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ABSTRACT
Intention recognition is the process of using behavioural cues to
infer an agent’s goals or future behaviour. People use many be-
havioural cues to infer others’ intentions, such as deliberative ac-
tions, facial expressions, eye gaze, and gestures. In artificial intelli-
gence, two approaches for intention recognition, among others, are
gaze-based and model-based intention recognition. Approaches in
the former class use gaze to determine which parts of a space a per-
son looks at more often to infer a person’s intention. Approaches in
the latter use models of possible future behaviour to rate intentions
as more likely if they are a better ‘fit’ to observed actions. In this
paper, we propose a novel model of human intention recognition
that combines gaze and model-based approaches for online human
intention recognition. Gaze data is used to build probability distri-
butions over a set of possible intentions, which are then used as
priors in a model-based intention recognition algorithm. In human-
behavioural experiments (n = 20) involving a multi-player board
game, we found that adding gaze-based priors to model-based inten-
tion recognition more accurately determined intentions (p < 0.01),
determined those intentions earlier (p < 0.01), and at no additional
cost; all compared to a model-based-only approach.
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1 INTRODUCTION
Our visual behaviour is intrinsically linked to how we plan and
execute actions. Our eyes are constantly scanning and interrogating
the environment around us in a continuous cycle of observation
and prediction [9]. As a consequence, by monitoring the eye move-
ment behaviour of others, we are able to infer their future actions.
This ability was crucial to our success as a species—the coopera-
tive eye hypothesis suggests that the unusually large visible white
area in our eyes (the sclera) evolved due to the social requirements
of tasks requiring joint attention, as it enabled us signal to other
humans where we were looking at [15, 27]. Animals that evolved
in competitive environments have their sclerae hidden (e.g. dogs)
Proc. of the 17th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2018), M. Dastani, G. Sukthankar, E. André, S. Koenig (eds.), July 10–15, 2018,
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or pigmented (e.g. gorillas). An understanding of this behaviour
can provide us with opportunities in both cooperative and non-
cooperative settings. For example, a poker player observing which
cards their opponents have been gazing upon to potentially deter-
mine which hand they are trying to compile; or an assistant handing
a surgeon a tool that they will potentially use next. Despite the
large role that gaze plays in social interactions and in action ex-
ecution, it has received little attention for these tasks in artificial
intelligence. Social artificial agents may be able to improve their
interactions with humans by anticipating the human’s intentions
by combining the human’s gaze and ontic behaviours. Agents can
then adapt their behaviour in light of these intentions or devise
plans to provide proactive support to the human counterparts. In
this paper, we propose an intention recognition approach that in-
corporates visual behaviour into model-based intention recognition
using automated planning and demonstrate how it substantially
improves the recognition performance.

With decreasing cost and increasing robustness, eye trackers are
entering the consumer market, particularly as game controllers [28].
Whereasmostmodern applications involve explicit control (e.g. click-
ing or typing with the eyes), there is a huge potential for intelligent
user interfaces that use gaze implicitly to derive people’s intentions
and adapt the interaction accordingly. Although the relationship
between gaze and action is well-understood, we still lack compu-
tational models that integrate eye tracking data into predictive
systems. Existing work has demonstrated that it is possible to clas-
sify in which activity a human is currently engaging based solely
on eye movement data [5] and to predict intention using machine
learning algorithms such as support vector machines [2, 13] or deci-
sion trees [14]. However, in our applications of interest, we do not
have sufficient data to train such models, so instead, we opt for a
model-based approach to intention recognition.

Recentwork has successfully used automated planning formodel-
based intention recognition of intelligent agents [23, 24], and some
preliminary experiments show its potential for human intention
recognition in simple tasks such as shape drawing [29]. In these
approaches, for each potential intention, the recognition approach
uses an automated planner to generate two plans: (1) a possible
future trajectory that achieves the intention while corresponding
to some sequence of already performed actions; and (2) the opti-
mal plan for this intention that does not correspond to the already
performed actions. Plans that are closer to the optimally-computed
plans are deemed asmore likely to be a rational ‘fit’ for the intention,
and therefore more likely.

We hypothesise that incorporating gaze data to form a prior
probability of these intentions can improve prediction accuracy.
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Figure 1: Intent Recognition with Gaze Scenario

We use automated planning techniques to generate candidate plans.
The candidate plans and the actions of the user are then combined
with the user’s gaze distribution to infer their possible intentions.

Figure 1 shows a simple example of our idea. In this example,
based on the board game Ticket to Ride described in Section 4, a
person is trying to navigate a path (e.g. direct a vehicle) between
Santa Fe, and one of the other cities in the graph. The intention
recognition problem is to determine the destination city. On the
left, we see that the route from Santa Fe to Denver has already been
traversed. We argue that this implies that the probability of the
final destination being Oklahoma is smaller than that of any other
of the other nodes: a rational navigator would more likely traverse
the path from Santa Fe to Oklahoma directly. Existing model-based
approaches would rate this as such. However, from this single
traversed route, we are unable to distinguish the probability of
the outer nodes (Seattle, Calgary, Winnipeg, etc.)—they are all the
same distance from Denver. However, consider the example on the
right, in which we know that the person has been looking at the
route from Helena to Seattle. We argue that now, this represents
a potential future action and that Seattle is a more likely final
destination than Calgary, Winnipeg etc. We argue further that
Calgary, etc., are still more likely than Oklahoma, which fits neither
our observed navigation actions nor our observed gaze actions.

