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ABSTRACT
Personalized recommendations are increasingly important to en-

gage users and guide them through large systems, for example

when recommending points of interest to tourists visiting a popular

city. To maximize long-term user experience, the system should

consider issuing recommendations sequentially, since by observing

the user’s response to a recommendation, the system can update

its estimate of the user’s (latent) interests. However, as traditional

recommender systems target individuals, their effect on a collective

of users can unintentionally overload capacity. Therefore, recom-

mender systems should not only consider the users’ interests, but

also the effect of recommendations on the available capacity.

The structure in such a constrained, multi-agent, partially ob-

servable decision problem can be exploited by a novel belief-space

sampling algorithm which bounds the size of the state space by a

limit on regret. By exploiting the stationary structure of the problem,

our algorithm is significantly more scalable than existing approxi-

mate solvers. Moreover, by explicitly considering the information

value of actions, this algorithm significantly improves the quality of

recommendations over an extension of posterior sampling reinforce-

ment learning to the constrained multi-agent case. We show how to

decouple constraint satisfaction from sequential recommendation

policies, resulting in algorithms which issue recommendations to

thousands of agents while respecting constraints.
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1 INTRODUCTION
Personalized recommendations are an increasingly important ap-

proach to engage users and to help to filter collections of objects

which are otherwise too large to explore [3]. In many cases, recom-

mendations should also take into account relations between objects

and the history of the user, which requires the system to consider

long-term effects of a recommendation. For example, when rec-

ommending news articles to readers, the user’s history informs

Proc. of the 17th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2018), M. Dastani, G. Sukthankar, E. André, S. Koenig (eds.), July 10–15, 2018,
Stockholm, Sweden. © 2018 International Foundation for Autonomous Agents and
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their familiarity with a topic and thereby the value of a contextual

article over a latest update. Sequentiality is also important when

recommending points-of-interest to tourists, to avoid backtracking

over their past route.

One of the primary challenges for a recommender system is

the discovery of a user’s preferences. Existing recommender sys-

tems are typically modeled as bandit models or click models. Such

models aim to minimize regret incurred from taking exploratory

actions [33]. Unfortunately, these models cannot anticipate the ef-

fect of a sequence of recommendations on the user [30]. To plan for

long-term gains, we should instead cast the problem as a reinforce-

ment learning problem, where we attempt to learn the dynamics of

a Markov Decision Process (MDP) over time [35].

Because recommendations are targeted to the preference of an

individual, their effect on a collective of users can unintentionally

overload infrastructural capacity. For example, the use of an unco-

ordinated route guidance system can adversely affect the average

waiting times in theme parks [7]. However, capacity constraints

on recommended items may also serve an operational purpose: in

virtual items such as news articles, limiting recommendations for

naturally popular items can promote recommendation diversity.

Sharing resources is especially challenging in a system where

multiple learning agents interact, because the trade-off between

exploration and exploitation couples across agents: should an un-

certain agent be awarded the resource in order to learn, or should

another agent be allowed to use it to obtain reward with high cer-

tainty? However, recommendations provide the potential to steer

users around constrained points, motivating the need for capacity-

aware sequential recommendations. In this paper we investigate

how recommender systems should learn when they are constrained

by resource limits restricting their joint actions.

It is critical for a recommender system to identify the true inter-

ests of a user in as few recommendations as possible, as mistakes

risk losing the user’s attention. However, general reinforcement

learning algorithms have a high sample complexity, requiring long

interaction periods before a good policy is obtained [19]. An optimal

learning policy prescribes actionswhich ensure that the entire learn-

ing trajectory is optimal [21]. Computing an optimal learning policy

for a general reinforcement learning problem amounts to solving

a continuous-state, Partially Observable MDP (POMDP; [12]). Un-

fortunately, these models can only be practically solved using ap-

proximate algorithms [2, 26]. Therefore, in this work we make the

simplifying assumption that we can model differences between
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users through parametric MDPs [11] with a finite parameter space,

corresponding to a finite number of user types.
Work by Guez et al. [15] suggests two approaches to arrive at

an optimal learning policy: (i) On-line sparse sampling algorithms

such as Posterior Sampling Reinforcement Learning (PSRL; [34]),

which uses an optimistic heuristic to eventually converge to the op-

timal policy, or (ii) Off-line planning of an optimal learning policy,

by following Chadès et al. [6] in casting the parametric MDP to a

stationary Mixed-Observable MDP (MOMDP; [23]). Unfortunately,

neither approach can be applied directly to our capacity-aware

recommendation problem; to the best of our knowledge no version

of PSRL exists which incorporates constraints in the learning pro-

cess, and it is not clear under what conditions the multi-agent case

converges to a policy satisfying the constraints. On the other hand,

computing an optimal policy for a MOMDP is a PSPACE-complete

problem [25], limiting its practical scalability.

To address these challenges, we propose two novel algorithms:

the first algorithm is an extension of PSRL to the multi-agent, con-

strained setting, by combining it with a Column Generation tech-

nique which has proven effective at decoupling agents from global

constraints [10, 40]. The second algorithm exploits the structural

properties of the recommendation problem to approximately solve

the MOMDP: by computing the worst-case regret of switching from

a recommendation strategy over a belief over types to an optimal

strategy for a given type, we can bound the size of the state space.

