
LearningQueuing Strategies in Human-Multi-Robot Interaction
Robotics Track

Masoume M. Raeissi
University of Verona

Verona, Italy
masoume.raeissi@univr.it

Alessandro Farinelli
University of Verona

Verona, Italy
alessandro.farinelli@univr.it

ACM Reference Format:
Masoume M. Raeissi and Alessandro Farinelli. 2018. Learning Queuing
Strategies in Human-Multi-Robot Interaction. In Proc. of the 17th Interna-
tional Conference on Autonomous Agents and Multiagent Systems (AAMAS
2018), Stockholm, Sweden, July 10–15, 2018, IFAAMAS, 3 pages.

1 INTRODUCTION
We consider multi-robot applications, where a team of robots can
ask for the intervention of a human operator to handle difficult sit-
uations. As the number of requests grows, team members will have
to wait for the operator attention, hence the operator becomes a
bottleneck for the system. Previous research try to enhance the per-
formance of the system considering various queue disciplines (e.g.
FIFO and SJF (shortest job first))[3, 6] or prioritizing the requests [9].
In both cases, the queue size may grow indefinitely as no robot will
leave the queue before receiving the operator’s attention. Our aim
in this context is to make the robots learn cooperative strategies
to decrease the time spent waiting for the operator. In particular,
we consider the balking queue model [7], in which the agents can
decide either to join the queue or balk. Such decisions are typically
based on a threshold value, that is computed by assigning a generic
reward associated with receiving the service and a cost for waiting
in the queue to each agent. When applying this model to a robotic
application, there is no clear indication on how such a threshold
can be computed. More important, this model does not consider
the cost of balking (i.e. the cost of a potential failure that the robot
can suffer without human intervention). Our aim is to devise an
approach that allows the robots to learn cooperative balking strate-
gies to decrease the time spent waiting for the operator. In more
detail, we formalize the problem as Decentralized Markov Decision
Process (Dec-MDP)[1, 5] and provide a scalable state representa-
tion by adding the state of the queue as an extra feature to each
robot’s local observation. Solving Dec-MDP when the model of the
environment is unknown (e.g. the arrival time of different events,
the required time to resolve a request, etc.) is not trivial. Hence,
we propose applying multi-agent reinforcement learning [2, 11]
for our application and in general for similar human-multi-robot
applications.

2 PROBLEM FORMULATION
We consider a water monitoring application[4, 10], where several
autonomous boats are supervised by a human operator. A set of
events can happen to the platforms, such events may affect the nor-
mal behavior of the platforms and hinder their performance. Each

Proc. of the 17th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2018), M. Dastani, G. Sukthankar, E. André, S. Koenig (eds.), July 10–15, 2018,
Stockholm, Sweden. © 2018 International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

event has a different probability of failure. A central queue is pro-
vided to the operator and the boats, where the operator can select
one request at a time (i.e., FIFO) and selects a specific sub-mission
to resolve that request. Each sub-mission is a plan-specific recovery
procedure. We assume that, whenever an event happens, the plat-
form can detect the event. For example, the robot can perceive that
its battery level is in a critical state, it must then decide whether to
join the queue (i.e. sending the request and waiting for the operator)
or balk (i.e., not sending the request). While this may be a significant
challenge in some domains, this is not the focus of our work. The
consequences of balking are problem specific. In our model, when
a failure happens, the operator should spend more time to fix the
problem, hence failure as a result of balking, increases the idle time
of the system. As an example, consider event Ej happens to boat i ,
and it should select to join or balk. The decision of joining the queue
will affect the future decisions of others, while choosing to balk may
result in failure. Wemodel the problem as a Dec-MDP.We formalize
the state space with S = S1 ×S2 × ...×SN where N is the number of
boats. The local state of each boat Si is a tuple ⟨Sb ,Ntasks ⟩ where:
Ntasks shows the number of remaining tasks for boat i . In this
application domain, each task is a location that should be visited by
a specific boat. Sb is the current internal state of boat i (e.g. whether
it has a request, if it is waiting for the operator, etc.). More specif-
ically Sb ∈ {Ej ,Waitinд, Failed,Autonomy} where j = 1, 2, ...,m
is the cardinality of request/event types. In our model, m = 3
and E1 = BatteryRecharдe , E2 = TraversinдDanдerousArea and
E3 = LosinдConnection with probability of failure 0.9, 0.4 and 0.2 re-
spectively. For example, the state tuple of a boat when it has 3 tasks
to finish and the event Battery Recharge occurs, would be s = ⟨E1, 3⟩.
Ai is the set of actions for boat i where Ai ∈ {Join,Balk}. Our pro-
posal is then to train the robots, so that they can learn appropriate
balking policies. We use Q-Learning[12], which is commonly used
in robotic systems due to its effectiveness, as the basis learning ap-
proach for our learners. In general, there are two major approaches
for learning in multi-robot scenarios [8, 13]. The first approach,
team learning, uses a single learner to learn the behavior for the
entire team. In contrast, the second approach uses multiple con-
current learners, usually one for each robot, where each learner
tries to learn its behavior. The major problems with team learning
approach are the explosion of the state space (i.e., it keeps the states
of the entire team), and the centralization of the learning approach
that needs to access the states of all team members. For example, in
our domain for 5 boats with the above state representation, the state
space will include more than one million states, hence requiring
a prohibitive long time to estimate the optimal strategies for each
state and action permutations. On the other hand, the main advan-
tage of independent learners is that, our domain can be decomposed

