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ABSTRACT
Networks are beneficial to those being connected but can also be

used as carriers of contagious hostile attacks. These attacks are

often facilitated by exploiting corrupt network users. To protect

against the attacks, users can resort to costly defense. The decen-

tralized nature of such protection is known to be inefficient but

the inefficiencies can be mitigated by a careful network design. Is

network design still effective when not all users can be trusted?

We propose a model of network design and defense with byzan-

tine nodes to address this question. We study the optimal defended

networks in the case of centralized defense and, for the case of

decentralized defense, we show that the inefficiencies due to de-

centralization can be fully mitigated, despite the presence of the

byzantine nodes.
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1 INTRODUCTION
Game theoretic models of interdependent security have been used

to study security of complex information and physical systems for

more than a decade [11]. One of the key findings is that the external-

ities resulting from security decisions made by selfish agents lead

to, potentially significant, inefficiencies. This motivates research on

methods for improving information security, such as insurance [4]

and network design [5, 6]. We study the effectiveness of network

design for improving system security with malicious (or byzantine)

players and strategic adversary.

Related work. There are two, overlapping, strands of literature
that our work is related to: the interdependent security games [11]

and multidefender security games [14, 15, 17]. Early research on

interdependent security games assumed that the players only care

about their own survival and that there are no benefits from being

connected [1, 3, 7, 10, 12, 13, 18]. The authors of [3] study a setting

in which the network is fixed, nodes care about their own survival
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only and both protection and contagion are perfect. They point

out the high inefficiency of decentralized protection. For a compre-

hensive review of interdependent security games see an excellent

survey [11]. Papers most related to our work are [5, 6, 8, 16]. The

authors of [16] introduce malicious nodes to the model of [3] and

show that their presence reduces the problem of underprotection.

Works [5, 6] show that network design can mitigate inefficiencies of

decentralized protection. Our work builds on [5, 6] by introducing

malicious nodes to the model. The paper [8] shows that the inef-

ficiencies caused by the decentralization of defense are relatively

low under decentralized network formation.

2 THE MODEL
There are (n + 2) players: the designer (D), the nodes (V ), and the

adversary (A). Each of the nodes is either genuine or byzantine.
There are at least n = 3 nodes and nB ≥ 1 of them are byzantine.

The byzantine nodes cooperate with A, who knows their identity.

All the nodes know their own type only.A has complete information

about the game. He infects a subset of nA ≥ 1 nodes. A network is

modeled by an undirected graphG = (V ,E). The set of all networks
over a set of nodes U is denoted by G (U ). The game proceeds in

four rounds (n, nB , and nA are fixed before the game):

(1) The types of the nodes are realized.

(2) D chooses G ∈ G (V ).
(3) Nodes observe G and choose, simultaneously and indepen-

dently, whether to protect or not. This determines the set of

protected nodes ∆. The protection of the byzantine nodes

is fake and, when attacked, such node gets infected and

transmits the infection to all her neighbors.

(4) A observes the protected network (G,∆) and chooses a set I
of nA nodes to infect. The infection spreads and eliminates

all unprotected nodes reachable from I in G via a path that

does not contain a genuine protected node. This leads to

the residual network obtained from G by removing all the

infected nodes.

Payoffs to the players are based on the residual network and costs

of defense. The returns from a network are measured by a network
value function Φ :

⋃
U ⊆V G (U ) → R. We consider the following

family of network value functions: Φ(G ) =
∑
C ∈C (G ) f ( |C |), where

C (G ) is the set of connected components of G. Moreover, the func-

tion f : R≥0 → R is increasing, strictly convex, f (0) = 0, and, for all

x ≥ 1, satisfies f (3x ) ≥ 2f (2x ) and f (3x+2) ≥ f (2x+2)+ f (2x+1).
Such form of network value function is in line with Metcalfe’s law,

where f (x ) = x2.
A and the byzantine nodes aim to minimize the value of the

residual network. D aims to maximize the value of the residual
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Figure 1: A generalized star with 12 nodes and core of size 5.

network minus the cost of defense. Genuine nodes aim to maximize

an equal share of the value of their component minus the cost of

protection c ∈ R>0. A and the byzantine nodes make choices that

maximize their utility. D and the genuine nodes make choices that

maximize theworst possible type realization (cf. [2]). The pessimistic
utility of D from network G, the set of protected nodes ∆, and the

set of infected nodes I , is denoted by ÛD (G,∆, I ).