We evaluate our algorithms on a large-scale tourist recommen-

dation domain based on real data from visitors to the city of Mel-

bourne. Both our approaches are significantly more scalable than a

state-of-the-art approximate MOMDP solver; constrained PSRL is

shown to find high-quality capacity-aware individual recommenda-

tions in seconds. Our bounded-regret algorithm finds near-optimal

constrained policies even in the more challenging setting of recom-

mending multiple options to users.

2 PROBLEM DESCRIPTION:
MULTI-AGENT CONSTRAINED LEARNING

In this section we present the constrained multi-agent learning

problem formally. We start with background material on the Para-

metric MDP model, used to represent the single-agent dynamics,

and the Constrained MDP model for modeling the capacity limits.

Then, these models are combined in our problem description.

2.1 Parametric MDPs
A finite-horizon MDP [4] is defined by tuple ⟨S,A,T ,R,h⟩. It con-
sists of the finite sets of states s ∈S and actions a ∈A, a transition
function T and reward function R defined over these sets, and fi-

nite horizon h. Every time step t , the decision maker chooses an

action a, resulting in a stochastic transition from state s to sub-

sequent state s ′, according to the probability given by transition

function T (s,a, s ′) = P (s ′ | s,a). The chosen action results in an

instantaneous reward given by the reward function R : S ×A→ R.
In a Parametric MDP [11] one or both functions additionally de-

pend on structural parameters. Let Θ stand for a continuous param-

eter space, with θ representing a specific parameter setting. Then

a parametric MDP has tuple ⟨Θ, S,A, R̄, T̄ ,h⟩ with parametrized

functions R̄(θ , s,a), and T̄ (θ , s,a, s ′). Fixing parameter θ instanti-

ates a parametrized MDPθ , having ⟨S,A,Rθ ,Tθ ,h⟩ with functions

Rθ (s,a) = R̄(θ , s,a) and Tθ (s,a, s
′) = T̄ (θ , s,a, s ′).

The behavior of a decisionmaker is prescribed by its policyπ (t , s),
mapping each time t ∈ {1, . . . ,h} and state s ∈ S to an action a.
The value function Vθ,π [t , s] gives the expected value of following

policy π starting from the given state and time. The objective of

a planner is to compute the policy which obtains the maximum

expected value over the entire horizon. An optimal unconstrained
policy π∗ can be computed efficiently through an application of

dynamic programming: the Bellman equation computes the value

maximizing action in each state recursively, by determining the

value at time t based on the value function at t + 1,

Vθ,π ∗ [h, s] = max

a∈A
Rθ (s,a),

Vθ,π ∗ [t , s] = max

a∈A

(
Rθ (s,a) +

∑
s ′∈S

(
Tθ (s,a, s

′)Vθ,π ∗ [t + 1, s ′]
))
.
(1)

2.2 Constrained MDPs and Column Generation
AConstrainedMDP [1] augments the objective function of theMDP

planning problem with a number of linear constraints. We consider

constraints modeled through a consumption function C and limit

function L defined overm resource types. The consumption of re-

source type r is defined using function Cr : S × A → [0, cmax,r ],

where cmax,r denotes the maximum potential consumption of re-

source type r . The limit function L(r ) gives the maximum permitted

instantaneous use of resource r . The optimal constrained policy

satisfies the constraints in expectation, meaning that it optimizes

max

π
E

[
Vθ,π

]
, subject to E

[
Cθ,π ,t,r

]
≤ L(r ) ∀t ,∀r . (2)

Computing such a constrained policy involves optimizing a Lin-

ear Program (LP). Especially when solving large, factored models

such as multi-agent problems, directly optimizing the resulting LP is

typically infeasible. For such models Column Generation (CG; [13])

has proven to be an effective algorithm [10, 40]. Column Genera-

tion allows for decomposing combinatorial optimization problems,

provided the problem has some method to generate new potential

solutions efficiently. The technique uses the insight that, when an

LP is used to select solutions from an exhaustive set, the simplex

algorithm iteratively adds solutions to the selected set which are

not ‘priced out’ by the λ prices computed in the dual solution. A

solution is priced out if its contribution to the objective per unit of

the constraint is less than λ. If we can generate the optimal solution

to be selected on the fly, we avoid having to maintain the exhaustive

set of solutions explicitly. Generating the solution comes down to

optimizing an ancillary problem subject to the λ costs.

Yost and Washburn [41] identified that this technique can be

applied when solving constrained POMDPs, by augmenting the

optimality criterion of the planning problem with a term corre-

sponding to the expected resource consumption cost E[Cπ ,r ], i.e.,

arg max

π

(
E[Vπ ] −

∑
t,r

λt,rE[Cπ ,t,r ]
)
. (3)

This routine is used to compute a new policy to be added to the set

of potential policies Z , which forms the search space of the LP. The

optimal mix of policies subject to constraints is then selected by
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Figure 1: The DBN of a multi-agent constrained learning
problem having two agents and one constraint.

solving the following LP:

max

x j

∑
πj ∈Z

x j E[Vπj ],

s.t.

∑
πj ∈Z

x j E[Cπj ,t,r ] ≤ L(r ) ∀r ,∀t ,∑
πj ∈Z

x j = 1, and x j ≥ 0 ∀j .

(4)

2.3 Multi-agent constrained learning problem
Thus far, we have assumed the instantiation parameter θ to be

known to the decision maker. However, usually these parameters

are hidden; in our model, parameter θ encodes the users’ latent in-

terests. We consider a multi-agent recommender system consisting

of n agents, their models characterized by a single parametric MDP.

