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ABSTRACT
Bidding strategies for Periodic Double Auctions (PDAs) are compli-
cated because they need to predict and plan for future auctions,
which may affect the bidding strategy in the current auction. We
present a general bidding strategy for PDAs based on forecasting
clearing prices and usingMonte Carlos Tree Search (MCTS) to plan a
bidding strategy across multiple time periods. We developed a con-
trolled simulator by isolating Power Trading Agent Competition’s
wholesale market to evaluate bidding strategies in a realistic PDA
energy market. We show that our MCTS bidding strategy is cost
effective in buying energy compared to other baseline and state-of-
the-art strategies and it’s performance improves with increasing
number of MCTS simulations.
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1 INTRODUCTION
The evolving smart energy grid has the potential to improve many
problems of our current traditional energy grid [12]. By incorporat-
ing more advanced sensing capabilities and artificial intelligence
for better decision making, it will provide a more intelligent en-
ergy infrastructure. However, as the grid becomes more decentral-
ized, automated, and capable of providing much greater volumes
of sensor data, we need to develop the economic structures and
decision-making algorithms to manage these grids efficiently. To
this end, an important area of research for smart grids is to un-
derstand the market mechanisms that can coordinate buying and
selling decisions in energy markets, and to develop automated bid-
ding agents that can represent individuals in these markets. One of
the major academic efforts to develop such strategies centers on the
Power Trading Agent Competition (Power TAC) [11], a competition
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with over a decade of history [18], which supports a competitive
benchmarking research model [13], building on the experience of
competitions in 2012-2017 such as the Trading Agent Competition
for Supply-Chain Management (TAC SCM) [5] and Trading Agent
Competition for Ad Auctions (TAC AA) [10].

The Periodic Double Auction (PDA) wholesale energy market is
one of the common real energy exchange protocols, e.g., NordPool,
FERC, or EEX [6, 8, 11, 15]. The PDA is a general type of auction
that can be used to trade many other types of goods beyond energy.
Bidding in a single double auction is strategically complex and
having periodic auctions adds the need to reason about future auc-
tions for the same good, including predicting future clearing prices
and planning a future bidding strategy. In this context, the search
space of a wholesale broker is too large for a systematic search
approach to be applicable. Inspired by the successes of Monte Carlo
Tree Search (MCTS) [2], a statistical anytime algorithm for finding
optimal decisions that combines the precision of tree search and the
generality of random sampling, we develop a MCTS bidding strat-
egy for PDAs. In this research, by developing a controlled testbed
for a PDA-based realistic wholesale power market, we test PDA bid-
ding strategies and propose a novel MCTS-based bidding strategy
for autonomous energy broker agents. We present the design, im-
plementation, and empirical evaluation of this strategy. Empirical
studies show that MCTS outperforms benchmark strategies as well
as a state-of-the-art bidding policy from a champion Power TAC
agent.

2 MCTS BIDDING STRATEGY
Since bidding in a PDA is essentially a sequential planning problem
for any particular sequence of auctions for trading energy in a spe-
cific time period, we proposed an approach based on the successful
MCTS family of algorithms. To implement an MCTS strategy, we
first need to forecast the market clearing prices for the current and
future auctions for different time slots. We experiment with two
different price prediction methods: MDP Price Predictor [17] and
RepTree Price Predictor [3, 7]. We set REPTree as our default price
predictor because we have found that REPTree has a better accuracy
(avg. error 54.05%) in predicting 24 hour ahead auction prices than
the MDP predictor (avg. error of 66.28%); previous empirical studies
also show that REPTree performs better in predicting market clear-
ing prices comparing to other machine learning strategies [3, 4].
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(a) nth hour ahead auction (b) Net cost comparison.

Figure 1: MCTS Tree and Costs of Best Candidate Agents

The main components of our MCTS bidding strategy are:
Actions: We represent the main actions of the MCTS strategy
as prices relative to the predicted distribution of clearing prices
for the current auction. Each action (actionm ) is represented by
{µ,σ , {∆min ,∆max },γ } where µ represents the limit price, σ is
the observed standard deviation of the clearing price distribution,
{∆min ,∆max } is theminimum andmaximumpricemultiplier tuple,
and γ is the volume (in %) of the current demand δ . We estimate µ
using the price predictor and estimate σ by running 30 four-broker
simulations. The ∆min and ∆max are multiplied with σ and used
by the agent to create µmcts

min and µmcts
max from µ. Using µmcts

min and
µmcts
max , the MCTS strategy is able to bid in different price ranges.
For example, if {∆max ,∆min } : {1, -1}, our MCTS strategy varies
its bid prices in the first standard deviation range. An action is a
NO-BID action when γ = 0.
States: Each state keeps a memory of its corresponding action id,
visit-count, and avgUnitCost (i.e., total avg. unit cost incurred by the
agent in this auction and all future auctions). The agent selects the
state that has the highest UCT value while doing simulations. Each
action leads to a specific state, so an agent with an action-spacem
size ofm actions can go intom different states from a specific state.
Transition:A state Snm transitions into one of Sn−10 , . . . , Sn−1m states.
Terminal States: {S00 , . . . , S