Robotics Track Extended Abstract AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

2207



(a) Team accumulated reward (b) Total waiting time (c) Total waiting time

Figure 1: (a) the team accumulated reward in each episode of the learning phase. (b) the team performance (together with the
standard error of the means) for three learning models. (c) comparison between balking models to non-balking models.

into subproblems (e.g. each boat holds its own state space) and
each subproblem can be solved by one boat. In general, two main
challenges arise in independent learning: credit assignment and
non-stationary dynamics of the environment [8]. However, our ap-
plication scenario has some special properties, that can be exploited
to design a tractable model. In particular, the action selection at
each step (i.e. when an event happens) only requires one agent to
select either to join or balk. Hence, the reward can go directly to
that agent. However, when each boat considers only its local state
without knowing the state of the queue, finding the optimal behav-
ior for the teammay become impossible, or the model may compute
lower quality solutions. Therefore, we add the state of the queue to
the local state of each boat, and then we use independent learners
approach. To sum up, we consider three possible models: Team
Learner (TL), where a team learner has access to the joint state of
all robots which is S = S1 × S2 × ... × SN . When an event happens
to a boat, the action ⟨Join,Balk⟩ for the corresponding boat will be
selected and the state of the system will be updated. The update will
only change the part of the state related to the corresponding boat.
Independent Learners - Unobservable Queue (IL-U), where an
independent learner is used for each boat. Each boat observes only
its local state Si = ⟨Sb ,Ntasks ⟩. In this model, each boat updates its
local Q-values interacting with the system and receiving the reward.
Independent Learners - Observable Queue (IL-O), where each
boat in addition to observing its local state, has access to queue
size (i.e. number of waiting boats): Si = ⟨Sb ,Ntasks , Sq⟩. The three
models are different in their state representation, while the reward
structure is the same for all of them: (i) R(St = Si ,At = Join) =

RS − (Nq µ̄ + tserv ). (ii)R(St = Si ,At = Balk) = RF (
µ̄
λ̄
) + Nq ; if

St+1 = F . (iii) R(St = Si ,At = Balk) = RT ; if St+1 = A. µ̄ and λ̄ are
average service time and events arrival rate respectively. Nq is the
number of boats waiting, and tserv is the average time needed to
resolve the request. RS = 1, RF = −2 and RT = 0.3 are application
specific parameters that must be tuned empirically.

3 EXPERIMENTAL EVALUATION
The learning phase starts by defining a list of locations to be vis-
ited, and assigning those to boats. We consider 30 locations and
5 boats. Events are generated within an exponential distribution
with parameter λ = 0.25. The operator’s speed, for resolving a

request is selected from an exponential distribution with parameter
µ = 0.27. We use ϵ_дreedy method for action selection with ϵ = 0.1.
Our algorithm uses the learning rate α = 0.1 and discount factor
γ = 0.9 throughout the experiments, which were tuned empiri-
cally. Each episode of the learning phase starts with all boats in
their Autonomy state (i.e. they do not need the attention of the
operator), then with rate λ an event may happen to one boat. We
used a realistic estimation for parameters λ and µ based on some
experience on the total mission time, number of boats and number
of locations. These numbers define well the type of scenarios we
are interested in, where boats can operate most of the time in au-
tonomy, but frequently need user’s intervention. Figure 1(a) shows
the team rewards of each model, TL, IL-U and IL-O, during the
learning phase. The oscillation in the reward is because, the robots
learn their policies by trying new, potentially sub-optimal actions.
As expected, the convergence rate of IL-O is much faster than TL,
while they both reach a similar team reward. This is due to the
larger state space of TL which needs more iterations to estimate the
value for each state and action. After the learning phase, we run
30 simulation executing the policy learned previously. We use the
same values for λ and µ as used during the learning phase. Figure
1(b) demonstrates the idle time for each learning models. Next, we
compare the behavior of queues with and without balking property.
For FIFO and SJF, we use the same event rate λ and service rate µ. In
these two queuing models, boats always join the queue regardless
of their request types and the queue size. Figure 1(c) shows that,
FIFO without balking has the worst performance, since boats wait
for the operator until he/she becomes available. In contrast, IL-O
outperforms all other models. In general, the results in Figure 1(c)
indicate that, using balking models significantly decreases the idle
time of the team even though, some events may result in failures.
This is acceptable in our domain, since the penalties for failures are
not critical, but only result in a finite increase of time.