Each agent i behaves according to the MDP instantiated from its

type θi . We assume agent types to be sampled from a finite set of po-

tential types, according to a known prior probability ϕ = P(θi = θ ).
The controller for each agent must learn what the type of the agent

is, while ensuring that the agents jointly satisfy the global con-

straints. The result is a constrained, multi-agent parametric MDP

having tuple ⟨n,ϕ,Θ, S,A, R̄, T̄ ,h,C,L⟩. Figure 1 presents the inter-
actions between two agents and one constraint graphically through

their Dynamic Bayesian Networks (DBN; [5]). Nodes in the figure

represent states and observations (circles), decisions (squares), and

costs and rewards (diamonds). Solid edges represent stochastic in-

fluences, while the dotted edges indicate deterministic influence,

capturing the fact that an agent’s type θ is stationary.

3 MULTI-AGENT CONSTRAINED PSRL
Column Generation is an effective algorithm for constrained multi-

agent MDPs when they are weakly coupled [10]. At the same time,

PSRL is an effective heuristic to learn the true type of a parametric

MDP. Therefore, we propose to combine these two algorithms to

obtain an effective heuristic for constrained learning problems.

3.1 Posterior sampling reinforcement learning
The algorithm operates as follows: to identify the true parameters

ˆθ
of an instantiated MDP, the algorithm iteratively refines a probabil-

ity density over parameter space Θ, through application of Bayes’

Theorem on the likelihood of the observed state. The Thompson

Algorithm 1 Multi-agent constrained PSRL.

Given prior ϕ = P(θ j ), epoch length τ , initial state s1

Set time t ← 1. For all i , set state si ← s1, belief bi ← ϕ
1: plan ⟨x ,Z ⟩ = colGen(MDPθ j ,n,ϕ)

2: for episode k = 1→
⌈h
τ
⌉
do

3: sample ∀i : θi ∼ bi
4: sample joint ®π by πi ∼ ⟨xθi ,Zθi ⟩
5: for timestep l = 1→ τ and t ≤ h do
6: select joint action ®a = ®π (t , ®s )
7: observe next state ∀i : s ′i ∼ P(· | ˆθi , si ,ai ) ◃ Agent par. ˆθi
8: update bi by Bayes’ rule, ∀i : P(b ′i | si ,ai , s

′
i ,bi )

9: ®s ← ®s ′, ®b ← ®b ′, t ← t + 1

10: end for
11: end for

sampling heuristic [39] is used to select actions, by optimistically

assuming that type θ j sampled from the current belief over types b
is the true type. The optimal policy for the assumed model πj is
used to select actions for an episode of τ steps, during which the

belief over Θ is updated with every observed transition to state s ′i .
Although the PSRL algorithm is straightforward to state and

based on an optimistic heuristic, it has strong performance guaran-

tees: the algorithm has sample complexity polynomial in the num-

ber of parameters when learning the model of factored MDPs [24],

as well as the guarantee of finding the optimal policy in a loga-

rithmic number of time steps with high probability in our on-line

(non-episodic) setting [14]. The Thompson sampling heuristic has

also proven effective in recommender systems, with applications

in ad format selection [36] and contextual recommenders [16].

3.2 Combining Column Generation and PSRL
Because the Thompson sampling heuristic samples hypothesized

MDPs from the parametric description which are eventually correct,

we may compute policies for these converged MDPs using Column

Generation to obtain a joint policy which eventually satisfies the

constraints. While belief has not converged, the expected consump-

tion of an agent’s policy may not be attained because its true type

does not match the sampled type. Nevertheless, we expect this

strategy to work well in practice because every correctly identified

agent behaves according to its constraint-respecting policy, and

eventually all agents converge to their type.

Algorithm 1 presents the proposed approach. Column generation

is called on line 1 to compute the optimal mix of resource-satisfying

policies over the expected number of agents of each type. Because

our agents behave according to homogeneous types, agents of the

same type can be added together [41]. Therefore, the master LP is

max

xi, j

|Θ |∑
i=1

∑
πj ∈Zi

xi, j E[Vθi ,πj (s1)],

s.t.

|Θ |∑
i=1

∑
πj ∈Zi

xi, j E[Cθi ,πj ,r (t , s1)] ≤ L(r ), ∀r ,∀t ,∑
πj ∈Zi

xi, j = nP(θi ) ∀i, and xi, j ≥ 0, ∀i,∀j .

(5)
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The relative frequencies xi, j computed by column generation

define a probability distribution over policies: for a policy πi, j in

set Zi , P(πi, j ) =
xi, j

n ·P(θi )
. The policy the agent will use is sampled

according to this probability distribution on line 4, choosing Zi
according to the agents’ hypothetical MDP type sampled on line 3.

The remaining structure of the algorithm follows fromPSRL directly,

accounting for the multiple agents in each step.

At the start and while converging there may be overconsump-

tion due to incorrectly hypothesized agent types. However, as the

number of agents of true type
ˆθi is in expectation n ·P( ˆθi ), provided

the prior ϕ is accurate, the sampled set of agents eventually con-

verges to the distribution used to compute the constraint-satisfying

policies. If prior ϕ is inaccurate or the number of agents n is too

small to rely on the expectation, column generation can instead be

invoked on the sampled types, after line 3.

