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ABSTRACT
We consider an axiomatic view of the Parimutuel Consensus Mecha-
nism defined by Eisenberg and Gale [6]. The parimutuel consensus

mechanism can be interpreted as a parimutuel market for wagering

with a proxy that bets optimally on behalf of the agents, depending

on the bets of the other agents. We show that, while the parimutuel

consensus mechanism does violate the key property of incentive

compatibility, it is incentive compatible in the limit as the number

of agents becomes large. Via simulations on real contest data, we

show that violations of incentive compatibility are both rare and

only minimally beneficial for the participants. This suggests that

the parimutuel consensus mechanism is a reasonable mechanism

for eliciting information in practice.
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1 INTRODUCTION
In 1867, Spanish entrepreneur Joseph Oller invented parimutuel
betting, a form of wagering still popular today, handling billions

of dollars annually on horse races and jai alai games. Each bettor

places money on one of several future outcomes—say, horse #1 to

win a race. She is allowed to cancel her bet or move her money to

a different outcome at any time. After the outcome resolves—say,

horse #1 wins—agents who picked the wrong outcome lose their

wagers to the agents who picked correctly. Winning agents split

the pot in proportion to the size of their wagers.

Eisenberg and Gale [6] analyzed the equilibrium of parimutuel

betting, defining the parimutuel consensus mechanism (PCM). The
PCM is equivalent to parimutuel betting with a proxy. Each agent’s

proxy knows her true probabilities for all outcomes. As bets come

in, and the prospective payoff per dollar, or odds, for each outcome

converge, the proxy switches its agent’s money to the outcome

yielding the highest expected payoff for that agent. In equilibrium,

all the proxies are optimizing and none want to switch outcomes.

At any point in time, the odds can be interpreted as probabilities,

providing a prediction of the outcome of the event in question.

Thus, facilitating wagering can serve as a source of freely provided

information for a principal seeking to forecast a future event.
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Eisenberg and Gale discuss one undesirable feature of the equilib-

rium: it produces odds that sometimes ignore some agents. Manski

[11] further explores in detail how the equilibrium of risk-neutral,

budget-constrained agents may fail to aggregate beliefs in a sensible

way. Additionally, the PCM is not incentive compatible—an agent’s

best action may be to report false probabilities to her proxy that

differ from her true subjective probabilities. For a principal whose

primary goal is information elicitation, this is problematic because

some of the reported probabilities may not faithfully reflect the

bettors’ private information.

Given the potential for bad equilibria and the lack of incentive

compatibility, why is the PCM still prevalent? One answer is that,

in practice, it often works fine. Parimutuel betting does consistently

induce a wisdom-of-crowds effect, producing odds that encode

well calibrated and accurate probabilistic forecasts of the outcomes

[1, 13, 14], like many prediction market mechanisms do [2]. Plott

et al. [12] tested parimutuel betting in a laboratory experiment,

showing that the mechanism is an effective vehicle for information

aggregation regardless of why it might go wrong in theory. If agents

have concave or risk-averse utility for money, the equilibrium of

similar mechanisms is stable and induces sensible belief aggregation

[4, 15]. In particular, an agent with logarithmic utility does best by

betting an amount on each outcome proportional to her probability

[5].

We examine another plausible reason why the PCM continues

to enjoy usage: the mechanism satisfies a number of desirable ax-

ioms for wagering systems. Following the approach of Lambert

et al. [9, 10], Freeman et al. [7] observed that it satisfies Pareto

optimality (the mechanism exhausts all mutually beneficial trades),

budget balance (the mechanism does not gain or lose money), and

individual rationality (agents do not lose money in expectation). We

further prove that the PCM satisfies sybilproofness, which ensures

that one agent signing up as two, or controlling a shill account,

cannot improve her lot.

Unfortunately, even the first three properties are mathematically

incompatible with incentive compatibility [7]. Yet we can show

that the PCM is near incentive compatible. Yes, there are scenarios

where agents can gain from lying, but we prove that the PCM is

incentive compatible in the large, as the number of agents grows. In

extensive simulations using real forecasts from an online contest,

we show that opportunities for agents to profit from untruthful

play are rare, mostly vanishing as the number of agents grows.

Our results shed light on the practical success of the PCM. Despite

its flaws, identified as early as 1959, it does satisfy four natural

and desirable properties of wagering mechanisms and it comes
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close both theoretically and empirically to obtaining a crucial fifth:

incentive compatibility.

2 OUR CONTRIBUTIONS
Consider a random variable (event)X which takes a value (outcome)
in {0, 1}. There is a set of agents (or bettors)N , each with a private,

subjective, immutable belief pi regarding the probability thatX = 1,

and a budget wi , which is the maximum amount that they are

prepared to lose.

A wagering mechanism is used to elicit beliefs from the agents.