The key contribution of this work is the prediction of human
intent using a novel combination of model-based and gaze-based
approaches. We define a model of intention recognition using gaze
and combine this with other model-based approaches. We evaluate
this approach on twenty people playing a digital multi-agent board
game while their gaze data was being recorded. We compared a
model-based approach using only game-state data (Model Only) to
the same approach enhanced with gaze-based priors (Gaze+Model).
Although the model-based approach was reasonably successful at
predicting intentions, our results showed that our enhanced model:
(1) more accurately predicted the future intentions of players; (2)
was able to make these predictions earlier in the game; and (3) was
able to calculate these predictions with no additional computational
execution cost. These contributions are significant because they
provide an empirical groundwork for designing predictive gaze-
based systems.

2 RELATEDWORK
2.1 Eye Tracking in HCI
Current interactive applications that employ affordable eye trackers
fall into two main areas: gaze interaction and context-aware com-
puting. Gaze interaction remains an ongoing area explored by HCI

researchers as a form of input, particularly for selection, through
novel interaction techniques (e.g. [6, 8]). Till date, the most signif-
icant uptake of eye tracking technology has been in the gaming
industry with Tobii Gaming1 leading its charge by providing access
to advance affordable eye trackers for use in over 70+ gaze-enabled
games. Gaming has long been a popular application domain for re-
searchers to explore novel inputs and gaze is no exception. A survey
on gaze interaction in games by Velloso and Carter [28] provides an
overview of how gaze has been incorporated into games through a
taxonomy of gaze-based game mechanics. While most mechanics
involve explicit real-time interaction (e.g. aiming & shooting), im-
plicit interaction using adaptive AI was found to be highly relevant
to our work, where the gameAI would learn from the player’s visual
attention patterns to predict future actions. For example, Munoz
et al. predicted player’s actions in Super Mario Bros by analysing
intentions from gaze data using an artificial neural network [18].
Similarly, Hillaire et al. used simple prediction models to determine
the direction in which players were going to turn in a 3D envi-
ronment based on gaze behaviour [11]. Likewise, gaming has been
pushing AI applications such as by using probabilistic networks in
a game to predict the player’s next move to precompute graphics
or by generating intelligent behaviours in non-player characters
(NPC). For instance, Wetzel et al.’s AI game engine dynamically
adapts its strategy based on the combination of eye movements and
player’s actions [30].

Alternatively, eye tracking presents opportunities for systems
to be aware of its users’ activities (e.g. reading, browsing watching
videos) through the implicit monitoring of eye movements ([5, 16]).
For instance, Kunze et al. found that reading on different document
types can be recognised automatically from reading behaviour (74%
success rate) [16]; demonstrating its potential to perform activity
recognition at a finer level. While a majority of studies in both
areas have shown promising results over the years, they primarily
focus on the on the present (what the user is current doing), or
in the short term (what the user is going to do next). Our interest
ultimately lies in recognising what a user might do much further
into the future (i.e. intentions) in order to build systems that can
make adaptions in a timely fashion.

2.2 Intention Recognition via Gaze
Here, we summarise existing works that focus specifically on per-
forming intention recognition via gaze which typically use a ma-
chine learning approach. Huang et al. investigated the predictive
role of gaze using in a collaborative task where participants role-
played a sandwich making scenario between a worker and a cus-
tomer [13]. Using the ingredients eventually chosen as the ground
truth for the customer’s intentions, they measured the extent to
which gaze cues served as predictors of their choices. They at-
tempted two approaches: (1) a simple attention-based intention
predictor that performed predictions according to which ingredi-
ent the customer most recently fixated upon, and (2) by using a
SVM-based classifier using four gaze features (number of glances,
duration of first glance, total duration of glances, and whether a par-
ticular ingredient was most recently glanced at. The first approach
outperformed random guesses achieving an estimated accuracy of

1http://tobiigaming.com
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65 percent while the SVM classifier achieved an estimated real-time
accuracy of 83 percent. Similarly, Bednarik et al. trained an SVM
classifier using a number of gaze features to identify the type of
task a user was performing when playing the 8-tiles puzzle game.
The types of tasks included planning, where the participant identi-
fies the possible actions to take, and cognition, where participant
identifies the particular information the participant is currently
processing [2]. The gaze features were either fixation-based (e.g.
fixation length, fixation count), saccade-based (e.g. count, area, du-
ration), and interface-based (e.g. total no. of visited areas).