4 A MOMDP APPROACH TO SEQUENTIAL
RECOMMENDATIONS

Because PSRL uses the Thompson sampling heuristic to choose

policies, the trajectory leading up to convergence may use sub-

optimal actions resulting in unexpected resource violations. In

order to control the consumption at all times, we need to compute

an optimal learning policy, which amounts to solving a constrained

Mixed-ObservableMDP (MOMDP; [23]). Solving a general MOMDP

model to optimality is a hard problem. However our models are built

out of a parametric MDP, which enables exploiting its structure

during solving. We propose a novel algorithm for these problems,

which obtains a bounded approximation error by switching from

belief-space MOMDP policy to a regular MDP policy at belief points

where the regret of such a switch is low. Because the resulting policy

will be used in Column Generation to satisfy the constraints, we

need to take special care that the expected values computed by this

algorithm remain correct for these approximate solutions, which

we address in the following section.

4.1 Optimal learning of Parametric MDPs
Although PSRL eventually converges to the optimal policy, its tra-

jectory leading up to convergence may be sub-optimal as a result

of using a heuristic. For example, if there exists an action which is

not part of the optimal policy for any MDPθ , this action will never

be chosen by PSRL. This is the case even if this action immediately

reveals the true parameters of the MDP. In order to reason about

such information gathering actions, a learning algorithm should

explicitly consider the decision-theoretic value of information [17].

To our knowledge, Silver [31, Ch. 2] is the first to investigate

how to make decisions when the true transition matrix of such a

‘multi-matrix’ MDP must be identified, while keeping the reward

function fixed. Chadès et al. [6] extend the scope to our setting of

identifying the true model of a hidden-model MDP, consisting of a

set of candidate MDPs each with their own transition and reward

function. In order to leverage existing algorithms to compute an

optimal policy for hidden-model MDPs, the authors convert the

problem to a MOMDP.

The state space of aMOMDPmodel factors into a fully observable

factor x ∈ X and a partially observable factory ∈ Y , each with their

own transition functions,TX (x
′ | x ,y,a) andTY (y

′ | x ,y,a,x ′). As

HMDP

s

θ

a

r

s ′

θ

a′

r ′

s ′′

θ

MOMDP

s

x

y

a

r s′

x ′

y′

o′ a′

r ′

x ′′

y′′

s ′′

Figure 2: Comparison of HMDP and MOMDP models.

in the partially observable case, an observation function Ω(o | a,y′)
exists to inform the decision maker about transitions of the hidden

factor. However in addition to the observations, the decision maker

also conditions his policy π (t ,x ,o) on the observable factor x . Given
a finite parametric MDP ⟨Θ, S,A, R̄, T̄ ,h⟩, we derive an equivalent

stationary MOMDP ⟨X ,Y ,A,O,TX ,TY ,R,Ω,h⟩ having elements

X = S, TX (s
′ | s,θ ,a) = Tθ (s

′ | s,a),

Y = Θ, R(s,θ ,a) = Rθ (s,a),

O = {onull}, Ω(onull | a,θ
′) = 1,

(6)

TY (θ
′ | s,θ ,a, s ′) =

{
1 if θ = θ ′,

0 otherwise.
(7)

Figure 2 presents the twomodels graphically, through their dynamic

Bayesian networks. The dotted edge in the HMDP model captures

the notion of stationarity in the type given by equation (7). Although

the HMDP appears to be amuch less general model, Chadès et al. [6]

prove that computing an optimal policy for HMDPs falls in the same

PSPACE complexity class as POMDPs [25].

Casting parametric MDPs to MOMDPs has the advantage that

existing theory and algorithms can be leveraged. Most algorithms

for POMDPs and MOMDPs make use of a celebrated result by

Sondik [32] that the optimal value function is piecewise linear

convex, and can be represented by a set of α-vectors, each giving

expected values associatedwith taking an actiona in beliefb. Martin

et al. [22] exploit the stationary property of theMOMDP to compute

a set of α-vectors which form a lower bound on the optimal value

function. They propose to compute the optimal MDP policy for each

type, and subsequently apply each optimal policy to all other types

to construct an α-vector per policy. Initializing existing solvers with
this lower bound speeds up their convergence, by providing tighter

bounds for pruning computed vectors.

Unfortunately, existing solvers for MOMDPs typically assume

the discounted infinite-horizon case, which incurs approximation

errors on non-stationary problems, even if we annotate the state

space with an additional time factor (thereby increasing its size

by a factor h). Additionally, the complexity of solving a MOMDP

necessitates computing approximate solutions, however approxi-

mate α-vector based solvers return expected values which do not

correspond with the true expected value of the policy. This is prob-

lematic because we need true expectations for the integration with

Column Generation.
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4.2 Computing exact expectations for a
reduced belief space

To avoid the drawbacks of existing solvers, we propose a new algo-

rithm for stationary MOMDPs based on explicitly reasoning about

reachable belief states. A belief state b records a probability distri-

bution over the possible (unobserved) states S , with b(s) indicating
how likely the agent expects to be in state s [18]. Given a belief

state b, the action taken a, and the observation received o, the sub-
sequent belief state b ′(s ′) can be derived using application of Bayes’

theorem. For a finite-horizon POMDP planning problem, the num-

ber of reachable belief states B is also finite, as (in the worst case)

they form a tree of depth h with a branching factor of |A| |O | at
each node. This belief-state tree can be used as the state space of

a belief-state MDP that is equivalent to the POMDP, which can in

principle be solved by an application of (1), although the tractability

of this approach is limited by the exponential growth of B in the

horizon h. Therefore, approximation algorithms generally attempt

to reduce the size of B, focusing on a subset of the space B′.
Because the belief state space B′ is an approximation of the exact

state space B, we expect to obtain potentially suboptimal policies.

