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ABSTRACT
We1 conduct an empirical study on discovering the ordered col-
lective dynamics obtained by a population of intelligence agents,
driven by million-agent reinforcement learning. Our intention is to
put intelligent agents into a simulated natural context and verify
if the principles developed in the real world could also be used
in understanding an articially-created intelligent population. To
achieve this, we simulate a large-scale predator-prey world, where
the laws of the world are designed by only the ndings or logical
equivalence that have been discovered in nature. We endow the
agents with the intelligence based on deep reinforcement learning
(DRL). In order to scale the population size up to millions agents,
a large-scale DRL training platform with redesigned experience
buer is proposed. Our results show that the population dynamics
of AI agents, driven only by each agent’s individual self-interest,
reveals an ordered pattern that is similar to the Lotka-Volterramodel
studied in population biology. We further discover the emergent
behaviors of collective adaptations in studying how the agents’
grouping behaviors will change with the environmental resources.
Both of the two ndings could be explained by the self-organization
theory in nature.
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1 INTRODUCTION
By employing the modeling power of deep learning [4], reinforce-
ment learning (RL) has endowed AI agents with human-level in-
telligence on certain tasks [6, 11]. In the real world, the theory of
1First three authors contribute equally. Full paper can be found [15].
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Figure 1: In the 2-D world, there exist preys, predators, and
obstacles. Predators hunt the prey so as to survive from
starvation. Each predator has its own health bar and lim-
ited eyesight view. Predators can form a group to hunt the
prey so that the chance of capturing can increase, but this
also means that the captured prey will be shared among all
group members. When there are multiple group targeting
the same prey, the largest group within capture radius will
win. In this example, predators {2, 3, 4} form a group andwin
the prey over the group {5, 6}. Predator 5 soon dies because
of starvation.

self-organization suggests that the ordered global dynamics that
live populations show, no matter how complex, are induced from
repeated interactions between local individuals, without external
supervisions or interventions. Ancient philosopher Lucretius once
said: “A designing intelligence is necessary to create orders in nature.”
[8], an interesting question for us is to understand what kinds of
ordered macro dynamics, if any, that a community of articially-
created agents would possess when they are together put into the
natural context.

2 DESIGN OF THE PREDATOR-PREY WORLD
We conduct an empirical study in a AI-powered predator-prey
world. To avoid introducing any specic rules that could harm the
generality of the observed results, we design the laws of the world
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Figure 2: Population dynamics in both the time space (1st row) and the phase space (2nd row). The orange circles denote the
theoretical solutions to the Lotka-Volterra equation, with the red spot as the equilibrium. The green-blue circles denote the
simulation results. a): The simulated birth rate of preys is 0.006. b): The simulated birth rate of preys is 0.01.

(see Fig. 1) by only considering those real ndings or logical equiv-
alence that have been observed in the natural system; they include
Positive Feedback [1, 14], Negative Feedback [2], Individual Variation
[3, 9], Response Threshold [13], Redundancy [10], Synchroni-sation
[7], Selshness [12].

3 THE POPULATION DYNAMICS
We nd that the AI population reveals an ordered pattern when
measuring the population dynamics. As shown in Fig. 2, the popula-
tion sizes of both predators and preys reach a dynamic equilibrium
where both curves present a wax-and-wane shape, but with a 90◦
lag in the phase, i.e., the crest of one is aligned with the trough of
the other. The underlying logic of such ordered dynamics could be
that when the predators’ population grows because they learn to
know how to hunt eciently, as a consequence of more preys being
captured, the preys’ population shrinks, which will later cause the
predators’ population also shrinks due to the lack of food supply,
and with the help of less predators, the population of preys will
recover from the shrinkage and start to regrow. Such logic drives
the 2-D contour of population sizes (see the green-blue traits in the
2nd row in Fig. 2) into harmonic cycles, and the circle patterns be-
come stable with the increasing level of intelligence agents acquire
from the reinforcement learning. As it will be shown later in the
ablation study, enabling the individual intelligence is the key to
observe these ordered patterns in the population dynamics.

In fact, the population dynamics possessed by AI agents are
consistent with the Lotka-Volterra (LV) model studied in biology

(shown by the orange traits in Fig. 2). In population biology, the LV
model [5] describes a Hamiltonian system with two-species inter-
actions, e.g., predators and preys. In the LV model, the population
size of predators q and of preys p change over time based on the
following pair of nonlinear dierential equations:

1
p

dp

dt
= α − βq,

1
q

dq

dt
= δp − γ . (1)

The preys are assumed to have an auent food resource and thus
can reproduce exponentially with rate α , until meeting predation,
which is proportional to the rate at which the predators and the prey
meet, represented by βq. The predators have an exponential decay
in the population due to natural death denoted by γ . Meanwhile,
they can also boost the population by hunting the prey, represented
by δp. The solution to the equations is a harmonic function (wax-
and-wane shaped) with the population size of predators lagging
that of preys by 90◦ in the phase. On the phase space plot, it shows
as a series of periodical circle V = −δ p + γ ln(p) − β q + α ln(q),
with V dependent on initial conditions. In other words, which
equilibrium cycle to reach depends on where the ecosystem starts.
Similar patterns on the population dynamics might indicate that
the orders from an AI population is induced from the same logic as
the ecosystem that LV model describes. However, the key dierence
here is that, unlike the LV equations that model the observed macro
dynamics directly, we start from a microcosmic point of view – the
AI population is only driven by the self-interest (powered by RL)
of individual agent, and then reaching the macroscopic principles.
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