Other approaches have also been used. Ishii et al. proposed an
algorithm based on decision trees that estimated the user’s conver-
sational engagement with an artificial salesperson using attributes
beyond gaze direction alone [14]. They trained a decision tree to
serve as their engagement estimation model using four attributes,
i.e. gaze direction transition, transition duration, amount of eye
movement and pupil size). Their model could predict the user’s
disengagement with an accuracy of around 70 percent. Similar to
Huang et al., Andris et al. also used a sandwich making scenario
but used a different approach to modelling prediction and intention
i.e. Epistemic Network Analysis (ENA) [1]. Their analysis gives an
overall picture of the unfolding gaze patterns in dyadic collabora-
tions. A recent study by Newn et al. used a different approach by
employing human subjects to infer intention using gaze visuali-
sations of a player over a strategic turn-based game called Ticket
to Ride [20, 21]. Their study demonstrated the predictive ability of
gaze and its potential to reveal plans early if gaze is displayed from
the beginning of the game when no actions have yet been played.

2.3 Model-Based Intention Recognition
An alternative way to perform intention recognition is to use a
model of the possible behaviours to perform a forward projection
of candidate plans, starting from a sequence of recently-observed
behaviours, and to identify those plans that best fit the observations.
Most existing works in this area use plan libraries for candidate
plans, and assess how likely it is that the observed sequence of
behaviours is a good fit for the prefix of such a plan. Many models
of plan libraries have been investigated, such as hidden Markov
models [3] or belief networks [12]. Sukthankar et al. [25] survey
existing approaches.

A downside of using plan libraries is that they require a set of
potential plans for the other agent; which may be both prohibitively
large, but also inflexible if the observed agent deviates from this
set. Alternative approaches use concepts such as action models to
temporally project possible agent plans into the future, essentially
generating a set of candidate plans at runtime. Such models use
belief-desire-intention plans [26] or planning models [24, 29].

The work that we build on in this paper is on intention recogni-
tion as planning. Here, the set of candidate plans is not generated
a priori, but instead, a planning tool is used to generate the set of
possible plans that correspond to the observed prefix, and to assess
their likelihood.

Ramirez and Geffner [24] solve this problem by generating two
plans for each possible intention: the optimal plan for the intention
in which the observed sequences of actions are satisfied by the
plan; and the optimal plan for intention in which the sequences are
not satisfied. They then determine the probability of seeing these

observations for the intention by measuring the difference between
the two plans, and using Bayes rule to determine the probability of
the goals, given some prior distribution over the goals.

More recent work simplifies this approach to reduce its com-
putational burden. Vered and Kaminka [29] extend Ramirez and
Geffner [24] for online intention recognition. Instead of generating
an optimal plan that does not satisfy the observations at each time
step, they generate a single optimal plan for each intention, and then
at each time step, generate a plan that satisfies the observations,
and take the ratio between the cost of the original non-satisfying
plan with the satisfying plans as a score, normalising these scores
to get a final probability distribution. Masters and Sardina [17] inde-
pendently make a similar observation for intention recognition in
path planning, using the cost difference between the optimal plan
that satisfies the observations and the optimal plan in general, thus
also avoiding calculation of plans that do not satisfy observations.
However, they show that for path planning (not task planning), this
can be calculated without considering the observations at all. They
prove that the ranking of goals can be achieved by knowing only
the agent’s start point, potential goals, and its current location.

In our current and planned projects, our applications typically
require a form of planning, so we use a model-based approach
to recognise intent from gaze behaviour. This is because of two
reasons: (1) humans make plans within the context given therefore
giving us a set of possible plans and (2) as gaze is linked to action—
observing the gaze of a human can give an indication of their
intentions. In the next section, we describe a model that integrates
gaze to perform human intention recognition.

3 MODEL
In this paper, we propose a system that consists of two independent
components that form the input of our intention recognition algo-
rithm: (1) the gaze model that processes the gaze information and
uses the concepts of fixation count and fixation length to determine
the probabilities of different intentions; and (2) the planning-based
model, which takes an action model and an observed sequence of
actions, and determines the probability of intentions based on how
well they fit the observed sequences.

3.1 Problem Formulation
We ground our problem on similar definitions based on intention
recognition as planning [29]. Informally, there is a set of possible
intentions that the observed agent can achieve, a set of actions that
can be used to achieve it, and a set of observations we receive. The
intention recognition problem is to determine the likelihood of the
different intentions given the observations.

In this context, observations are divided into two categories: (1)
ontic actions; and (2) gaze actions. Ontic actions are those in which
the agent under observation modifies the (physical or virtual) world.
Gaze observations are those in which the agent under observation is
looking at ‘regions’ of the world, in which the regions are related to
ontic actions. For example, in the navigation scenario, gaze actions
are those that look at the different routes and destinations, while
moving between cities are ontic actions.

Formally, an online goal recognition problem R is a tuple R =
⟨W , s0, I ,A,G,Oa ,Oд⟩.W is the world in which the agent operates,
s0 ∈W is the initial state of the observations, I is the possible set of
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goals/intentions,A is the set of ontic actions available to achieve the
intentions, G is the set of possible gaze actions, Oa is the sequence
of ontic action observations (made up of actions from A), andOд is
the set of gaze observations (made up of observations from G).

