool. IEEE Transactions on Computational Intelligence
and AI in Games 8, 2 (June 2016), 190–202. https://doi.org/10.1109/TCIAIG.2016.
2549748

[5] Christopher Archibald and Yoav Shoham. 2011. Hustling in repeated zero-sum
games with imperfect execution. In IJCAI Proceedings-International Joint Confer-
ence on Artificial Intelligence, Vol. 22. 31–36.

[6] Nolan Bard, Michael Johanson, Neil Burch, and Michael Bowling. 2013. Online
Implicit Agent Modelling. In Proceedings of the Twelfth International Conference
on Autonomous Agents and Multi-Agent Systems (AAMAS). 255–262.

[7] Nolan Bard, Deon Nicholas, Csaba Szepesvari, and Michael Bowling. 2015.
Decision-theoretic Clustering of Strategies. In Proceedings of the Fourteenth Inter-
national Conference on Autonomous Agents and Multi-Agent Systems (AAMAS).
To Appear.

[8] Darse Billings, Denis Papp, Jonathan Schaeffer, and Duane Szafron. 1998. Oppo-
nent modeling in poker. In AAAI/IAAI. 493–499.

[9] Michael Bowling and Manuela Veloso. 2004. Existence of Multiagent Equilibria
with Limited Agents. Journal of Artificial Intelligence Research 22 (2004), 353–384.

A previous version appeared as a CMU Technical Report, CMU-CS-02-104.
[10] David Carmel and Shaul Markovitch. 1995. Opponent modeling in multi-agent

systems. In International Joint Conference on Artificial Intelligence. Springer, 40–
52.

[11] Trevor Davis, Neil Burch, and Michael Bowling. 2014. Using Response Functions
to Measure Strategy Strength. In Proceedings of the Twenty-Eighth Conference on
Artificial Intelligence (AAAI). 630–636.

[12] Albert Xin Jiang, Zhengyu Yin, Chao Zhang, Milind Tambe, and Sarit Kraus. 2013.
Game-theoretic randomization for security patrolling with dynamic execution
uncertainty. In Proceedings of the 2013 international conference on Autonomous
agents and multi-agent systems. International Foundation for Autonomous Agents
and Multiagent Systems, 207–214.

[13] J. F. Landry, J. P. Dussault, and E. Beaudry. 2015. A Straight Approach to Planning
for 14.1 Billiards. IEEE Transactions on Computational Intelligence and AI in Games
PP, 99 (2015), 1–1. https://doi.org/10.1109/TCIAIG.2015.2462335

[14] Frederik Schadd, Sander Bakkes, and Pieter Spronck. 2007. Opponent Modeling
in Real-Time Strategy Games.. In GAMEON. 61–70.

[15] Nathan Sturtevant, Martin Zinkevich, and Michael Bowling. 2006. ProbMaxn: Op-
ponent Modeling in N-Player Games. In Proceedings of the Twenty-First National
Conference on Artificial Intelligence (AAAI). 1057–1063.

[16] Gert Van Valkenhoef, Sarvapali D Ramchurn, Perukrishnen Vytelingum,
Nicholas R Jennings, and Rineke Verbrugge. 2010. Continuous double auctions
with execution uncertainty. In Agent-Mediated Electronic Commerce. Designing
Trading Strategies and Mechanisms for Electronic Markets. Springer, 226–241.
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