Nevertheless, we require exact expectations of a (suboptimal) pol-

icy’s consumption to use in the Column Generation program, as

the satisfaction of the constraints depends on the selected policies

using the resources to the reported levels. This can be achieved if

we know the exact expected values of the policy at each ‘missing’

belief point not in B′. We propose to use the stationary structure

of the model to compute an approximate continuation from every

reachable belief point.

The belief points ⟨t , s,b⟩ of our MOMDP are factored into a

time t , MDP state s , and belief b over possible types θ . For states
at the corners of the belief where b(θi ) = 1 (and b(θ j ) = 0 for

i , j), the stationary condition ensures that the optimal continua-

tion is the optimal MDP policy computed for the model instanti-

ated with parameter θi . Thus, the expected value of such corner-

point immediately follows; if π∗i is the optimal policy for MDPθi ,

thenV ∗[⟨t , s,b⟩] = Vθi ,π ∗i [t , s]. We propose to approximate missing

belief points using the same principle, by selecting the best policy

from the optimal policies of each type. Intuitively this follows from

the idea that for points which are very close to a corner, choos-

ing policy π∗i will almost always be correct. In the rare case this

choice is incorrect, policy π∗i is instead applied to another MDPθ j ,

resulting in value Vθ j ,π ∗i [t , s]. The probability that this value oc-

curs is b(θ j ). Thus, the total value of choosing policy π∗i in belief

point ⟨t , s,b⟩ is

Q
[
⟨t , s,b⟩,π∗i

]
=

|Θ |∑
j=1

(
b(θ j ) ·Vθ j ,π ∗i [t , s]

)
. (8)

The optimal value of using a fixed policy in point ⟨t , s,b⟩ is then

V̄
[
⟨t , s,b⟩

]
= max

π
Q
[
⟨t , s,b⟩,π

]
. (9)

While the expected value V̄
[
⟨t , s,b⟩

]
is a lower bound on the opti-

mal expected value V ∗
[
⟨t , s,b⟩

]
, it remains a correct expectation

because it is based on the belief state b and the exact MDP expec-

tations. Therefore we can use the value of V̄ as approximation for

any belief point ⟨t , s,b⟩ < B′.

Algorithm 2 Bounded belief state space planning.

Given parametric MDP ⟨Θ, S,A, R̄, T̄ ,h⟩ and belief space B′

1: Plan π∗j for all j, compute Vθi ,π ∗j for all i , j

2: Create policy π [b]
3: for time t = h → 1 do
4: for belief point b ∈ B′(t) do
5: V [b] = −∞
6: for action a ∈ A do
7: Q[b,a] = R(b,a)
8: for observed next state s ′ ∈ S do
9: b ′ = updateBelief(b,a, s ′)
10: if b ′ ∈ B′ then
11: Q[b,a] = Q[b,a] + P(s ′ | b,a) ·V [b ′]
12: else
13: π [b ′] = arg maxπ ∗j

Q
[
b ′,π∗j

]
14: Q[b,a] = Q[b,a] + P(s ′ | b,a) · ¯̄V

[
b ′
]

15: end if
16: end for
17: if Q[b,a] > V [b] then
18: V [b] = Q[b,a]
19: π [b] = a
20: end if
21: end for
22: end for
23: end for
24: return ⟨π ,V [b]⟩

In principle we could compute V̄
[
⟨t , s,b⟩

]
exactly, however this

would come down to computing an MDP policy for every belief

point not in B′ that is reachable from the points in B′. We can avoid

this computational burden by the following observation: for points

which are very close to corner i , policy π∗i will be the optimal policy

with high probability. If we take care to construct B′ such that the

reachable points are close to corners, we can limit our search to the

optimal policies of each type,

¯̄V
[
⟨t , s,b⟩

]
= max

θi ∈Θ
Q
[
⟨t , s,b⟩,π∗i

]
. (10)

As the number of types is fixed, this comes down to computing |Θ|
MDP policies initially, and determining for each of these policies

the expected values of applying it to the other types.

Algorithm 2 lists the exact expectation belief space planner. It

starts by computing the optimal MDP policy π∗j for each type θ j
on line 1, followed by determining the exact expected valuesVθi ,π ∗j
of these policies for every other type θi . The remainder of the al-

gorithm computes expected values at each of the generated belief

points backwards over time, according to the typical dynamic pro-

gramming algorithm, except in case a value is needed for a missing

belief point on line 12. In case of a missing point b ′, the best pol-
icy π∗j is selected on line 13, and the expected value of using this

policy is computed according to the belief state.

The resulting policy returned on line 24 consists of two stages.

