
Managing Byzantine Robots via Blockchain Technology
in a Swarm Robotics Collective Decision Making Scenario

Robotics Track

Volker Strobel
IRIDIA, Université libre de Bruxelles

Brussels, Belgium
vstrobel@ulb.ac.be

Eduardo Castelló Ferrer
MIT Media Lab

Cambridge, Massachusetts, U.S.
ecstll@media.mit.edu

Marco Dorigo
IRIDIA, Université libre de Bruxelles

Brussels, Belgium
mdorigo@ulb.ac.be

ABSTRACT

While swarm robotics systems are often claimed to be highly fault-

tolerant, so far research has limited its attention to safe labora-

tory settings and has virtually ignored security issues in the pres-

ence of Byzantine robotsÐi.e., robots with arbitrarily faulty or

malicious behavior. However, in many applications one or more

Byzantine robots may suffice to let current swarm coordination

mechanisms fail with unpredictable or disastrous outcomes. In this

paper, we provide a proof-of-concept for managing security issues

in swarm robotics systems via blockchain technology. Our approach

uses decentralized programs executed via blockchain technology

(blockchain-based smart contracts) to establish secure swarm coor-

dination mechanisms and to identify and exclude Byzantine swarm

members. We studied the performance of our blockchain-based

approach in a collective decision-making scenario both in the pres-

ence and absence of Byzantine robots and compared our results to

those obtained with an existing collective decision approach. The

results show a clear advantage of the blockchain approach when

Byzantine robots are part of the swarm.

KEYWORDS

swarm robotics; blockchain technology; Byzantine robot fault-

tolerance

ACM Reference Format:

Volker Strobel, Eduardo Castelló Ferrer, and Marco Dorigo. 2018. Managing

Byzantine Robots via Blockchain Technology in a SwarmRobotics Collective

Decision Making Scenario. In Proc. of the 17th International Conference

on Autonomous Agents and Multiagent Systems (AAMAS 2018), Stockholm,

Sweden, July 10ś15, 2018, IFAAMAS, 9 pages.

1 INTRODUCTION

Swarm robotics is a promising approach for tackling problems that

require the coverage of a large physical space in dangerous, un-

known, or hazardous environments. Examples are humanitarian

demining, search and rescue, underwater exploration, or surveil-

lance [1]. In these environments, the robots can usually only com-

municate in a peer-to-peer manner via noisy and unreliable com-

munication channels and centralized control may be unfeasible

or undesirable (single point of failure). Despite the decentralized

and scattered information distribution on which they rely, in many

swarm robotics applications the robots have to reach consensus

Proc. of the 17th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2018), M. Dastani, G. Sukthankar, E. André, S. Koenig (eds.), July 10ś15, 2018,
Stockholm, Sweden. © 2018 International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

on a common view of the world or on the best of n alternatives

(best-of-n problem) [24, 26].

While swarm robotics systems are often claimed to be highly

fault-tolerant, in some cases one or more Byzantine robotsÐrobots

that show arbitrarily faulty or malicious behaviorÐmay suffice to let

current coordination mechanisms fail [15]. Once robot swarms will

exit the research labs and operate in real-world missions, they will

face situations in which some of the robots in the swarm become

Byzantine robots. For example, harsh environmental conditions

might cause individual robots to fail, or hackers might take con-

trol of some of the robots and make them behave in misleading

ways [14]. Robustness to Byzantine robots will therefore become

of paramount importance.

Until now swarm robotics research has left virtually unaddressed

the problem of how to manage the security issues generated by

the presence of Byzantine robots. We believe that such security

issues should be considered in all the development stages of swarm

robotics researchÐfrom lab experiments to real-world applicationsÐ

since waiting for security issues to appear in real world applications

might cause time-consuming redesigns or even the complete aban-

donment of existing approaches. Higgins et al. [14] present the first

comprehensive survey of security challenges in swarm robotics;

they identify several potential threats that still hinder the usage of

robot swarms in real-world application: (i) tampered swarm mem-

bers or failing sensors: the messages sent from these members can

contain wrong or deceptive information; (ii) attacked or noisy com-

munication channels: messages can be manipulated or destroyed

while propagating through the peer-to-peer network; (iii) loss of

availability: information stored on a robot’s hard drive might be

deleted; the robot might be captured or destroyed.