This model aligns with the model of intentions outlined by
Pacherie [22], who argues that there are three types of intentions: (1)
distal intentions (D-intentions), which are the long-term intentions
of the agent and when achieved, terminates the agent’s practical
reasoning process in relation to the current actively (generally); (2)
proximal intentions (P-intentions), which are short-term intentions
that an agent derived to help achieve D-intentions; and (3) motor
intentions (M-intentions), which are the grounded motor actions
used to achieve D-intentions. In this work, we are not considered
with M-intentions, however, we note that this model aligns with the
notions of D-intentions and P-intentions: D-intentions are the set
of potential intentions I , and P-intentions are the actionsA. As such,
the set of intentions in our work is the set Ξ = I ∪A. That is, an in-
tention is either an intention to achieve an end state or an intention
to execute some action in the future. This aligns with Bratman’s
[4] notion that ‘intentions that’ the world is in a particular state (a
goal) expresses an intention around the world, while ‘intentions to’
perform an action express an intention about an action.

A solution to the problem R is a probability distribution over the
set of possible intentions Ξ, indicating the likelihood of each being
real, based on the observationsOa andOд . For the remainder of the
paper, when we discuss intentions, we mean the set Ξ. From a mod-
elling perspective, we can treat all intentions as actions, and have
dummy terminal actions for each intention in I that correspond to
that state being reached.

In this model, we assume a STRIPS-like model of ontic actions
[10], with each action consisting of a unique name, preconditions
that determine under which worlds inW they can be executed, and
effects that describe the changes made toW . Gaze actions have a
fixation count that defines the number of times this gaze action we
performed, and fixation length, which defines the time for which
this gaze action was performed.

The computational problem is to determine howwell the possible
trajectories possible by sequences actions from A correspond to
the observations seen so far (Oa and Oд ). Assuming that the actor
aims to behave rationally, then intuitively, the similarity between
the observations and the prefixes of the trajectories represents the
likelihood of taking those trajectories—a rational agent will prefer
cheaper plans over more expensive plans. From their P-intentions,
we can infer the likelihood of their D-intentions. In this paper, we
build on the related work to combine it with gaze data with the aim
of improving the accuracy of the predicted intentions.

3.2 Intention Recognition
Our intention recognition approach is divided into three steps, ac-
cording to the different types of action observations. First, the gaze
observations are used to determine the probabilities of different
intentions computed from the fixation length and fixation count.
Second, independently of the second step, a model-based intention
recognition approach is used to determine the probability of ob-
serving future trajectories of actions based on the past observations.
Finally, these two are combined to give final probabilities over the
possible intentions. This separation of the two approaches supports

online intention recognition that can incorporate new gaze data
observations as they become available, without having to perform
the expensive planning process again.

3.2.1 Combining Gaze and Planning. We first present the final
step of our approach, which forms the backbone of the model.
In an environment in which both gaze and action are possible
actions, we hypothesise that we can combine the two for better
intention recognition. Our first observation is that the two types of
observations can be treated independently, primarily because they
describe two different types of action.

Gaze actions are telling us about the possible future intentions
that human under observation is considering. Provided the person is
not attempting to deceive the opponent using their visual behaviour,
they will typically look at the regions that they are considering for
future action more than those that they have already executed.

For example, consider our earlier navigation example in Figure 1.
The navigator would be more likely to cast gaze at regions in which
they are considering as possible destinations. Further, when they
perform the ontic action of traversing a route between two neigh-
bouring cities, we hypothesise that they are in fact highly likely to
look at that region immediately prior to the traversal. That is, they
do not navigate blindly.

On the other hand, the ontic action observations are used to
describe intentions that have already been fulfilled. Despite this,
they can still be used to predict future actions. As we saw in our
example, if the goal is to traverse entire paths, traversing a particular
route indicates an intention that this will form part of a larger
path, thus increasing the likelihood of the routes following the
traversed route. To combine these two, we propose a simple model
that treats the two types of observations independently initially
and then combines them. However, the gaze and ontic actions are
not entirely independent of each other: both are driven by the
D-intentions. We model the gaze observations as priors over the
chosen trajectories. The rationale behind this is clear: (1) a person
is unlikely to act in any environment without sensing it first, thus
gaze data related to particular intentions will almost always occur
before any ontic actions; and (2) a person is less likely to look
at parts of the environment with actions that they have already
performed (unless that action can be performed again). As such,
gaze actions provide a good guide to future ontic actions.

