
Recognizing Plans by Learning Embeddings from Observed
Action Distributions

Extended Abstract

Yantian Zha, Yikang Li, Sriram Gopalakrishnan, Baoxin Li, Subbarao Kambhampati
Arizona State University

Tempe, Arizona
{Yantian.Zha,yikangli,sgopal28,baoxin.li,rao}@asu.edu

ABSTRACT
Automated video surveillance requires the recognition of agent
plans from videos. One promising direction for plan recognition
involves learning shallow action affinity models from plan traces.
Extracting such traces from raw video involves uncertainty about
the actions. One solution is to represent traces as sequences of
action distributions. To use such a representation in approximate
plan recognition, we need embeddings of these action distribu-
tions. To address this problem, we propose a distribution to vector
(Distr2Vec) model, which learns embeddings of action distributions
using KL-divergence as the loss function.

KEYWORDS
Word2Vec, Distr2Vec, Plan Recognition, Distribution Sequences

ACM Reference Format:
Yantian Zha, Yikang Li, Sriram Gopalakrishnan, Baoxin Li, Subbarao Kamb-
hampati. 2018. Recognizing Plans by Learning Embeddings from Observed
Action Distributions. In Proc. of the 17th International Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS 2018), Stockholm, Sweden,
July 10–15, 2018, IFAAMAS, 3 pages.

1 INTRODUCTION
Plan recognition [3, 5] is essential for surveillance and multi-agent
collaboration, in order to predict the actions of other agents. Ap-
proximate plan recognition using a shallow model can be a fast and
efficient way to do this as shown in the work DUP [7]. In DUP, the
shallow model was learned using Word2Vec[1], and the learned
embeddings capture the affinity between actions, which we call
affinity models. The input traces to Word2Vec in DUP are plan traces
of single actions at each step (actions are the words for Word2Vec).
Where there are traces extracted from sensory data, often there
is uncertainty about the recognized action. Thus we must allow
a distribution over actions at each step. This is what our work
Distr2Vec allows. By learning embeddings for action distributions,
we create a more powerful data-interface between the perception
module and plan recognition module. We demonstrate it’s value
by comparing the performance of Word2Vec and Distr2Vec in
plan recognition by using them (separately) in a version of DUP for
uncertain inputs, called UDUP that allows uncertain plan traces as
input. In our experiments we vary the perception error rate (PER)
and entropy in observation distributions, and compare the training

Proc. of the 17th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2018), M. Dastani, G. Sukthankar, E. André, S. Koenig (eds.), July 10–15, 2018,
Stockholm, Sweden. © 2018 International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

time, and accuracy between the two models. Our full paper can be
accessed at https://arxiv.org/abs/1712.01949.

2 PROBLEM FORMULATION AND MODEL
The input of our Distr2Vec in UDUP is in the form of the following
matrix. Each step is a distribution over actions (a1, ...,ak) with their
probabilities (confidence) (c1, ..., ck). The values of T and K repre-
sent the number of time-steps and actions per step respectively.

Actions

y

Time−−→©­­­­­­­«

a11, c
1
1 a12, c

1
2 a13, c

1
3 · · · a1T , c

1
T

a21, c
2
1 a22, c

2
2 a23, c

2
3 · · · a2T , c

2
T

a31, c
3
1 a32, c

3
2 a33, c

3
3 · · · a3T , c

3
T

...
...

...
. . . · · ·

aK1 , c
K
1 aK2 , c

K
2 aK3 , c

K
3 · · · aKT , c

K
T

ª®®®®®®®¬
Taking that matrix (distribution sequence) as the input, our

Distr2Vec model framework is shown in Figure 1.

𝑫𝑫𝒂𝒂𝑫𝑫𝒉𝒉𝑫𝑫𝒐𝒐𝒐𝒐𝒂𝒂𝒐𝒐𝒆𝒆𝒂𝒂𝒐𝒐𝒆𝒆(𝒂𝒂𝒉𝒉+𝒋𝒋)
Hidden-Output

Matrix
Embedding
Matrix 𝑾𝑾𝑬𝑬

𝒉𝒉 (𝑫𝑫𝒂𝒂𝑫𝑫𝒉𝒉𝑫𝑫(𝒂𝒂𝒉𝒉))

𝑫𝑫𝒂𝒂𝑫𝑫𝒉𝒉𝑫𝑫𝒐𝒐𝒐𝒐𝒂𝒂𝒐𝒐𝒆𝒆𝒂𝒂𝒐𝒐𝒆𝒆(𝒂𝒂𝒉𝒉)

Figure 1: The architecture of our Distr2Vecmodel for learn-
ing distribution embeddings and action affinity models.