In this paper, we argue that blockchain technology might be used

to provide solutions to the aforementioned security issues. In par-

ticular, we show that it allows a robot swarm to achieve consensus

in a collective decision problem even in the presence of Byzantine

robots. While blockchain technology was originally developed as

a peer-to-peer financial system in the context of the cryptocur-

rency Bitcoin [17], recently there have been proposals for using

blockchain technology as a distributed computing platform where

arbitrary programs (blockchain-based smart contracts) can be run.

The best known example of such a platform is Ethereum [3, 27].

Blockchain-based smart contracts allow decentralized systems with

mutually distrusting nodes to agree on the outcome of the pro-

grams. We provide the first proof-of-concept for using blockchain

technology in swarm robotics applications. We do so by laying the

foundation of a secure general framework for addressing best-of-n

collective decision problems.

Session 13: Robotics: Multi-Robot Coordination AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

541

Using the robot swarm simulator ARGoS [18], we study a collec-

tive decision scenario inwhich robots sensewhich of two features in

an environment is the most frequent oneÐa best-of-2 problem. Our

approach is based on the collective decision scenario of Valentini

et al. [23] (classical approach). Via blockchain-based smart con-

tracts using the Ethereum protocol (blockchain approach), we add

a security layer on top of the classical approach that allows for

taking care of the presence of Byzantine robots. Our blockchain

approach also allows for logging events in a tamper-proof way:

these logs can then be used, if necessary, to analyze the behavior

of the robots in the swarm without incurring the risk that some

malicious agent has modified them. In addition, it provides a new

way to understand how we debug and how we can approach data

forensics in decentralized systems such as robot swarms. We use

the ARGoS simulator to vary the number of Byzantine robots and

compare the performanceÐin terms of consensus time and prob-

ability of a correct outcomeÐof Valentini et al.’s strategies [23]

and our blockchain-based variants both in the presence and in the

absence of Byzantine robots.

The remainder of this paper is structured as follows. Section 2 re-

views related work. Section 3 explains the fundamental concepts of

blockchain technology. Section 4 compares the logic of the classical

and blockchain approaches. Section 5 evaluates the performance

of the approaches through experiments in simulation. Section 6

discusses advantages and disadvantages of the classical and block-

chain approaches. Section 7 presents our conclusions and provides

directions for future work.

2 RELATEDWORK

Many studies (e.g., [2, 12, 13, 16, 19, 20, 25]) have addressed col-

lective decision-making in robot swarms, a key task for the ad-

vancement of swarm robotics [7]. Collective decision-making tasks

can be divided into two sub-classes: task allocation and consensus

achievement [1]. In task allocation, the goal of the swarm is to

maximize the overall swarm performance by assigning the mem-

bers to different tasks. In consensus achievement, the goal of the

swarm is to agree upon the best among a set of alternatives. The

scenario that we use in this paper is based on the work of Valentini

et al. [23], who describe and evaluate a collective decision scenario

where robots have to reach consensus on the most frequent tile

color in an environment in which the floor is covered with black

and white tiles.

Robot swarms are often assumed to be fault-tolerant by de-

sign [15], therefore, the explicit detection of faults was initially

given little attention in swarm robotics research. Early security

research focused on fault detection in the presence of defective

robots [5, 6]. More recently, the explicit modeling of malicious

robots has attracted more attention: [22] gives an overview of robot

swarms’ robustness to different attacker strategies in a cooperative

navigation experiment and [28] presents a reputation management

system that assigns a dynamic trust level to robots to identify mali-

cious entities. In [10], a lightweight algorithm for detecting Sybil

attacks via physical properties of wireless signals is developed. Con-

nectivity requirements for achieving consensus in the presence of

malicious robots are studied in [11]. [21] presents a resilient consen-

sus protocol for dynamic agents whose network topology changes

over time. However, so far, no secure general frameworks exist to

cope with security issues in a fully decentralized way. Currently,

blockchain technology mainly has applications in the financial

domainÐmost notably as a decentralized database for storing trans-

actions of cryptographic tokens (cryptocurrencies). The potential

use of blockchain technology for managing security issues in robot

swarms was first outlined by Castelló Ferrer [4]. The author de-

scribes blockchain technology as the “key to serious progress in the

field of swarm roboticsž (p. 10). Several possible use cases, including

secure communication, distributed decision making, and innovative

business models are discussed in his paper. However, our paper

is the first to provide an actual proof-of-concept of using block-

chain technology for the coordination of robot swarmsÐincluding

a description, implementation, and evaluation of the approach.