0
m }. If there arem actions and n hour

ahead auctions, the search tree will havemn terminal states.
Reward:While doing rollouts/simulations, if the agent reaches a
terminal state, it gets a balancing cost (Cbal ) as a reward, which
corresponds to the price the agent would pay for energy on the fall-
back balancing market. Otherwise, at each state, it gets a simulated
cost (Csim ) that is the summation of the cost paid for energy in all
of the auctions.
Simulation: While running a MCTS simulation for t timeslot’s
nth hour ahead auction by selecting themth action, the agent first
gets the current demand δnm,t and tries to clear γ% of δnm,t using a
simulation of the market clearing process. It generates a simulated
market clearing price χnm,t from a Gaussian distribution, where the
mean is equal to µnt and standard deviation is σ . If the bid’s limit
price µmcts is greater than χnm,t , then the bid gets cleared. If υnm,t
volume is cleared in this process, the agent updates its δnm,t for
the rest of the hour ahead auction simulation by deducting υnm,t
from δnm,t and repeats the same process until it reaches a terminal
state or a state where δnm,t is zero. At each level of the hour ahead
auction, we get a Csim as follows: Cnsim,m,t = χnm,t ∗ υ

n
m,t .

Rollout: If the agent reaches a state where there are no children,
then the agent selects an action randomly, creates a state and adds
it to the tree. Then, it does a random rollout process (i.e., picking
actions randomly from the action space and traversing from the
newly added state to the terminal state). When it reaches a terminal
state, it calculates the Cbal by multiplying δnm,t with the simulated
unit balancing cost. At timeslot t , the unit balancing cost is cal-
culated by doubling the maximum unit ask price for that specific
timeslot’s hour ahead auctions. After repeating Nsim number of
MCTS iterations for the nth hour ahead auction, the agent builds
the tree as illustrated in Figure 1a. It selects the action that leads to
the highest UCT value [14] state Snm from the root . After bidding
according to the best action, the agent discards the whole MCTS
tree and builds it again from the scratch when it needs to bid for
the (n − 1)th hour ahead auction.

3 EXPERIMENTAL RESULTS
We conducted an empirical analysis of four bidding strategies: ZI [9],
ZIP [16], TacTex [17], and MCTS. Our default MCTS has five bid
actions and one NO-BID action. Default action-space properties are
as follows: Number-of-iterations (Nd

sim ): 10,000. Bid-Volume (γd ):
100% of the current demand (except for NO-BID). Price-Multipliers
{∆dmin ,∆

d
max }: Five actions have five pricemultiplier tuples {−1, 0},

{0, 1}, {−1, 1}, {0, 1}, and {0, 2}. Number-of-Bids (Nd
bid ): 10 bids. 9

bids are minimum bandwidth bids with limitprice starting from the
µmcts
min to µmcts

max and the 10th bid is the main bid that is submitted at
µmcts
max price. We run experiments varying ∆dmin,max (vp) and vary-
ing γd (vv) property, select the two best candidate agents MCTSvv-2
and MCTSvp-6, and run 30 four-broker (ZI, ZIP, TacTex, and MCTS)
games for both agents by varying Nsim . MCTS is a statistical any-
time algorithm, so more computation time should lead it to a better
performance [1]. Figure 1b demonstrates that MCTSvp-6 does very
well compared to other strategies with increasing Nsim , where it
is able to bid successfully and procure the necessary volume at a
lower price. MCTSvp-6 has a reasonably wide range of pinpoint
price selection options (where ∆vpmin = ∆

vp
max ) which can be consid-

ered as the best variation of MCTS. Following this policy, when this
agent simulates the auctions with a larger number of simulations,
it makes good decisions to bid at the right moment to procure the
full demand.

4 CONCLUSIONS
We propose a novel approach for bidding in Periodic Double Auc-
tions (PDAs) using Monte Carlo Tree Search (MCTS). Our strategy
shows significant improvements over two widely known baselines
and the state-of-the-art PDA bidding strategy. Empirical analyses
show (unsurprisingly), MCTS performs better with a larger num-
ber of MCTS simulations. An important restriction on all of these
MCTS strategies is that they search only a fixed space of possible
bidding actions. Future work involves considering dynamic MCTS
policies that add promising new actions to the search space over
time.
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