Formally, we can describe the problem as trying to estimate
P(i | Oa ,Oд) for each i ∈ Ξ; that is, the probability of an intention i
given ontic and gaze action observations Oa and Oд . In this model,
we assume that gaze actions fromOд are excluded once the related
intention is achieved, thus implying that the probability of Oa is
not influenced by the probability of Oд ; although the inverse is
not the case — past actions influence where people gaze. With this
assumption, we can rewrite P(i | Oa ,Oд) as follows:
P(i | Oa ,Oд) = P(Oд ,Oa | i) · P(i) (Bayes rule)

= P(Oд | i) · P(Oa | Oд , i) · P(i)

= P(Oд | i) · P(Oa | i) · P(i) (Assumption above)
= P(Oa | i) · P(i | Oд) (Bayes rule) (1)

Thus, the probability of a (P- or D-) intention i , given observed gaze
and ontic actionsOд andOa respectively, is the probability that the
observed ontic actions would be taken if i was an intention, with
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the prior that i is an intention from the gaze data. Given this model,
the remainder of the problem is how to determine P(Oa | i) and
P(i | Oд).

For our gaze model, we use fixation length and fixation count
due to these two features being the basic features used in previous
studies highlighted in Section 2.2. We define a simple model that
uses these two measures to define the probability of each intention
being a true intention. Recall from Section 3.1 that the gaze-based
actions are summarised using fixation count and fixation length. A
fixation is detected by the system when a human subject fixates on
a target area for more than a threshold, for example, 60ms. A single
fixation starts when the subject starts looking at a particular target
(item of interest) and then ends when the subject looks at another
target. The change of the target areas is detected by tracking the
(x,y) coordinates collected by the eye tracker. For each fixation, we
maintain a fixation length, which is the difference between the start
and end times of each fixation. For each target area, we maintain
the total number of times a user visits the target area and we refer
to these counts as fixation counts. To cater for blinks (for periods
shorter than 60ms), we merge the fixation lengths if the target being
looked at remains the same after and before the blink.

The model of our data is assumed to be as follows. For each
intention i , we have a pair: ⟨counti , lenдthi, j ⟩, in which counti rep-
resents how many times the gaze action corresponding to intention
i was observed, and lenдthi, j is a vector of j variables that repre-
sent the length of each gaze action. That is, lenдthi, j represents the
length of the jth observation of i (1 ≤ j ≤ counti ).

We define fsi , the fixation score for intention i as a weighted
measure between fixation length and count:

fsi = loд(λ · total_timei + (1 − λ) · counti ) (2)

where total_timei is the sum of the fixation lengths for the intention
i (
∑i≤counti
i=1 lenдthi, j ), λ ∈ [0, 1] is the relative weight given to the

fixation lengths over fixation count. Because these are in different
units (time and count respectively), it is likely that total_time_i will
be much higher than count_i . In practice, we have defined count_i
as the number of times i is looked at multiplied by the fixation
threshold (e.g. 60ms), so the two variables are on the same ‘scale’.

Note the use of the loд function in Equation 2. Using fixation
length and count directly results in the linear function that in-
creases monotonically. However, people’s intentions change, and
they adopt new intentions over time. There are at least two op-
tions to mitigate this problem. First, discount the importance of
earlier observations using a discount factor; or second, limit the
increase in the importance of target areas as fixation length and
count increase. By using the loд function, we adopt the latter ap-
proach, which highlights important intentions while giving priority
or importance to new intentions. We choose this approach because
a person may stop looking at potential intentions once concrete
plans have been formed, so discounting earlier intentions could
miss important intentions.

Using the fixation weights, we define the probability of an inten-
tion i as its fixation weight normalised against other intentions:

P(i | Oд) =
fsi∑
j ∈Ξ fsj

(3)

whereOд is the set of fixation weights for the intentions represent-
ing the human gazing at targets that signal the intentions, andwi
is the fixation score for intention i .

3.2.2 Model-based Intention Recognition. Our model-based in-
tention recognition is a simple generalisation of existing approaches
of model-based intention recognition using planning. First, we de-
fine πi as a plan that achieves intention i optimally while folding in
observations Oa . That is, πi is a sequence of actions from A, with
prefixOa , that executes P-intention i or achieves D-intention i , and
where ‘optimality’ is defined by some criteria, such as length or cost
of the trajectory. Note that there could be several such plans. Fur-
ther, we define Πopt

i as the set of optimal plans that execute/achieve
i without (necessarily) folding in observations Oa .

We can now define the probability of observingOa if intention i
is a given trajectory that achieves i:

P(Oa | i) = κ · min
π oi ∈Π

opt
i

costdiff (πi ,π
o
i ) (4)

in which κ is a normalising constant and costdiff is a function that
evaluates the ‘cost’ difference between two plans.

Informally, this equation states that the probability of seeing Oa
if i is the intention is proportional to the cost difference between
πi and the closest optimal plans. Thus, a plan πi that is closer to an
optimal plan is more likely to have intention i . This definition may
appear strange becauseOa is a prefix of πi by definition (πi folds in
observationsOa ). However, we are not capturing the probability of
Oa given just the plan πi , but that the intention of πi is to achieve
i . Therefore, when assessing πi , if πi is far from the optimal plan,
then the person’s true intention is probably not i .

We do not provide a complete definition of costdiff here; however,
several such measures are possible, such as the simple difference
in length, ratio of lengths, or the difference between the specific
actions in the plans. There are a number of such functions proposed
by other researchers. See for example, [17, 24, 29]. In Section 4, we
use a domain-specific definition, based on ideas from Ramirez and
Geffner and [24] and Vered and Kaminka [29].