3 FUNDAMENTALS OF BLOCKCHAIN
TECHNOLOGY

A blockchain is a distributed database that is replicated among the

peers of a network. The underlying technology offers a successful

way to create a trusted and tamper-proof system between mutually

untrusted agents without the need of a centralized third-party. A

blockchain is designed to securely store its data, make it resilient

against Byzantine faults, and reach a consistent global state. It is

organized into blocks that contain batches of data (Figure 1). Each

block in the blockchain consists of a header and a body. The body

contains the actual data (transactions), and the header contains

metadata, such as a timestamp and reference to the previous block

via a hash, which creates a chain of blocks back to the very first

blockÐthe genesis block. Each one of these hashes takes into ac-

count the transaction and metadata information contained in its

correspondent block. Therefore, any attempt to alter the informa-

tion of previous blocks will automatically result in a different hash,

thus, breaking the chain. The participants (nodes) of the network

store copies of the blockchain. Other participants can connect to

these nodes and exchange the information stored in the block-

chain. Blockchains are usually permissionlessÐanyone can join the

network at any time without the need of authentication and can

read the contents of the blockchain. However, permissioned/private

blockchains are currently used in order to develop proof-of-concept

systems (such as the one introduced in this paper) with a limited

number of agents.

Blockchains are append-only databases: existing data in a block-

chain is immutable. The data is stored at addresses, i.e., crypto-

graphic public identifiers which can be derived from private keys.

By creating transactionsÐsigned data packages [3]Ðthe participants

can interact with a blockchain. Transactions contain a sender ad-

dress, a recipient address, a digital signature, a certain amount of a

cryptocurrency (a value stored on the blockchain), a fee that is given

to the miner (see below), and an optional data field. Only partici-

pants owning the corresponding private key can send transactions

from a sender address.

Blockchains cannot fall back on the authority of a trusted third-

party. Therefore, to guarantee consensus on the distributed storage,

a consensus protocol is used. It serves as a tool for agreeing on the

state of the blockchain and for securely appending new informa-

tion to the blockchain. The most popular consensus algorithm is

Session 13: Robotics: Multi-Robot Coordination AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

542

Timestamp

Prev. hash

Nonce

Block k - 1

<Transactions>

Timestamp

Prev. hash

Nonce

Block k

<Transactions>

Timestamp

Prev. hash

Nonce

Block k + 1

<Transactions>

Figure 1: The blockchainÐa distributed databaseÐis orga-

nized into blocks. Each block consists of two parts, the

header and the body. The header contains metadata for the

blockÐmost importantly the hash of the previous block

which creates a unique chain of blocks. The body contains

the actual data: the transactions.

Proof-of-Work (PoW). PoW is the proof that a certain amount of

computational power was consumed to solve a puzzle that allows

the adding of a block to the blockchain. The process of finding

such a solution is called mining; the nodes that execute the mining

process are called miners. Once miners find a solution (i.e., a hash

string that fulfills a certain target and takes into account the block’s

data and a suitable nonce value), they distribute the corresponding

block to all the network nodes, and if the solution is valid, the

blockchain gets extended with this block. While the computation

of the PoW is time-consuming, verifying a correct solution is fast.

Participants of a blockchain accept the longest chain (i.e., the chain

which consumed the greatest total amount of calculations) as the

true state of the blockchain; nodes connect to each other in a peer-

to-peer manner and exchange their blockchain information. Blocks

can temporarily have different successive blocks, a situation that is

known as a fork. This case occurs if multiple miners find solutions

to the PoW puzzle almost simultaneously or if the blocks are not

disseminated fast enough among the participants. These forks get

resolved over time, when one chain of blocks becomes longer than

the others. Transactions in the discarded chain that are not yet part

of the longer chain can be included in later blocks again.

The PoW guarantees that changing existing information memo-

rized in the blockchain would require an attacker to redo all PoW

computations from the block where the manipulations were made

up to the current block. Therefore, as long as an attacker does not

have more than 50 % of the processing power of all the miners par-

ticipating in the network, the data in the blockchain is immutable.