3 MAIN RESULTS
We divide the analysis into two parts. First, we consider the cen-

tralized defense model. Then, we use the results of this model to

analyze the decentralized model and bound its price of anarchy.

3.1 Centralized defense
Fix the parameters nB ,nA and suppose that the designer chooses

both the network and the protection assignment. This leads to a

two stage game where, in the first round, the designer chooses a

protected network (G,∆) and in the second round the adversary

observes the protected network and nodes’ types (recognizing the

byzantine nodes) and chooses the nodes to attack. We are inter-

ested in subgame perfect equilibria of the game with pessimistic

preferences of the designer. We call them centralized equilibria, for

short. We start with the definition of a generalized star. We use

G[V ′] to denote the subnetwork of G induced by a set of nodes V ′.

Definition 3.1 (Generalized k-star). Given a set of nodes V and

k ≥ 1, a generalized k-star over V is a network G = (V ,E) such
that the set of nodesV can be partitioned into two sets,C (the core)

of size |C | = k and P (the periphery), in such a way that G[C] is a
clique, every node in P is connected to exactly one node in C , and
every node in C is connected to ⌊n/k⌋ − 1 or ⌈n/k⌉ − 1 nodes in P .

An example of a generalized star is depicted in fig. 1. We are

now ready to state the result characterizing equilibrium defended

network and pessimistic equilibrium payoffs to the designer.

Proposition 3.2. Let nB = nA = 1, n ≥ 3, c > 0. Let k ≥ 0 be
a number of nodes that is protected in some centralized equilibrium
network. Then, there exists an equilibrium network (G,∆) that has
|∆| = k protected nodes and the following structure:
i) G has at most three connected components.

ii) If k ≥ 3 and n mod k , 1, then G is a generalized k-star with
protected core and unprotected periphery.

iii) If k ≥ 3 and n mod k = 1, thenG is composed of a generalized k-
star of size (n − 1) with protected core and unprotected periphery
and a single unprotected node.

iv) If k = 0 and n mod 6 , 3, thenG has two connected components
of size ⌊n/2⌋ and, if n mod 2 = 1, a single unprotected node.

v) If k = 0 and n mod 6 = 3, then G either has the structure given
in item iv or G is composed of three components of size n/3.

vi) If k = 2, thenG is composed of a generalized 2-star with protected
core and unprotected periphery and at most two unprotected
components.

The intuitions behind this result are as follows. When the cost

of defense is high, then the designer is better off by not using

any defense and partitioning the network into several components.

Thanks to our assumptions on the component value function f , the
number of such components is at most three.

When the cost of defense is sufficiently low, then it is profitable

for the designer to protect some nodes. If the number of protected

nodes is not smaller than 3, then, by choosing a generalized k-
star with fully protected core (of optimal size k ≥ 3 depending on

the cost) and unprotected periphery, the designer knows that the

strategic adversary is going to attack either the byzantine node (if

she is among the core nodes) or any unprotected node (otherwise).

Thus, in the worst case, a core node with the largest number of

periphery nodes connected to her is byzantine. By distributing the

core nodes evenly, the designer minimizes the impact of this worst

case scenario.

3.2 Decentralized defense
Now we turn attention to the variant of the model where de-

fense decisions are decentralized. Fix the parameters nB ,nA and

let E (n, c ) denote the set of all equilibria of the game with n nodes

and the cost of protection c > 0. Let ÛD
⋆ (n, c ) denote the best pay-

off the designer can obtain in the centralized defense game (as

discussed in section 3.1). The price of anarchy is the fraction of

this payoff over the minimal payoff to the designer that can be

attained in equilibrium of Γ (for the given cost of protection c),
PoA(n, c ) = ÛD

⋆ (n, c )/mine ∈E (n,c ) EÛD (e ). Our main result pro-

vides asymptotic characterization of PoA (with a fixed cost c).

Theorem 3.3. Suppose that for all t ≥ 0 the function f satisfies
limn→+∞ f (n)/f (n − t ) = 1. Then, for any cost level c > 0 and any
fixed parameters nB ≥ 1, nA ≥ 1 we have limn→+∞ PoA(n, c ) = 1.

Notice that the condition of theorem 3.3 is verified for f (x ) = xa

with a ≥ 2. Hence, in the case of such functions f , the price of

anarchy is 1, so the inefficiencies due to decentralization are fully

mitigated by the network design. This is true, in particular, for

Metcalfe’s law.

The full version of this paper is available at [9].
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