3.2.3 Implementation. To implement such a model requires us
to calculate P(i | Oa ,Oд) for every potential intention. This can be
computationally expensive.

Although our model combines the gaze and planning-based ap-
proaches into a single calculation (Equation 1), we note that a
step-wise approach that first estimates (i | Oд) from gaze actions
can have practical value in cases where we may only care about the
higher probability intentions. Planning-based intention recogni-
tion is likely to be (relatively) more expensive than our gaze model
because we must perform an expensive planning step for each
intention, whereas the gaze calculation is performed as a simple
weighted sum. To mitigate this problem, a simple step would be to
use the planning-based model only on those intentions that have a
high probability from the gaze-based model; for example, the top N
intentions, or intentions with a probability above some threshold.

Equation 4 uses the set of all optimal plans Πopt
i to evaluate how

likely it is to see observations for a given intention. This step is
clearly computationally expensive for any non-trivial systems. As
such, approximations that, for example, compute only one optimal
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Figure 2: Top: A Ticket to Ride game instance with two play-
ers with respective target areas shown.

plan, may suffice in many settings. Alternatively, one could try to
find the optimal plan that prioritises actions in πi .

4 STUDY
For our study we use a multi-player game called Ticket to Ride2, also
used byNewn et al. [19, 20]. Figure 2 shows a screenshot of the game
and its corresponding target areas. In this game, players compete to
build train routes between adjacent cities (routes) across a map of
North America, and gain points for building a connection between
specific pairs of cities that they are assigned on ticket cards at the
start of the game (e.g. from Dallas to New York), which form their
top-level goals and are unknown to their opponent. Players receive
two ticket cards at the beginning of the game. Players obtain the
corresponding points stated on the card if they successfully connect
them and will lose the same number of points if they do not. Players
can draw additional ticket cards during their turn in the game if
desired. Players can block each other’s paths, as only one player can
claim each train route. Therefore, players must plan their routes
carefully to minimise the risk that an opponent will guess their
intentions and block them by claiming the routes that they need
first. Keeping information hidden is, therefore, core to the game,
as a player can gain a significant advantage by correctly guessing
their opponents’ hidden objectives. These compelling reasons are
why we selected this game for our study.

4.1 Data Collection
The study was conducted in a university usability lab, with two
players in each session playing in separate observation rooms to
simulate an online gameplay of Ticket to Ride. Both computer mon-
itors (1920x1080) were fitted with a Tobii 4C eye tracker (90 Hz).
We log the gaze of both players for each round played using a cus-
tom networked system for evaluating our intention recognition
approach. Further, the system displayed a semi-transparent dy-
namic real-time heatmap for intention prediction (building on the
findings of Newn et al. [20]) of one player to another in real-time
to simulate an agent that reacts to the player’s eye movements and
elicit more realistic visual attention behaviours. The player who
2http://www.daysofwonder.com/tickettoride/en/

was given the ability to see gaze, the ‘aware player’, was shown
the gaze visualisation of the ‘naive player’ throughout the game.
The naive player was not informed that their gaze could be seen by
their opponent, which made this a keyhole plan recognition scenario
for the aware player [7]. We recorded the computer screens for the
duration of each session.

First, both players together were given an initial briefing that
explained that their gaze would be tracked for later analysis. Play-
ers were then allocated randomly to the two observation rooms,
with one researcher in each, and were given a written overview
of the study, consent form and basic demographic questionnaire.
Following this, players were calibrated using default calibration
procedure of the eye tracking device and instructed to play the
game’s interactive tutorial until they were satisfied that they un-
derstood the game. Players then proceed to play a normal game
against each other to reduce any potential learning effects. In the
next game, players played the enhanced version of the game where
the aware player could see the gaze visualisation of the naive player.
In total, we recruited twenty player pairs (22F/18M) from the same
university, aged between 18 and 39 years (M = 23.2). We compen-
sated players with a $20 gift card for their time. As we are only
interested in the gaze of the ‘naive player’, we extracted the video
recordings and the gaze logs (x coordinate, y coordinate, timestamp)
for that round. We then encoded the game states of each game. For
each player, we extracted: cards drawn, routes claimed, scores and
remaining resources. In total we had around 421 minutes of game
data with an average of 21 minutes/game (5 minutes).

4.2 Gaze Features and Planning
In this section, we briefly discuss some of the domain-specific details
of our implementation.

Interface-based features:We divided the TTR game window
into target areas as shown in Figure 2. The target areas signal an
agent’s intention. For example, if a player is looking at the cards,
they may have formed the intention of picking up those cards;
if a player is looking at a route, the player may have formed the
intention of claiming that route. By considering the duration of the
fixation and the number of times a player looks at a particular target,
we make inferences about the likelihood of that intention being
carried out. To establish which target was gazed at, we automated
the mapping of x and y coordinates captured by the eye tracker
to one of the target areas. The game state data, for example, the
routes claimed by the players was manually coded.