As an incentive for keeping the mining process running, the solver

of a puzzle receives a reward (immutable tokens acting as ‘cryp-

tocurrency’) that is composed of a block reward and the collected

fees obtained from the transactions that are included in the solved

block.

While blockchain technology was originally developed as a peer-

to-peer financial system, in this paper, we use the Ethereum pro-

tocol [3, 27] which introduced blockchain-based smart contracts.

A smart contract is a decentralized protocol that can contain vari-

ables and deterministic functions that allow for executing Turing-

complete programming code. Each node in the blockchain network

runs an Ethereum Virtual Machine (EVM) implementation that

handles the internal state and executes the computations of the

smart contracts. Participants of a blockchain network interact with

functions of the smart contracts by sending transactionsÐusing the

data field to specify the argumentsÐto the smart contract address.

The transactions get executed when a miner includes these trans-

actions in a new block. Upon receipt of a block, each participant of

the network executes the list of transactions again and checks that

only valid transactions are included in the block. This decentralized

execution and validation of the code ensures “applications that

run exactly as programmed without any possibility of downtime,

censorship, fraud or third party interference.ž [8].

4 METHODS

In this section, we present Valentini et al.’s work [23] (classical

approach) and our approach that uses blockchain-based smart con-

tracts (blockchain approach). We use the subscripts ‘cl’ and ‘bc’ to

denote the classical and blockchain variants of elements in our

algorithms, respectively (e.g., DCbc for the Direct Comparison (DC)

strategy of the blockchain approachÐdefined below).

4.1 Experimental setup

In both the classical and blockchain approaches, the goal of the

robot swarm is to make a collective decision and to reach con-

sensus on the most frequent tile color (in all our experiments

the white color) of a black/white grid (Figure 2)1. Each robot has

a current opinion about which color is the most frequent, and

via dissemination/decision-making strategies, they influence their

peers.

The robots move in a square environment of 2 × 2 m2 that is

bounded by four walls. The grid is composed of |B | black tiles and

|W | white tiles, with |B | + |W | = 400. Each tile is 0.1 × 0.1 m2.

The difficulty of the task (ρ∗
b
) can be varied by modifying the ratio

between the percentage ρb =
|B |

|B |+ |W |
of black tiles and ρw =

|W |
|B |+ |W |

of white tiles: ρ∗
b
=

ρb
ρw

. In a relatively simple task, the

difference between the percentage of white and black tiles is large

(e.g., ρb = 34%, ρw = 66% → ρ∗
b
≈ 0.52), while in a relatively

difficult task, the difference is small (e.g., ρb = 48 %, ρw = 52 %→

ρ∗
b
≈ 0.92).

At the end of a successful run, all robots will have the same

opinion corresponding to the most frequent color.

4.2 Simulation environment

The simulations were executed in discrete time steps (ticks)Ðwith

10 ticks per second using the ARGoS robot swarm simulator [18]

(version 3.0.0-beta48) and the ARGoS-Epuck [9] plugin with N = 20

e-puck robots on a computer cluster. For each experimental run,

two nodes were used on the cluster with 16 cores each. Each core

has a clock rate of 2.0 GHz and 1GB of RAM. ARGoS was executed

using N = 20 threads, and, for the blockchain approach, one geth

process (an interface for running a full Ethereum node) was started

for each robot using a single thread. The simulated robots were

programmed to use the IPC socket of geth.

Robots can only communicate with each other if there is no other

robot hindering the communication and if the robots’ distance

to each other is smaller than dn = 50 cm. We used this design

1A video of one experimental run can be found at:
https://www.youtube.com/watch?v=buDJuHHL5KM

Session 13: Robotics: Multi-Robot Coordination AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

543

https://www.youtube.com/watch?v=buDJuHHL5KM

Figure 2: The robots’ task is to determine the most frequent

color in an environment whose floor is covered with black

andwhite tiles. This collective-decision experimentwas con-

ducted using the ARGoS robot swarm simulator with the

plugin for e-puck robots.

constraint in order to mimic the capabilities of IR/Bluetooth/RF

transmission, so that we can easily test the algorithm using real

robots in future research.

4.3 Classical approach

In the classical approach of Valentini et al. [23], the behavior of

each robot is determined by a probabilistic finite state machine

(PFSM) with Exploration states Ei and Dissemination states Di

(i ∈ {black,white}, i indicating the current opinion of the robot).