Like in Word2Vec, we try to maximize the similarity (of the
embeddings) between an action distribution and it’s neighbors.
We minimize Kullback-Leibler (KL) divergence to maximize the
similarity between our target and predicted output distribution as
follows;

DKL(Distrencodinд(at+j)| | ˆDistr
encodinд(at+j)) (1)

where DKL represents the KL divergence. KL-divergence is calcu-
lated as per Equ. 2.

KL(p | |q) ≜
K∑
k=1

pk loд
pk
qk
=

K∑
k=1

pk loдpk −
K∑
k=1

pk loдqk (2)

where q is the output probability distribution of our Distr2Vec. q
is also an approximation of p, the target distribution Distr (at+j).
We try to minimize the inclusive KL divergence [2] with the model’s

Main Track Extended Abstract AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

2153

https://arxiv.org/abs/1712.01949

target distribution. An advantage of using inclusive KL divergence,
is that we avoid computing the derivative of the entropy of p when
taking partial derivative of KL(p | |q) with respect to model param-
eters. This is because the values for p (which is Distr (at+j)), is a
constant with respect to the model parameters. Using this informa-
tion, we can obtain the Equ. 3.

DKL(Distrencodinд(at+j)| | ˆDistr
encodinд(at+j))

= Z (Distr (at+j)) −
K∑
k=1

ckt+j loдp(a
k
t+j |h(Distr (at))) (3)

where Z (Distr (at+j)) =
∑K
k=1 c

k
t+j loд(c

k
t+j) is a constant, and

h(Distr (at)) is the embedding computed by multiplying the embed-
ding matrixWE and the distribution input vectorDistrencodinд(at)
= ⟨0...0, c1t , 0, ..., 0, c2t , 0, ...0, cKt , 0...⟩ encoded from Distr (at) (Equ.
4).

h(Distr (at)) =WE × Distrencodinд(at) (4)

Now we elaborate how to combine Equ. 3 with using the hier-
archical softmax[4]. If we extend the hierarchical softmax [4] in
a normal Word2Vec, to handle a distribution input Distr (at), we
obtain the probability of an action in the target observed action
distribution Distr (at+j):

p(akt+j |h(Distr (at))) =
L(akt+j)−1∏

i=1

{
σ (I(n(akt+j , i + 1) (5)

= child(n(akt+j , i))) · vn(akt+j ,i) · h(Distr (at)))
}

And if we combine Equ. 5 and Equ. 3, we obtain the error function
in Equ. 6. This is the error function as we are trying to minimize
the KL divergence of Equ. 3.

E = Z (Distr (at+j)) −
K∑
k=1

ckt+j

L(akt+j)−1∑
i=1{

loдσ (I(.)vn(akt+j ,i) · h(Distr (at)))
}

(6)

For details on the weights update derivation of Equ. 6, please
refer to the Sec. 3.2, in the aforementioned full paper.

Now with a trained Distr2Vec as the action affinity model, we
use it as a subroutine in our UDUP, which is similar to the usage of
Word2Vec in DUP in [7]. Please refer to the Sec. 3.3 in our full paper
for the details.

3 EVALUATION
We evaluate the performance of Distr2Vec in UDUP by comparing
the performance with UDUP that uses other affinity models trained
withWord2Vec. In order to train aWord2Vec model from traces that
have distributions, we sample from the distributions at each step,
and generate sampled traces of single actions (not distributions).
The way we sample the distributions gives us two baseline models:
a Naive Model (NM), and a Resampling Based Model (RBM).

3.0.1 Two Baseline Models. In NM, we feed what the perception
module considers the ground truth toWord2Vec for training affinity
models. In RBM, we first calculate the likelihoods of all possible
paths from each trace of action distributions. The path weights
(PW) can be calculated by multiplying the confidence values of all
actions along a path. The top N ground traces (ranked according
to PW s) are selected, and then resampled using the roulette wheel
resampling approach. The set of traces selected after the resampling
step is used to train a Word2Vec model.