ACKNOWLEDGMENTS
This work was supported by the European Union’s Horizon 2020
research and innovation program under grant agreement No 689341.
This work reflects only the authors’ view and the EASME is not
responsible for any use that may be made of the information it
contains.

Robotics Track Extended Abstract AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

2208



REFERENCES
[1] Daniel S Bernstein, Robert Givan, Neil Immerman, and Shlomo Zilberstein. 2002.

The complexity of decentralized control of Markov decision processes. Mathe-
matics of operations research 27, 4 (2002), 819–840.

[2] Daan Bloembergen, Karl Tuyls, Daniel Hennes, and Michael Kaisers. 2015. Evo-
lutionary Dynamics of Multi-Agent Learning: A Survey. J. Artif. Intell. Res.(JAIR)
53 (2015), 659–697.

[3] Shih Yi Chien, Michael Lewis, Siddharth Mehrotra, Nathan Brooks, and Katia P.
Sycara. 2012. Scheduling operator attention for Multi-Robot Control. In IEEE/RSJ
International Conference on Intelligent Robots and Systems, IROS, Vilamoura, Al-
garve, Portugal, October 7-12, 2012. IEEE, 473–479. https://doi.org/10.1109/IROS.
2012.6386019

[4] Alessandro Farinelli, Masoume M. Raeissi, Nicolo’ Marchi, Nathan Brooks, and
Paul Scerri. 2017. Interacting with Team Oriented Plans in Multi-robot Systems.
Autonomous Agents and Multi-Agent Systems 31, 2 (March 2017), 332–361. https:
//doi.org/10.1007/s10458-016-9344-6

[5] Claudia V. Goldman and Shlomo Zilberstein. 2003. Optimizing Information
Exchange in Cooperative Multi-agent Systems. In Proceedings of the Second Inter-
national Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS
’03). ACM, New York, NY, USA, 137–144. https://doi.org/10.1145/860575.860598

[6] Michael Lewis, Shi-Yi Chien, Siddarth Mehortra, Nilanjan Chakraborty, and
Katia Sycara. 2014. Task Switching and Single vs. Multiple Alarms for Supervisory

Control of Multiple Robots. Springer International Publishing, Cham, 499–510.
https://doi.org/10.1007/978-3-319-07515-0_50

[7] P. Naor. 1969. The Regulation of Queue Size by Levying Tolls. Econometrica 37, 1
(1969), 15–24. http://www.jstor.org/stable/1909200

[8] Liviu Panait and Sean Luke. 2005. Cooperative multi-agent learning: The state of
the art. Autonomous agents and multi-agent systems 11, 3 (2005), 387–434.

[9] Ariel Rosenfeld, Noa Agmon, Oleg Maksimov, Amos Azaria, and Sarit Kraus.
2015. Intelligent Agent Supporting Human-multi-robot Team Collaboration. In
Proceedings of the 24th International Conference on Artificial Intelligence (IJCAI’15).
AAAI Press, 1902–1908. http://dl.acm.org/citation.cfm?id=2832415.2832513

[10] Paul Scerri, Balajee Kannan, Pras Velagapudi, Kate Macarthur, Peter Stone, Matt
Taylor, John Dolan, Alessandro Farinelli, Archie Chapman, Bernadine Dias, and
George Kantor. 2012. Flood Disaster Mitigation: A Real-World Challenge Problem
for Multi-agent Unmanned Surface Vehicles. Springer Berlin Heidelberg, Berlin,
Heidelberg, 252–269. https://doi.org/10.1007/978-3-642-27216-5_16

[11] Richard S. Sutton and Andrew G. Barto. 1998. Introduction to Reinforcement
Learning (1st ed.). MIT Press, Cambridge, MA, USA.

[12] Christopher J. C. H. Watkins and Peter Dayan. 1992. Q-learning. Machine
Learning 8, 3 (01 May 1992), 279–292.

[13] Ping Xuan and Victor Lesser. 2002. Multi-agent Policies: From Centralized Ones
to Decentralized Ones. In Proceedings of the First International Joint Conference
on Autonomous Agents and Multiagent Systems: Part 3 (AAMAS ’02). ACM, New
York, NY, USA, 1098–1105.

Robotics Track Extended Abstract AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

2209

https://doi.org/10.1109/IROS.2012.6386019
https://doi.org/10.1109/IROS.2012.6386019
https://doi.org/10.1007/s10458-016-9344-6
https://doi.org/10.1007/s10458-016-9344-6
https://doi.org/10.1145/860575.860598
https://doi.org/10.1007/978-3-319-07515-0_50
http://www.jstor.org/stable/1909200
http://dl.acm.org/citation.cfm?id=2832415.2832513
https://doi.org/10.1007/978-3-642-27216-5_16

	1 Introduction
	2 Problem Formulation
	3 Experimental Evaluation
	Acknowledgments
	References