In the beginning of the experiment, all robots are in one of the

Exploration states.

There are three low-level control routines: (i) the random walk

routine, (ii) the obstacle avoidance routine, and (iii) the quality

estimation routine. Their execution is dictated by the state of the

robot (Ei or Di).

When in the Ei state, a robot senses the features of the envi-

ronment; the robot remains in the Ei state for a time determined

by drawing a sample from an exponential distribution with mean

σ = 100 ticks when the robot enters the state. In this state, the robot

executes the low-level routines (i), (ii), and (iii). Each robot has a

current opinion i ∈ {black,white} about what it believes to be the

most frequent tile color. In the quality estimation routine the robot

senses the color of the surface once per tick via its ground sensors.

It updates its current quality estimate ρ̂i by calculating the ratio

between the number of ticks when it sensed the color of its current

opinion and the total number of ticks in the current exploration

state. At the end of each exploration state, the robot switches to

the dissemination state Di that matches its opinion i .

When in the Di state, a robot only executes the low-level rou-

tines (i) and (ii).2 Additionally, it disseminates its opinion. At the

end of the state, it applies a decision-making strategy to decide

whether or not to change its opinion. The decision-making strate-

gies considered in [23] are: (i) DMVDcl (voter model): adopt the

opinion of a random neighbor; (ii) DMMDcl (majority voting): adopt

the opinion of the majority of the neighbors (including the robot’s

own opinion); (iii) DCcl (direct comparison): adopt the opinion of a

random neighbor only if the robot’s current quality estimate ρ̂i is

lower than the neighbor’s quality estimate.

2This is because when in the dissemination state the goal of the robots is to mix their
positions and their opinions

The used strategy also determines the duration of the state: using

the DMVDcl or DMMDcl strategy, the robot selects the duration

of its Di state based on its current quality estimate ρ̂i by drawing

a sample from an exponential distribution with mean ρ̂iд (the pa-

rameter д is a design parameter, which in our experiments was set

to д = 100 ticks). The duration of the Di state using the DCcl strat-

egy is independent of the current quality estimate; it is chosen by

drawing a sample from an exponential distribution with mean ρwд.

Only in the last 30 ticks of the state, the robot receives opinions

of other robots. It uses the last two received opinions to decide

whether or not to change its opinion i by using one of the strategies.

Finally, the robot switches to the Ei state.

4.4 Blockchain approach

We designed the blockchain approach3 to be as similar as possible to

the classical approach. The behavior of the robots is determined by

a PFSM with the same low-level routinesÐwhile respecting particu-

larities of blockchain technology and adding safety measurements

for identifying Byzantine robots. Each robot keeps a separate copy

of the blockchain and acts as a node and miner in the blockchain

network.

The blockchain approach is driven by a blockchain-based smart

contractÐprogramming code that is executed and verified via block-

chain technology by every node of the blockchain network. The

blockchain serves as a medium to share knowledge, record votes,

and apply decision-making strategies.

The smart contract provides three functions: registerRobot,

applyStrategy, and vote; to initiate their execution, the robots

create signed transactions and send them to their peers via the

blockchain protocol. The functions do not immediately return a

value since the transactions first have to be mined and included into

a block. Therefore, the robots listen to events, which are created as

soon as a transaction is mined.

The experiments are conducted using a private Ethereum net-

work (in contrast to Ethereum’s main network). For this purpose,

a custom genesis block is used, which allocates 100 ether4 to each

robot; this is enough to ensure that there are no limitations on

the number of transactions a robot can send during an experimen-

tal run. The mining difficulty is set to a fixed value by modifying

Ethereum’s source code. This ensures that the mining difficulty is

suited for the (simulated) robots’ limited computational power and

that the experiments are not influenced by Ethereum’s automatic

adaptation of the mining difficulty.