3.0.2 Dataset Collection and Testing Methodology. For the ex-
periments, we created a synthetic dataset of action distribution
sequences from the 50 Salads Dataset [6]. We chose a synthetic
dataset in order to systematically assess the validity and effective-
ness of our Distr2Vec approach, as we can modify it to test with
different configurations of distributions. Tuning the parameters of
the distribution lets us maximally evaluate our model. For more
details regarding the dataset collection, please refer to Sec. 4.1 in
the linked full paper. As for the testing methodology, we follow the
process as in the work of [7]. For details please refer to the Sec. 4.2
in our full paper.

3.0.3 Experiment Analysis. We analyze the effect of the parame-
ters ofwentropy , PER, and the length of observed action distribu-
tion sequences (10,20 and 30), on the accuracy of UDUP with action
affinity models. Action affinity model are trained on distribution se-
quences, by our Distr2Vec, as well as by normal Word2Vec models
(i.e., NM and RBM as explained before). We also analyze the training
time of the three models. For our experiment results and full analy-
sis, please refer to the Sec. 4.3 and 4.4 in our full paper, including
how entropy and PER is defined and adjusted.

To summarize, we can observe that when there is a higher PER,
UDUP with Distr2Vec outperforms other models. When the PER
is lower, all models perform comparably well. Additionally, when
the entropy of the data is higher, the Distr2Vec still produces
appreciable-quality action affinity models which keeps up the ac-
curacy of the UDUP. Another benefit of using Distr2Vec with UDUP
is that the training time is comparable to the NM. However, the NM
loses all information about the uncertainty in the data, and thus is
prone to more errors. Distr2Vec training time is also lower than
the RBM when we sample more traces. The training time of RBM
increases linearly with the number of samples taken per plan trace.
Comparing the training time of Distr2Vecmodel with RBM is more
appropriate because both models factor in the uncertainty in the
training data, but NM discards it.

4 CONCLUSION
We introduced our Distr2Vec model, that learns embeddings for
distributions. We applied Distr2Vec to do plan recognition, by
using it to extend DUP [7] to UDUP. Unlike DUP, UDUP can be trained
on traces of observed action distributions, and thus can handle
uncertainty in the input.

ACKNOWLEDGMENTS
This research is supported in part by the AFOSR grant FA9550-18-1-
0067, the ONR grants N00014161-2892, N00014-13-1-0176, N00014-
13-1-0519, N00014-15-1-2027, and the NASA grant NNX17AD06G.

Main Track Extended Abstract AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

2154

REFERENCES
[1] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013.

Distributed Representations of Words and Phrases and their Compositionality.
In NIPS. 3111–3119.

[2] Tom Minka et al. 2005. Divergence measures and message passing. Technical
Report. Technical report, Microsoft Research.

[3] Miquel Ramírez and Hector Geffner. 2009. Plan Recognition as Planning. In IJCAI
2009, Proceedings of the 21st International Joint Conference on Artificial Intelligence,
Pasadena, California, USA, July 11-17, 2009. 1778–1783.

[4] Xin Rong. 2014. word2vec parameter learning explained. arXiv preprint
arXiv:1411.2738 (2014).

[5] Shirin Sohrabi, Anton V Riabov, and Octavian Udrea. 2016. Plan Recognition as
Planning Revisited.. In IJCAI. 3258–3264.

[6] S. Stein and S. J. McKenna. 2013. Combining Embedded Accelerometers with Com-
puter Vision for Recognizing Food Preparation Activities. In Proceedings of the
2013 ACM International Joint Conference on Pervasive and Ubiquitous Computing
(UbiComp 2013), Zurich, Switzerland. ACM.

[7] Xin Tian, Hankz Hankui Zhuo, and Subbarao Kambhampati. 2016. Discovering
Underlying Plans Based on Distributed Representations of Actions. In Proceedings
of the 2016 International Conference on Autonomous Agents & Multiagent Systems,
Singapore, May 9-13, 2016. 1135–1143.

Main Track Extended Abstract AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

2155

	Abstract
	1 Introduction
	2 Problem formulation and model
	3 Evaluation
	4 conclusion
	Acknowledgments
	References

