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ABSTRACT
Rapid adaptation to dynamically change one’s policy based on a
singular observation is a complex problem. This is especially dif-
ficult in multiagent systems where the global behavior emerges
from inter-agent interactions. In this paper, we introduce a memory-
based learning framework called Distributed Modular Memory Unit
(DMMU) which enables rapid and adaptive decision making. In
DMMU, a shared external memory is selectively accessed by agents
acting independently and in parallel. Each agent processes its own
stream of sequential information independently while interacting
with the shared external memory to identify, retain, and propagate
salient information. This enables DMMU to rapidly assimilate task
features from a group of distributed agents, consolidate it into a
reconfigurable external memory, and use it for one-shot multiagent
learning. We compare the performance of the DMMU framework
on a simulated cybersecurity task with traditional feedforward en-
sembles, LSTM based agents, and a centralized framework. Results
demonstrate that DMMU significantly outperforms the best LSTM
based method by a factor of two and exhibits adaptive decision
making to effectively solve this complex task.
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1 INTRODUCTION
Multiagent systems (MAS) can accomplish complex tasks in highly
dynamic and stochastic environments improving on both speed
and effectiveness over single agent approaches. However, multi-
agent coordination is a complex control problem especially when
the task requires rapid adaptive behaviors from the group of
coordinating agents. The difficulty of the task is further exacerbated
when the features relevant to decision making are distributed over
the agent’s sequence of observations. In such tasks, it is critical for
each agent to dynamically capture relevant features from its own
set of observations, while the multiagent team consolidates these
features across each other in making rapid adaptive decisions.
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A characteristic component of rapid adaptation is the ability to
dynamically change one’s behavior (policy) after a singular observa-
tion. One approach to facilitate adaptive behaviors is to incorporate
memory which can be used to remember salient observations and
recall them during future decision making [8, 9, 13]. Adaptive be-
haviors for single agent systems have been explored in the past
largely with the tools of memory [1, 2, 11, 13]. However, the in-
creased complexity from multiple agents acting concurrently is
widely unexplored for tasks that require rapid adaptive behaviors.

Long Short Term Memory (LSTM) [5, 6] is one popular way of
incorporating memory in a learning system, and is the state of the
art in many sequence processing tasks [3, 4, 12]. A characteristic
feature of LSTM is the intertwining of the memory operations and
the feedforward computation of the network where the memory
stored in the cell states are updated with each feedforward opera-
tion. However, in a multiagent setting where multiple agents share
memory, this architecture leads to homogenization among the joint
action set. Additionally, concurrent access to the same memory cell
leads to high degrees of interference and memory corruption.

2 DISTRIBUTED MODULAR MEMORY UNIT
In order to enable distributed adaptive decision making, we intro-
duce Distributed Modular Memory Unit (DMMU) leveraging the
modular architecture of GRU-MB [7]. Figure 1 depicts the organiza-
tion of the DMMU framework. Unlike GRU-MB, DMMU is designed
to process streams of sequential observations from multiple agents
concurrently. The principal component of the DMMU framework is
its modular and flexible integration between the external memory
and the agents that interact with it. DMMU is an open systemwhere
an agent can join or leave dynamically during execution. This al-
lows for a high degree of reconfigurability such that a variable
number of agents (possibly heterogeneous), acting on their own
unique set of observations, can interact with the shared external
memory in parallel.

Each agent operates with its own unique policy and is defined by
a standard feedforward neural network with three key additions:

(1) Input Gate: An input gate filters the flow of information
that comes from the environment. This serves to shield the
agent from the noisy portions of each incoming observation
and allows it to focus its attention on relevant features within
its observation set.

(2) Curated Memory Feed: The agent’s input is augmented
with content that is selectively read from an externalmemory.
The agent has an independently learnable read gate which
filters the content read from external memory. This serves to
shape the contents of memory as per the needs of the agent,
protecting it from being overwhelmed.
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Figure 1: High level schematic of the DMMU framework.
Each agent is comprised of a neural network with connec-
tions to the world (input/output) and memory (read/write)
connections. Agents A, B, and C highlight the modularity
of the framework. At this time, agent A ignores memory,
and acts reactively based on its input. Agent B ignores its in-
put and acts exclusively frommemory. Agent C leverages all
available information, combining the contents withinmem-
ory and its immediate input in making decisions. Agent C
also updates memory based on its decision. An agent can
choose to perform any subset of these actions at any time.