At the beginning of each experimental run, a geth process is

started for each robot. Additionally, we introduce an auxiliary geth

node to which each robot is connected during the initialization

phase. The auxiliary node publishes the smart contract and starts to

mine in order to include the contract in the blockchain and to obtain

its address. Each robot sends a transaction to the registerRobot

function of the smart contract. This tells the blockchain the robot’s

public key. The auxiliary node stops its mining process after the

sent transactions have been mined. The robots listen to the events

created by the registerRobot function, which include the robots’

3The source code for the blockchain approach is available at:
https://github.com/Pold87/blockchain-swarm-robotics
4Ethereum’s cryptocurrency (immutable tokens stored on the blockchain)

Session 13: Robotics: Multi-Robot Coordination AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

544

https://github.com/Pold87/blockchain-swarm-robotics

initial opinions as well as the block numbers and corresponding

block hashes, where the opinions are saved. As soon as all the steps

above are successful, the robots disconnect from the auxiliary node

and the experimental run is started.

There is no difference between the exploration states of the

classical and the blockchain approaches. However, the dissemina-

tion states are different due to particularities of the blockchain

approach: in the last 30 ticks of the Di state, a robot connects to the

Ethereum processes of its physical neighbors. In addition, in the

last 30 ticks of the Di state, robots are also mining (i.e., they try to

find a solution to the Proof-of-Work-based mining puzzle; we used

the default Ethereum PoW puzzle). This ensures that the transac-

tions of applyStrategy and vote are included into the blockchain

and distributed in the network. The blockchain consists of differ-

ent forks (versions) during the experiment since information is

often not spread out in the entire network but only in local robot

clusters and robots will mine on different versions of the block-

chain. Due to the movements of the robots, the network structure

of the robots changes over time. Whenever two or more robots

are connected to each other, the Ethereum protocol compares the

different blockchains and uses the longest chain as the truth. Addi-

tionally, transactions that are not yet included in a block are shared.

Since the robots have an equal hash rate (computational power),

the longest chain will be the one to which most robots contributed.

During the dissemination phase, the robots send transactions to

the function vote. As in the classical approach, we implemented

three decision-making strategies: DMVDbc, DMMDbc, and DCbc.

The amount of votes a robot sends during the dissemination phase

depends on the used decision-making/dissemination strategy: when

using DMVDbc or DMMDbc, the robots create a voting transaction

every five ticks of the dissemination state. Therefore, the longer

a robot’s dissemination time, the more votes it creates. If robots

use the DCbc strategy, they create only one voting transaction each

time they enter the dissemination state. The voting transaction

includes a robot’s opinion (and when using the DCbc strategy, also

their quality estimate ρ̂i), the number of the stable block5 their

opinion is based upon, and the corresponding block hash (that

the robots received when they listened to the events created by

registerRobot/applyStrategy).

The robots interact with applyStrategy to obtain their new

opinions at the end of the dissemination state. For this purpose, the

robots send a transaction with their current opinion as an argument

to the function. The applyStrategy function then first chooses

two pseudo-random opinions (using the block number and public

key of the robot as random seed) from the stable block. Choosing

5We define a stable block as the block which has exactly z = 6 confirmations. The
choice of z is a trade-off between speed and security; it has implications for both the
probability of forks to occur and for attacks to be successful. In this paper, we are only
concerned with the influence of z on the probability of forks. If z is chosen too small,
the probability increases that the opinion of a robot is just based on a locally available
fork (and will, therefore, be invalid when the fork is resolved and the majority of the
robots agree on a different blockchain version); if z is chosen too high, it will introduce
delays (i.e., a robot’s opinion will be based on an outdated opinion distribution). In

our experiments, the average block timeÐgiven the fixed mining difficulty of 106 and
fixed total hash power of the robotsÐis approximately 17 seconds. Therefore, z = 6
blocks are mined on average after 102 seconds. The average difference per time step
between the highest and lowest block number of all robots was 8.5 and the average
standard deviation of the differences 2.7. The optimal value for z depends on many
factors, such as the movement of the robots, communication range, number of robots,
and the expected block time.

the opinions from the stable block increases the probability that

the blockchain operates on information on which consensus has

been reached and, consequently, reduces the probability that the

information was taken from a fork that will be discarded in the

future. Then, applyStrategy applies the decision-making strategy

(DMVDbc DMMDbc, or DCbc, depending on the experiment); the

logic of the decision-making strategies is implemented in the same

way as in the classical approach. The applyStrategy function

stores the chosen opinion and block number of the stable block

together with the public key of the robot in the blockchain.

The robots wait until their applyStrategy transaction is mined

by a robot of the network. During the waiting time, they connect

and disconnect from the Ethereum processes of other robots, con-

tinue tomine, perform the randomwalkwhile avoiding other robots,

but neither disseminate their opinions nor explore the environment.