IntentionModel:We treated each route as a proximal intention.
Using this, we were able to construct a modified planning problem
that consisted of only the routes that had been looked at, along with
their corresponding probability. This represents the priors for the
planning algorithm. So, in this case, not only did we use the priors
as probabilities, but also to reduce the size of the search problem.

Plan Generation: For each distal intention, the planner gener-
ated four different trajectories: two that fold in the observations
and two that did not, corresponding to πi and πoi respectively in
Equation 4. We assume that there would be two strategies for ful-
filling distal intentions: (1) build the shortest route; or (2) minimise
the number of moves taken to build a route (that is, also including
picking up cards, etc.). Thus, two plans that fold-in observations
are generated — one for each possible way of achieving the distal
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intention — and two that do not — again, one for each possible way
of achieving the distal intention.

For simplicity, we do not consider any other distal intentions
that are possible in the game, such as claiming the longest route
(which gains points in the game), trying to block other opponents
routes, or actively trying to deceive other players on the intended
route. The two former are the most common in our experience of
playing and observing the game.

To further simplify the process of planning, we assume that the
naive player always has wild cards. This means that we do not
reason explicitly about the different cards the naive player has —
something that is not observable and non-trivial to estimate. This
not only reduces the complexity of the problem but also reduces
the planning process to path planning.

Plan Cost Differences In Section 3, we did not provide a spe-
cific definition of the costdiff function. In the TTR study, we im-
plemented a custom costdiff function. To generate candidate plans,
we use Dijkstra’s shortest path algorithm. However, players in the
game can claim individual routes of a path in any order; that is,
they do not need to collect routes contiguously. Thus, we define
the costdiff function based on the number of overlapping routes
between the candidate plan and an optimal plan:

costdiff (πi ,π
o
i ) = |πi ∩ πoi | (5)

Note that πi folds in observed ontic actions, which include the
routes that are already claimed. The rationale for this that a path
with a higher number of claimed routes (of an optimal route) should
be scored higher.

4.3 Evaluation Setup
The system requires a number of parameters. In Equation2, λ = 0.8,
that is we prefer fixation length more than fixation count when
computing fixation scores. The standard fixation duration threshold
was set to 60ms. This is the minimum duration a player has to be
fixated on a single target area for the gaze activity to be counted
as one fixation. The system generates a list of inferred intentions
(routes). We only look at top 10 of the inferred routes, that is, the
top 10 most likely routes the player is likely to choose.

To evaluate the difference in plan recognition performance ob-
tained with the addition of gaze data, we have a parameter to ‘turn
off’ the gaze data. This allows us to experiment with two different
models: Model Only system makes inferences based solely on the
model-based approach with no gaze data, which serves as a baseline
for our study; and the Gaze+Model system, which is the same but
incorporates the gaze data. It then builds a candidate list of plans
based on these priors and the in-game player actions.

4.4 Measures
To compare the two systems and to identify whether gaze was
beneficial to intention recognition process, we used the following
measures divided into three categories: (1) accuracy; (2) inference
horizon; and (3) computation time. We compute the following mea-
sures using the ten most highly-ranked inferences and also using
only the most likely plan (sequence of actions).

Accuracy. These measures are used to evaluate the overall suc-
cess of inferring the ground truth and are computed by considering
all inferences made up to the point in the game when the naive

player completed one of the chosen tickets. We took three measures
to characterise accuracy:

(1) Recall: This measure is the ratio of the number of correct
route inferences and the total number routes claimed (ground
truth) in each game. When expressed as a percentage, this
shows the success of the system in inferring the ground
truths, that is, the claimed routes.

(2) Precision: This measure is the ratio of the number of correct
route inferences and the total number routes inferred, which
was fixed at 10 routes per inference.

(3) F1-Score: This uses the previous two measures and is com-
puted using: F1 = 2×(precision×recall)/(precision+recall)

For these three measures, an inference was considered correct if
it appeared in the top ten most highly-ranked intentions, out of a
possible 79.

Inference Horizon. This measures how quickly a correct infer-
ence is made and is measured as the difference of time in seconds
between when the system makes an inference, and a player makes
the move corresponding to that inference and computing the aver-
ages of these times.

Computational Cost. This measures system execution time
for inferring the top ten intentions.

Even though the accuracy measures do not consider where a
claimed intention was ranked, we assert that this is still a useful
measure, especially in the TTR game, because players will have
multiple possible intentions at any one point. Our aim is not to
predict the next move, but the next N moves (in this case 10 out of
a possible 79). In games such as TTR, other factors such as which
cards the player holds impact whether claiming a particular route
is even possible. As such, we assert that accuracy is a valid measure
for this evaluation.

5 RESULTS
Here we discuss the performance of Gaze+Model system when
compared with the Model Only system. We tested the effects of the
recognition approach on the dependent variables with a Welch’s
t-test. We tested the data for normality using Shapiro-Wilks tests
and did not find any significant violation of normality.