(3) Selective Memory Update: The agent uses a learnable
write gate that allows it to selectively update the contents of
the external memory. This gate enables the agent to report
salient features from its observations to the external memory
at any given time step. The write gate that filters this channel
of information flow serves to shield the external memory
from being overwhelmed by updates from the agent.

We test DMMU in a simulated cybersecurity task which can be
thought of as a multiagent extension of the season task [9] requiring
coordinated adaptive behaviors across multiple agents. Here, a web
server employing a distributed network of proxy servers has to
remain operational while withstanding a DDoS attack. The web
server receives multiple requests originating from multiple devices.
A portion of these devices are conscripted by a nefarious botnet
while the rest are genuine. To successfully solve this task, the proxy
servers have to coordinate in exploring the devices’ categorization
by sampling their requests in parallel, and selectively serve requests
originating from the genuine ones. The core difficulty here is that
the categorization of devices (nefarious/genuine) changes across
task instances. This prevents our agents from simply remembering
action-value functions and forces it to dynamically sample and
determine the nefarious/genuine categorization of each device for
each new instance of the task.

3 RESULTS
We use neuroevolution to train our agents and compare DMMU
with four baselines spread across the centralized/decentralized and
memoried/reactive axes. Feedforward Neural Ensemble (FFNE) and
LSTMNeural Ensemble (LSTMNE) represents each proxy server as
a feedforward neural network and a LSTM, respectively. Centralized
Neural Framework (CNF) represents the entire server fleet as a
single feedforward neural network with centralized access to all the
information. LSTMwith SharedMemory (LSTMSM) represents the
server fleet as a group of LSTM network with access to an external
shared memory similar to the DMMU setup.

Figure 2: Perfomrance of DMMU alongside other baselines
in the cybersecurity task. The server fleet consists of 10
proxy servers handling a request volume of 100 from 20 dis-
tinct devices. A random number of devices between {7,13}
out of 20 chosen at the start of each task instance are ne-
farious while the rest are genuine.

Figure 2 shows the comparative performance of DMMU with
other baselines in controlling the server fleets where 10 proxy
servers handle a request volume of 100 from 20 distinct devices.
DMMU significantly outperforms all other baselines achieving a net
of 11.93 ± 0.63 genuine requests served. Both approaches without
memory (CNF and FFNE) fail to learn in either of the tasks, and
converge to an equilibrium state with the net genuine request
served centered at 0. This is unsurprising as these methods lack
memory and cannot associate actions with rewards over time. Even
with centralized access to information and actions (CNF), the lack
of memory is a principal limitation.

Surprisingly, LSTMSM fails to learn in both variants of the task
despite sharing an external memory similar to DMMU. This is be-
cause, unlike DMMU where agents can selectively use memory’s
contents, LSTMSM’s agents are constricted to condition their ac-
tions as a strict function of the shared external memory. This greatly
limits their flexibility and leads them to fail in the task. This high-
lights the importance of DMMU’s modularity which allows agents
to read from, add to, or ignore the external memory at will. This
enables DMMU to employ multiple agents with diverse policies
working together in sampling devices concurrently, and encoding
associations onto the shared external memory.

4 CONCLUSION
Adaptive decision making in a multiagent system where agents can
dynamically change their behavior based on a singular observation
by one of the agents is a complex problem. However, as most real
world systems increasingly move towards decentralization and
become more distributed [10, 14], it is an important challenge to
tackle. In this work, we introduced the DMMU framework that
leverages an external shared memory as a form of ‘knowledge base’
that can be collectively read and updated by a team of independent
agents. Collectively, this facilitates rapid assimilation of dynamic
features, and enables adaptive decision making based on a singular
observation.
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