As soon as the transaction is mined and the event with the new

opinion i is created, they switch to the corresponding Ei state.

The smart contract uses three safety criteria to decide if votes are

to be excluded from the blockchain; if at least one of these criteria

is met, the voting transaction is ignored. Using the safety criteria,

it can, for example, be decided whether the robots have different

blockchain versions or whether they were separated from the rest

of the swarm for too long: (i) Outdated opinion: the opinion of the

robot is based on an outdated block number; this is the case if the

robot did not send a transaction to applyStrategy in the last 25

blocks; (ii) Contingent exhausted: after each application of apply-

Strategy, the smart contract assigns a voting contingent to the

robot (50 votes when using the DMMDbc or DMVDbc strategy; one

vote when using the DCbc); the contingent gets renewed every time

the robot sends a transaction to the applyStrategy function. This

safety criterion prevents “vote spammingž; (iii) Different blockchain

versions: the robots have different blockchain versions, which is

found out by comparing the hash value of the specified blocks.

This safety criterion ensures that the opinion of robots is based on

information on which consensus has been reached.

4.5 Byzantine robots

We model a Byzantine robot as follows: it always votes for the

minority color (black in our experiments) and it keeps a quality

estimate of ρ̂i = 1.0, independent of its actual sensor readings.

Apart from that, it acts in the same way as a non-Byzantine robot.

To account for Byzantine robots via the smart contract, a robot’s

public key is added to a blacklist on the blockchain if none of the

safety criteria applies and it sends a vote for the color that does

not match its stored opinion on the blockchain. In other words,

the smart contract detects the inconsistency when a robot votes

for a color other than the one that was agreed upon during the

consensus process. From this moment on, the votes of this robot

are ignored and not added to the list of votes in the blockchain for

the remainder of the experimental run. When a robot is identified

as a ‘malicious’ robot, it is with 100% certainty (i.e., there are no

false positives).

4.6 Metrics

To measure the performance of the classical and blockchain ap-

proaches we use the following metrics:

Session 13: Robotics: Multi-Robot Coordination AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

545

Exit probability (EN): this is “the probability to make the best deci-

sion, computed as the proportion of runs that converge to consensus

on opinion a.ž [23]. In our experiments: a =w (‘white’).

Consensus time of correct outcomes (T correct
N

): this is the number of

seconds needed until all non-Byzantine robots in the swarm have

opinion ‘white.’ The metric is computed over all experimental runs

that converged to ‘white’; runs that converged to ‘black’ are not

considered.

5 EXPERIMENTS

This section describes two experiments in which we compare the

classical and the blockchain approaches using the swarm robotics

simulator ARGoS. The experiments for the classical approach are

conducted by running the code of Valentini et al. [23].6

In each experimental run, 50 % of the robots start with opinion

‘white’ and the other 50 % with opinion ‘black’ to have an unbiased

initial opinion distribution.

5.1 Experiment without Byzantine robots

In the first experiment, we vary the difficulty ρ∗
b
= ρb/ρw of the

task and compare the classical and blockchain approaches across the

different decision-making strategies. The goal of this experiment

is to determine if blockchain-based smart contracts can be used

for collective decision-making in robot swarms. In this experiment,

there are no Byzantine robots.

In the classical approach (Figure 3, top row), the results obtained

with the three decision-making strategies show different patterns

for themetrics EN andT correct
N

. The DCcl strategy shows the highest

exit probability for all difficulty settings. The DMMDcl strategy has

an exit probability below 1.0 even for the easiest setting. It drops to

chance level at the highest difficulty setting. The DMVDcl strategy

is more stable, but its EN also decreases at higher difficulty settings.

For all difficulty settings, the DCcl strategy has the fastest consensus

time, followed by DMVDcl and then DMMDcl.

In the blockchain approach (Figure 3, bottom row), the exit prob-

ability (EN) of the DMMDbc and DMVDbc strategy shows a similar

pattern and decreases for higher ρ∗
b
. The exit probability of the DCbc

strategy is EN = 1.0 for all ρ∗
b
≤ 0.79 and drops to EN ≈ 0.8 at the

highest difficulty setting. The consensus time using the DMVDbc

and DMMDbc strategy is largely unaffected by the difficulty of the

task. In contrast, the consensus time of the DCbc strategy rises with

the difficulty.