5.1 Accuracy
Firstly, we analysed whether gaze data had a positive impact on
inference accuracy. Table 1 shows the precision, recall and F1-score
for the two systems when using top ten, five and the most likely
route respectively. With a Welch’s t-test, we found a significant
effect of the intention recognition approach (t(19) = 5.09, p < 0.01,
Cohen’s d=1.14) with the Gaze+Model approach offering a higher
accuracy (71%) than the Model-Only approach (47%).

Figure 3(a) shows the percentage of successful inferences of
the ground truths when considering the top 10 potential routes,
sorted by the Gaze+Model accuracy scores for presentation pur-
poses. Clearly, gaze data had a positive impact on the accuracy of
the inferences, scoring higher on accuracy in 16 of the 20 games,
and scoring equally on three of the remaining four. Game 2 is the
only game in which the Model Only approach outperformed the
Gaze+Model approach, while in games 1, 8, and 13, the accuracy
are the same for both approaches.
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Precision Recall F1-Score

N GM MO GM MO GM MO

N=10 0.71 0.47 0.50 0.34 0.56 0.38
N=5 0.63 0.35 0.44 0.24 0.49 0.28
N=1 0.55 0.23 0.37 0.16 0.42 0.18

Table 1: Proximal intention prediction for the two ap-
proaches. Note: GM = Gaze+Model; MO = Model Only.

While these results could be just statistical anomalies, we note
that in these games, it appears that the players change their inten-
tions rapidly and employ a number of different strategies, compared
to the other games. Some collect a lot of cards before claiming routes
while others claim routes as soon as they have required cards. Fur-
ther, in game 2, it is clear that the players are trying to block each
others intended paths, which forces a change in intention. Path
blocking is an intention that was not encoded in our planner. It ap-
pears that theModel Only system can tackle such situations slightly
better than a system that incorporates gaze data, because in the
Gaze+Model system, the gaze data is noisy and not useful. Hence,
this does raise a question: is it possible to determine when the gaze
data is too noisy, and subsequently either filter out old inferences,
or ignore it all together? We leave this question for future work.

5.2 Inference Horizon
We also tested whether gaze data enabled fast intention recognition.
Figure 3(b) shows the inference horizon for the two approaches,
with a higher inference horizon implying earlier prediction. These
results show that overall the Gaze+Model systemwas able to predict
the intentions quicker than the Model-Only system, doing so in 17
out of the 20 games. Overall the average prediction horizon of
the Gaze+Model system was 327 seconds (149s) while the horizon
for the Model-Only system was significantly lower at 233s (114s).
With a Welch’s t-test, we found a significant effect of the intention
recognition approach (t(19) = 3.31, p < 0.01, Cohen’s d=0.74) with
the Gaze+Model approach recognising intentions earlier (327s) than
the Model-Only approach (233s). For reasons outlined in Section 5.1,
in games 1, 2, and 3 the Model-Only approach performs better. The
post-game analysis reveals that blocking results in rapidly changing
intentions and players tend to act almost immediately. We leave
exploration of strategies to mitigate these for future work.

5.3 Computational Cost
The cost of the two approaches was similar. With a Welch’s t-test,
we found no significant effect of the intention recognition approach
(t(620) = 0.83, p = 0.41, Cohen’s d=0.14) with the planning times
of the Gaze+Model approach (76ms (40ms)) being similar to the
Model-Only approach (79ms (24ms)).

5.4 Summary
Our results show that incorporating gaze into intention recogni-
tion was effective in the TTR game. We compared Adding gaze
meant that intentions could be inferred more accurately and earlier.
However, the results also show that improvements can be made.
In particular, when the players’ intentions changed rapidly, the
gaze data seemed to have no effect, in some case, even negative. As

Figure 3: Comparison of accuracy and inference horizon re-
sults for the two approaches.
such, improving the model to either try to filter out older, noisy
intentions or mitigate their effect, would be useful.

6 CONCLUSION
In this paper, we propose a novel model that combines gaze and
model-based online intention recognition to infer intentions of
humans. Gaze data is used to build probability distributions over
a set of possible intentions, which are then used as priors in a
model-based intention recognition algorithm.

Human-behavioural experiments demonstrated that gaze based
priors significantly improved the accuracy and quickness (horizon)
of the inferences when compared with classical model-based ap-
proaches. However, the model needs to be refined to cope with
dynamic nature of intentions. In addition, the approach of using P-
intentions to make inferences of the D-intentions was successful, at
least in context of the experiments performed. These results indicate
the strength of gaze-enabled model-based intention recognition.

In future work, we will extend the range of possible interaction
modalities for gaining information, such as gesturing. Further, we
will explore how modalities such as gaze and gesture can form part
of human-agent interaction beyond intention recognition, such as
collaborative planning. Another avenue of future work involves
deception. The naive players in our study knew that their gaze
was being monitored, but were told that their opponent could not
see this data, and thus they seem to have chosen not to deceive.
However, we plan to explore scenarios in which the players do
employ deception, such as the ‘aware’ player in our study.
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