For every belief point b in the collection B′, the maximally valued

action stored in π [b] on line 19 is selected. However, in case a

b ′ < B′ is reached during execution, the policy π∗j stored on line 13
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is used as replacement for π [b ′]. Because the expected value of the

MDP policies is exact, and b ′ describes the state distribution that is

reached in expectation [18], the expected value at any such ‘missing’

belief state is also exact. Therefore, the values computed for the

prior b0 = ⟨1, s1,ϕ⟩ are the true expectations of the (potentially
suboptimal) values obtained by executing the policy computed by

Algorithm 2. Therefore, this algorithm avoids all three weaknesses

of existing approximate MOMDP solvers: it is a finite horizon solver

without discounting, it computes exact expectations, and it remains

tractable by operating on a reduced belief state space by using the

properties of our models.

4.3 Using expected regret to bound the belief
state space

To determine an approximate belief space B′ for Algorithm 2, we

use the expected regret of switching to a fixed MDP policy as a

criterion for pruning a belief point. As we have seen, at the corners

of the belief space, the optimal policy is the MDP policy computed

for model instantiated on θi , at which point there is no regret.

While we could develop the belief state space until a corner is

reached, the size of the result typically still remain intractably

large. Further reduction of the belief state space can be obtained

by switching over to the MDP policy earlier, before the belief has

completely converged. At this point, we incur regret proportional

to the probability that we are in fact applying the policy for θi to
the model of θ j . If it turns out we apply π∗i to MDPθ j , we obtain

the expected value Vθ j ,π ∗i , for which by definition of optimality

Vθ j ,π ∗i ≤ Vθ j ,π
∗
j
. Thus, the use of policy π∗i incurs a regret of

regret(⟨t , s,b⟩, i) =

|Θ |∑
j=1

(
b(θ j ) ·

(
Vθ j ,π ∗j [t , s] −Vθ j ,π

∗
i
[t , s]

))
. (11)

At a given belief point ⟨t , s,b⟩, the optimal MDP policy for type i
found in (10) minimizes this regret, therefore

regret(⟨t , s,b⟩) = min

i

(
regret(⟨t , s,b⟩, i)

)
. (12)

Because the MDP policies are computed over the entire horizon,

regret is also defined for the prior b0. The value of regret(b0) gives

an upper bound with which we can compare the regret at any

subsequent belief state.

Only pruning belief points with a low absolute regret may not

be sufficient to significantly reduce the size of B′ in domains which

exhibit low-probability observations returning to the initial belief.

As motivation, consider the canonical Tiger problem proposed

by Kaelbling et al. [18]. In this problem, a decision maker is faced

with two doors: one hiding a reward, the other a large penalty in

the form of releasing a tiger. The actions available to the agent are

to open the left door, or the right door, or to listen for the tiger.

Listening gives an imperfect observation on its location, either

hearing the tiger on the left, or on the right. If, after a period of listen

actions the decision maker has received equally many observations

left and right, no information has been gained by the agent. While

this means that the regret of such a sequence would be equal to the

root regret, this situation is highly unlikely to occur. As such, acting

optimally in this situation would be inconsequential for the overall

expected value of the policy. Therefore, we may limit the growth

of B′ by also omitting belief points which are exceedingly unlikely

to be reached. Let P(b) stand for the probability of belief point b,
then we generate all subsequent belief points from b0 meeting a

threshold parametrized by minimum probability p and shape α :

regret(b) >
(
e−α (P(b)−p) − e−α (1−p)

)
· regret(b0). (13)

Threshold (13) is based on an exponential decay function over

probability P(b) which attains 0 at P(b) = 1 and approximately

regret(b0) at P(b) = p.

5 CAPACITY-AWARE SEQUENTIAL
RECOMMENDATIONS DOMAIN

We evaluate the algorithms proposed in the previous sections on

a tourist recommendation problem modeled on data of visitors to

Melbourne, derived from a dataset
1
of photograph meta-data from

tourists visiting the city [38]. Given a finite set of locations l to be

viewed one at a time, we model a system recommending a user the

next item to view. Although each user has its own goals in visiting,

we assume that visitors’ interests can be clustered into a set of

discrete user types θ ∈ Θ. Each type θ defines a valuation over

the items, awarding value according to a reward function Rθ (l) for
seeing item l . We first cluster the historic visitor data into types θ
based on the types of points photographed, setting the value Rθ (l)
of visiting a point l by the relative frequency with which l is visited
by visitors in cluster θ .

From the perspective of a recommender system, the user’s inter-

actions result in a history of user actions. At one point, a user

may have first seen item li , followed by lj , resulting in a his-

tory ⟨. . . , li , lj ⟩. Such a history may be summarized in a higher

level ‘context state’ sk . Given a current context, we assume that the

next item user of type θ will visit can be modeled by a probability

distribution over the items Pθ (l | sk ).
In order to obtain Pθ from the dataset, we fit a Probabilistic Suffix

Tree (PST) to each cluster of users. A PST predicts the probability of

observing the next symbol in a sequence, conditional on a variable-

length, bounded history of previously observed symbols [29]. Such

a PST defines a Markov Chain over the set of possible history

states S , which is finite by the maximum depth of the PST. We write

si, j for a history-state recording the sequence ⟨li , lj ⟩, specifying
a user which is now at lj after first visiting li . State s0 represents

the initial empty history ⟨⟩. Then, after fitting a PST of depth 2, we

construct a closed Markov chain Tθ :

Tθ (si | s0) = PSTθ (li | ⟨⟩) ∀li ∈ P ,
Tθ (si, j | si ) = PSTθ (lj | ⟨li ⟩) ∀lj ∈ P ,

Tθ (sj,k | si, j ) = PSTθ (lk | ⟨li , lj ⟩) ∀lk ∈ P .
(14)

In order to control the total size of the state space, we have two

options: (i) we can select the number of locations to consider, by

limiting to the top-x most frequently visited points in the dataset,

and (ii) we can limit the depth of the PST, thereby reducing the

number of history states induced over the x locations.

