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ABSTRACT
Black-Scholes (BS) is the standardmathematicalmodel for European

option pricing in financial markets. Option prices are calculated

using an analytical formula whose main inputs are strike (at which

price to exercise) and volatility. The BS framework assumes that

volatility remains constant across all strikes, however, in practice

it varies. How do traders come to learn these parameters? We

introduce and analyze the convergence properties of natural models

of learning agents, in which they update their beliefs about the true

implied volatility based on the opinions of other traders.
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1 INTRODUCTION
A European option is the right to buy or sell an underlying asset at

a fixed point in the future at a fixed price, also known as the strike.

A call option gives the right to buy an asset and a put option gives

the right to sell an asset at the agreed price. On the opposite side of

the buyer is the seller who has relinquished his control of exercise.

Buyers of puts and calls can exercise the right to buy or sell. The

payoff of a buyer of a call option with stock price ST at expiry time

T and exercise price K is max{ST −K , 0}, whereas for a put option
is max{K − ST , 0}.

To get a price we input the current stock price S0 (e.g. $101), the

exercise price K (e.g. $90), the expiry T (e.g. three months from

today) and the volatility σ in the Black-Scholes (BS) formula and

out comes the answer, the quoted price of the instrument [8].

Price = BS(S0,K ,T ,σ ).

Volatility, which captures the beliefs about how turbulent the

stock price will be, is left up to the market. This parameter is so

important that in practice the market trades European calls and
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puts by quoting volatilities.
1
How does the market decide about

what the quoted volatility should be (e.g. for a stock index in 3

months from now) is a critical, but not well understood, question.

If the underlying asset and the time to exercise T (e.g. 3 months)

are the same, one would expect the volatility to be the same at differ-

ent strikes. In practice, however, markets after the 1987 crash have

evolved to exhibit different volatilities. This rather strange phenom-

enon is referred to as the smile, or smirk (see figure 1). Depending

on the market, these smirks can be more or less pronounced [14].

Related work.Multiple learning models have been studied in

economics [16] and machine learning/AI [18, 25, 31]. We focus

on simultaneous observational learning and not sequential learn-

ing common in many theoretical economics models [32]. Specific

models on order placement by traders are developed in [22, 34].

Discrete dynamical systems are now standard tools in opinion

formation [20]. As in [3, 23] we use a linear dynamical systems

framework. The work closest to us in spirit is that of [4] though

our focus is on building novel tractable models for volatility smiles.

Our models are quite distinct from previous works.

2 CONSENSUS (AGENT DYNAMICS)
We assume that the agents are able to learn how far off they are from

the true volatility by informational channels in the marketplace.

There are many avenues, platforms and private online chat rooms

that provide quotes for option prices; some of these are stale and

some are fresh. The agents’ learning ability determines the quality

of the feedback from all these sources. We aggregate all of this

information in the form of a feedback controller. If the agents are

fast learners, they adjust their volatility estimates quickly.

2.1 Consensus with Feedback
We model this feedback by introducing an extra driving term into

the opinion dynamics. In particular, we feedback the difference

between the agents’ opinion and the true volatility σ (K ,T ) scaled by
a learning coefficient ϵi ∈ (0, 1). We assume that σ (K ,T ) is invariant,
i.e., for some fixed σ̄ ∈ (0, 1), σ (K ,T ) = σ̄ for some fixed strike K
and maturityM . The opinion x it ∈ R of the i-th agent is given by

x it =
n∑
j=1

ai jx
j
t−1
+ ϵi (σ̄ − x it−1

), (1)

or in matrix form

Xt = AXt−1 + E(σ̄1n − Xt−1), (2)

1
Using the Black-Scholes formula with particular implied volatility, traders obtain a

dollar value price.
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Figure 1: (a) A typical implied volatility smile for varying strikesK divided by fixed spot price.Moneyness isK/S0. ATMdenotes
at-the-money where K equals S0, (b) Consensus occurs as all investors’ opinions of the implied volatility converge, round by
round, to a distinct value for varying strikes.

where E := diag(ϵ1, . . . , ϵn ) andA := ai j ∈ R
n×n

is a row-stochastic
matrix. Then, we have the following result.

Theorem 2.1. Consider the opinion dynamics (2) and assume that
ϵi ∈ (0,aii ), i = {1, . . . ,n}; then, consensus to σ̄ is reached, i.e.,
limt→∞ Xt = σ̄1n .

2.2 Consensus with an unknown leader
One criticism of model (2) is that feedback, even if it is not perfect,

has to be learned. In practice, there might not be a helpful mecha-

nism that provides feedback. An alternative is to have an unknown

leader embedded in the set of traders. The agents are unsure who

the leader is but by taking averages of other traders, they all arrive

at the opinion of the leader. Such behaviour is called an absorbing

state. The leader guides the system to the true value.

Without loss of generality, we assume that the first agent (with

corresponding opinion x1

t ) is the leader; it follows that x1

1
= σ̄ ,

a1i = 0, i ∈ {2, · · · ,n}, and a11 = 1. Then, in this configuration,

the opinion dynamics are

Xt = AXt−1, A =

©­­­­­­­«

1 0 . . . 0

a21 a22 . . . a2n
...
... . . .

...

an1 an2 . . . ann

ª®®®®®®®¬
=:

©­«
1 0

∗ Ã

ª®¬ , (3)

with ai j ≥ 0,

∑n
j=1

ai j = 1, aii > 0 for all 1 ≤ i ≤ n, and for at least

one i ,
∑n
j=2

ai j < 1.

Theorem 2.2. Consider the opinion dynamics (3) and assume that
thematrix Ã is substochastic and irreducible. It holds that limt→∞ Xt =
σ̄1n , i.e., consensus to σ̄ is reached.

These results extend to a multidimensional setting, where each

agent holds opinions across a range of strikes.

2.3 Arbitrage Bounds
True volatility is exogenous, however, we require no static arbitrage,

by which we mean that all the quotes in volatility which translate to

option prices are such that one cannot trade in the different strikes

to create a profit. Checking whether a volatility surface is indeed

arbitrage free is nontrivial, nevertheless some sufficient conditions

are well known [7]. As long as the volatility surface satisfies them

our analysis implies global stability towards an arbitrage free smile.

How these arbitrage-free curve volatility conditions are developed

is not an easy task: see an account by [27].

3 CONNECTIONS AND CONCLUSION
In actuality, for each smile there are only a few strikes that are

actively traded. This means whatever model a trader chooses, there

is flexibility in choosing different parameters to produce a perfect

fit. In this reality, opinion dynamics seems clear. Model choice is

addressed in [6, 9, 21] but the issue of opinions or interaction is

not considered. Even with perfect calibration there will be periods

when one model outperforms another [15]. In such situations, it

makes sense to be close to the crowd! Market-makers optimize to

make profits [10] but even here one has to be confident in one’s

estimates. Our models convey how such confidence may develop

between transactions.

The smile itself is a conundrum and there have even been articles

questioning whether it can be solved [5]. The traditional way from

the ground up is to develop a stochastic process for the volatility

and asset price [19].

While such models have been successfully developed the time is

ripe to incorporate multi-agent models with arbitrage free curves.

Thus far, we proved convergence to equilibrium. A natural step

forward would be to look at the beliefs as probability measures,

where eachmeasure corresponds to a different option pricingmodel.

Our learning models focus on interaction between agents. Actually,

traders can be interpreted as algorithms. Each algorithm corre-

sponding to a particular belief of a pricing model.
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