Each agent submits a report p̂i ∈ [0, 1] and wager wi ≥ 0 to the

mechanism, where p̂i captures her belief andwi her budget. The

mechanism outputs an allocation of Arrow-Debreu securities of the

following form: A yes security pays off $1 ifX = 1 and $0 otherwise,

and a no security pays off $0 if X = 1 and $1 otherwise. Denote

by yi (resp. ni ) the number of yes (resp. no) securities allocated to

agent i , and by σi the cost paid by i for those securities.
The Parimutuel Consensus Mechanism (PCM) [6] can be thought

of as a direct implementation of the equilibrium of parimutuel

betting. The PCM includes the rules of parimutuel betting plus,

conceptually, a proxy agent that automatically switches its agent’s

bet to the outcome with highest expected profit per security. The

output of the mechanism is the equilibrium where all proxies are

stable. For the binary case of yes and no outcomes that we consider,

the PCM is defined by a price π such that an agent with probability

less than π is allocated no securities at a price of 1 − π per security,

and an agent with probabilitymore than π is allocated yes securities
at a price of π per security. The equilibrium condition is∑

i :p̂i<π

wi
1 − π

+
∑

i :p̂i=π

c1wi
1 − π

=
∑

i :p̂i>π

wi
π
+
∑

i :p̂i=π

c2wi
π
, (1)

where c1 and c2 lie in the interval [0, 1] and min{c1, c2} = 0. These

represent the possibility of needing agents with p̂i = π to bet (some

of) their wager to correctly balance the market prices and allow the

market to reach equilibrium, even though they get zero expected

profit. At most one of c1 and c2 is greater than 0, since it would be

redundant to have agents with p̂i = π betting on both yes and no.
Note that the left hand side of Equation 1 is the total number of

no securities allocated, and the right hand side is the total number

of yes securities allocated. Eisenberg and Gale [6] show as their

main contribution that such a price is both unique and guaranteed

to exist. The output of the PCM is defined by

yi (p̂,w) =




0 p̂i < π
c2wi
π p̂i = π

wi
π p̂i > π

, ni (p̂,w) =




wi
1−π p̂i < π
c1wi
1−π p̂i = π

0 p̂i > π

and

σi (p̂,w) =




wi p̂i < π

max{c1, c2}wi p̂i = π

wi p̂i > π

It is known that the PCM satisfies Pareto optimality, budget

balance, and individual rationality [7].
1
We show that it also satisfies

sybilproofness.

1
For formal definitions of these properties, as well as missing proofs and additional

results, see the full version of the paper, which is available on the authors’ websites.

% Agents With

Profitable Misreports

Average Profit

Pareto(α = 1.16) 0.07 1.55

Pareto(α = 3) < 0.01 0.03

Uniform 0 n/a

Table 1: Profitable misreports under Pareto and uniform wagers.

Proposition 2.1. The parimutuel consensus mechanism satisfies
sybilproofness.

Our main theoretical result is that the PCM satisfies incentive-
compatibility in the large (IC-L) [3]. Full incentive compatibility

requires that truthful reporting is optimal for every realization of

other agents’ reports, but IC-L relaxes this condition in two ways.

It requires only that truthful reporting is optimal as the number of

agents grows large, and that truthful reporting is only optimal in

expectation over the reports, rather than in the (ex-post) realization.

Theorem 2.2. The parimutuel consensus mechanism satisfies in-
centive compatibility in the large.

To support Theorem 2.2, we test the PCM on a data set consisting

of probability reports gathered from an online prediction contest

called ProbabilitySports [8].
2
The data set consists of 1643 sets

of probabilistic predictions, with each set containing between 64

and 1574 reports. Participants provided predictions but not wagers,

so we generated wagers from three different Pareto distributions,

which approximately model the distribution of wealth in a popula-

tion. The α = 1.16 distribution is classically viewed as a realistic

distribution of wealth, and is described by the “80/20” rule: 20%

of the population has 80% of the wealth. The α = 3 distribution

produces a more equal distribution of wagers, and the uniform

distribution (which is the limit of the Pareto distribution as α → ∞)
models situations where all wagers are equal, or where participants

do not get to choose a wager. For every set of wagers generated,

wagers are scaled so that the average wager is exactly 1.

Table 1 shows the percentage of agents that have a profitable

misreport available, averaged across 50 random sets of wagers for

each 1643 sets of predictions, and the average expected profit for

those agents that have a profitable misreport. Strikingly, very few

agents have an opportunity to profit – for uniform wagers, we

did not find a single profitable misreport. The Pareto(α = 1.16)

distribution has the most opportunities for misreports, and the

highest profit misreports, because it has a higher fraction of high-

wager agents. These agents have the most ability to affect the

security price π in a favorable manner by reporting strategically.

The full version of the paper contains a more complete analysis.

We find that even for smaller instances, with 10 ≤ |N | ≤ 50,

profitable misreports are relatively rare, and their number decreases

sharply as more agents are added. This suggests that the PCM

may be a suitable choice of wagering mechanism in many real-life

applications.
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