The Markov chain defined by (14) is transformed into a Markov

Decision Process by including recommendation actions. An im-

portant challenge in designing a recommender system is that it is

typically not known how agents will change their behavior when

1
Original dataset publicly available on https://github.com/arongdari/flickr-photo
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receiving a recommendation, because no such recommendation

system is in place yet to observe the effect of recommendations

on users. We follow Theocharous et al. [37] in assuming that users

boost their probability of viewing recommended item li in accor-

dance to a (type-specific) propensity to listen µ(θ ).
We consider two models of sequential recommendation systems:

a ‘take-it-or-leave-it’ model which issues at most a single recom-

mendation at a time, and an ‘alternatives’ model inwhich the system

can issue at most two recommendations. In both cases, the set of

potential recommendation actions A contains a ‘no recommenda-

tion’ action a0, which behaves as the original Markov chain, and a

recommendation action ai for each item li . The ‘alternatives’ model

also contains dual recommendation actions ai, j recommending the

visitor to select either item li or lj . In case the user receives a dual

recommendation, the user behaves as if it received the recommen-

dation for the more valued of the two, thus

Tθ (s
′ | s,a0) = Tθ (s

′ | s)

Tθ (s
′ | s,ai ) =

{
Tθ (s

′ | s,a0)
1

µ (θ )
if li selected in s ′

Tθ (s
′ | s,a0)/z otherwise

Tθ (s
′ | s,ai, j ) =

{
Tθ (s

′ | s,ai ) if Rθ (li ) ≥ Rθ (lj )

Tθ (s
′ | s,aj ) otherwise

(15)

In this equation z is a normalizing factor to ensure T remains a

probability distribution.

The value of a recommendation depends on its quality; good

recommendations send the user to locations with a high Rθ (l) value,
while avoiding locations that the user has recently visited. There-

fore, we shape the reward of issuing a recommendation by multi-

plying with a shape function σ (I(ai )), where I is an index function

computing the number of Rθ (lj ) > Rθ (li ). To prevent the system is-

suing repeat recommendations, we add a penalty term ρ(s,a) when
recommendation a is present in the history s . The reward value of

a dual recommendation is the average of the two options:

ρ(sh ,ai ) =

{
σ (0)maxj Rθ (lj ) if i ∈ h

0 otherwise

Rθ (s..., j ,a0) = 0

Rθ (s..., j ,ai ) = σ (I(ai ))Rθ (li ) − ρ(s..., j ,ai )

Rθ (s..., j ,ai,k ) =
Rθ (s..., j ,ai ) + Rθ (s..., j ,ak )

2

(16)

Finally, we formalize the constraints by letting Ll,t be the maxi-

mum number of users allowed to simultaneously view item l at a
time. Then, because a user’s state reports its current location, we

can derive consumption function by letting Cl (si, j ) = 1 if state si, j
sees the user currently viewing l .

6 EXPERIMENTAL EVALUATION
In this section we empirically evaluate our proposed algorithms on

the tourist location recommendation problem. Our objective is to as-

sess the scalability and solution quality of our proposed algorithms.

Therefore, we compare our algorithms against state-of-the-art ap-

proximate MOMDP planner SARSOP [20]; for our experiments we

used the implementation available on-line.
2
Because SARSOP is an

2
At http://bigbird.comp.nus.edu.sg/pmwiki/farm/appl/, APPLOffline, dated 9 Jun. 2014.
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Figure 3: Solution quality and runtime of the capacity-aware
recommendation planners, as a function of the horizon.

infinite horizon solver, we take care to explicitly include time in the

state space as an observable factor. In addition, we must choose an

appropriate value for the discount factor γ . The choice of γ affects

the amount of look-ahead that the solver performs, effectively trad-

ing off computation time for more myopic behavior. Therefore, we

compare two settings: (i) γ = 0.95, resulting in essentially optimal

policies for all solvable horizon lengths, and (ii) γ = 0.5, resulting

in significantly reduced computation time at the cost of potentially

myopic policies. To integrate SARSOP with Column Generation,

we must determine the expected value and expected consumption

of the policy. We obtain estimates of these expected values through

simulation, computing means over 100,000 Monte Carlo samples.

We compare the algorithms on an instance of the tourist recom-

mendation problem consisting of 5 locations, 3 user types, 50 users

and PST depth 1. For this experiment we measure the quality of

the policy as the mean over 1,000 simulations per trial, solving

5 instances per setting. The computation time is measured by mean

elapsed wall-clock time per setting, with a 30 minute timeout. Based

on preliminary experiments, we set the regret bounding parame-

ters to α = 500 and p = 0.005, which resulted in a good trade-off

between state-space size and eventual bounding of growth.

Figure 3 presents the results, with the left-hand graphs corre-

sponding to the setting where at most a single recommendation

can be issued at a time, while the right-hand graphs are for the do-

main allowing recommendations with an alternative. The top row

presents the observed mean reward per agent, while the bottom row

presents the plan time in minutes. We note that we observe all the

expected trends in the figure; we highlight three main observations:

(i) For these constrained finite-horizon problems, SARSOP quickly

becomes intractable, even when the discount factor is set very low.

(ii) PSRL indeed returns nearly optimal solutions for the (low infor-

mation value) single recommendation instances, in a fraction of the

time of the other solvers. On the dual recommendation problem it

incurs larger regret, but less than the approximate SARSOP solution

Session 11: Learning and Adaptation 2 AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

422

http://bigbird.comp.nus.edu.sg/pmwiki/farm/appl/


09 12 15 18 21 09 12 15 18 21

0
200
400
600

0
200
400
600

0
200
400
600

Unconstrained Constrained

Time of day Time of day

P
o
I
1
(
#
)

P
o
I
7
(
#
)

P
o
I
9
(
#
)

Figure 4: Effect of applying constrained recommendations
on number of agents visiting points of interest (PoI).

at h = 20. (iii) Bounded-regret finds essentially optimal policies,

while at the same time remaining tractable through its effective

bounding condition on the state space growth. We note that its

runtime stops increasing significantly beyond h = 20, as a result of

the bounded growth of the state space.

To demonstrate the effect of considering constraints on the crowd

dynamics, we perform an experiment on a large-scale problem. Fig-

ure 4 shows a simulation of the number of visitors at three different

points of interest, with the red line indicating the constraint level,

on a problem with 10 locations, 3 types, PST depth 2 and 5000 visi-

tors during the entire day. The constraint-satisfying policy is able to

redirect visitors effectively from crowded points 1 and 9 to 7. While

computing this policy required solving over a thousand MOMDPs,

by using the Bounded-regret algorithm the capacity-aware recom-

mendation policy was computed within one hour.

7 RELATEDWORK
Zhang et al. [42] study amulti-agent problemwhere agents compute

policies which are guaranteed to satisfy commitments, despite the

fact that agents have uncertainty about their model. Their model

uncertainty also distributes over a finite number of types, however

their constraints are over the achievement of specific states with

a minimum probability. While commitments could in principle

be used to satisfy resource constraints, their solution framework

uses a Mixed-Integer Linear Program having number of binary

variables equal to the number of knowledge states, resulting in an

exponential complexity in the number of knowledge states.

Our model combining the possible agent types is a constrained

POMDP. Poupart et al. [27] propose an algorithm to solve con-

strained POMDPs directly, by casting the problem as an (approxi-

mate) constrained belief state MDP. The framework of Constrained

MDPs [1] consists of a single large LP which combines the sat-

isfaction of constraints with computing the policy. Such a solu-

tion maintains a variable for each ⟨belief state, action⟩-pair, which

quickly grows intractably large. Although their method permits

approximate belief spaces, our decoupling into MDP policies could

not be applied in their method, because there the satisfaction of

constraints is coupled with the computation of the policy. Recently,

Walraven and Spaan [40] proposed a novel approximate algorithm

for constrained POMDPs on the basis of Column Generation, which

solves the expected-value problem by converting α-vector policies
to policy graphs. This algorithm is directly applicable to our domain,

however because it does not consider the stationarity and mixed-

observability inherent in our domain, we expect this approach to

be less scalable than our Bounded-regret algorithm.

8 CONCLUSIONS AND FUTUREWORK
Recommender systems should use sequential interactions with

agents to optimally refine their knowledge about the user, and

should plan recommendations which satisfy the user’s long-term

interests. Many times, the items being recommended are also sub-

ject to capacity limitations; in this work we present two novel

algorithms for computing capacity-aware sequential recommen-

dations for large-scale recommendation problems, resulting in the

following contributions:

(i) We integrate PSRL with Column Generation to obtain an effi-

cient heuristic constrained learning algorithm (Section 3).

(ii) We exploit the stationary structure of the MOMDP in comput-

ing an approximate continuation for any belief point, based on

the minimal regret MDP policy. We show that these solutions

can embedded in Column Generation to compute a constrained

optimal learning policy for our model (Section 4).

(iii) We use the expected regret to propose an efficient belief space

truncating condition, which results in a highly scalable approx-

imation algorithm for stationary MOMDPs (Section 4.3).

(iv) We show how to construct a constrained multi-agent recom-

mender system from passive data, having recommendation

actions that allow an alternative (Section 5).

We demonstrate that constrained PSRL finds high-quality policies

quickly when the problem considered does not exhibit information

gathering actions. However, in case a model does allow information

gathering, such when issuing recommendations with alternatives,

our results show that we are better off casting the problem as a

constrained optimal learning problem. This problem can be solved

tractably by planning a MOMDP over a reduced space of beliefs,

derived from the regret of switching to an MDP policy.

In future work, we want to investigate methods to ensure fair-

ness between users under constraints. Currently, column generation

may decide to structurally give one type of user lower quality rec-

ommendations, in order to satisfy the constraints. In this case, we

need to consider the recommendation problem as a multi-objective

decision problem [28], to compute a set of policies trading off re-

source consumption with expected value. Another avenue of future

work considers how to recommend users when only a subset of

them uses the recommender system. In this case the behavior of the

uncontrolled users, under stochastic influences such as the weather,

impacts the capacity constraint stochastically [9]. This is especially

challenging when we can not measure crowds reliably, making the

available capacity itself a partially observable quantity. Finally, we

intend to evaluate our algorithms on other constrained (multi-agent)

learning domains, such as adaptive management problems [22] and

smart-grid applications [8].
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