In general, the exit probabilities (EN) show similar patterns when

using the strategies of the classical approach and when using the

counterparts of the blockchain approach. However, the DMVDbc

performsworse than the DMVDcl for almost all difficulty levels. The

consensus times (T correct
N

) of the DMVDbc and DMMDbc strategies

are, unlike their counterparts in the classical approach, unaffected

by the task difficulty.T correct
N

of the DMVDbc has a high variability.

6We used a different implementation of the DMMDcl strategy, since the original
implementation contained a bug that led to the following behavior: if there is a tie
in a robot’s received opinions (including the robot’s own opinion), it always changes
its opinion to ‘white’. This case occurs, for example, if robot A has opinion ‘black’
and receives one vote for ‘white’ from robot B; robot A then changes to opinion
‘white’. Since there were always more white tiles than black tiles in Valentini et al.’s
experiments, this resulted in shorter consensus times and higher exit probabilities
than what would have been without the bug. Because of this, the results presented in
this paper for the DMMDcl strategy are not consistent with those presented in [23].

T correct
N

of both the DCbc and DCcl rises with higher difficulties but

the DCbc is overall slower.

Discussion. Our results show that similar results can be achieved

using the classical approach and the blockchain approach. The

performance of the different strategies implemented in the two

approaches is not exactly equal. This is due to the fact that some

aspects of the classical approach cannot be implemented using the

blockchain approach. For example, in the classical approach robots

send their opinion directly to their neighbors; if a neighbor has

already received the opinion in a previous timestep from the same

robot, it is discarded. In contrast, the blockchain approach creates

a number of voting transactions proportional to the dissemination

time and all votes are stored in the blockchain. Furthermore, mining

and waiting for events in the blockchain approach can create delays

which are not present in the classical approach.

5.2 Experiment with Byzantine robots

In the second experiment, we test the robustness of the blockchain

approach to the presence of Byzantine robotsÐrobots that always

vote for black with a quality estimate of ρ̂i = 1.0 (see Section 4.5).

Byzantine robots make the collective decision task more difficult.

Since they never change their opinion, consensus on the majority

color is no longer achievable when one or more Byzantine robots

are part of the swarm. Hence, we stop one experimental run as soon

as all non-Byzantine robots of the swarm have the same opinion for

the first time (sub-swarm consensus). This allows for comparisons

between the classical and blockchain approaches. In the experi-

ments, we study how increasing the number of Byzantine robots

affects the classical and blockchain approaches. We compare the

performance of the two approaches for different values of the num-

ber k of Byzantine robots in the swarm. The difficulty of the task is

set to ρ∗
b
= 0.52 (34 % of black tiles).

The results (EN andT correct
N

) show a clear difference in the perfor-

mance of the classical and blockchain approaches (Figure 4) when

using the DMVD or DMMD strategy. While the exit probabilities of

the classical approach sharply drop below chance level with even

a small number of Byzantine robots, the blockchain approach is

more resilient and the exit probabilities remain above chance level

for almost all values of k .

In contrast, the performance of the DCbc strategy shows a more

similar pattern to the DCcl strategy. This pattern occurs since the

robots only change their opinion when their current quality esti-

mate is smaller than the selected opinion in the smart contract. Since

Byzantine robots send quality estimate ρ̂ = 1.0, they can always

keep their opinion when using the DCbc strategy and actÐfrom the

smart contract’s perspectiveÐaccording to the protocol and there-

fore are not put on the blacklist. In other words, the modulation

technique used by the DMVDbc and DMMDbc strategy (sending an

amount of votes proportional to the quality estimate ρ̂ instead of

directly sending the value ρ̂) is robust to the presence of Byzantine

robots, while the DCbc strategy is vulnerable because Byzantine

robots can circumvent the security measurements.

The consensus times of the classical and blockchain approaches

significantly differ from each other; this is partly due to the fact that

using the classical approach, EN is small or zero for several values

of k . Therefore, T correct
N

is only based on a few runs or cannot be

Session 13: Robotics: Multi-Robot Coordination AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

546

Experiment without Byzantine robots (Classical approach)

DMVD DMMD DC

0.
52

0.
56

0.
61

0.
67

0.
72

0.
79

0.
85

0.
92

0.
52

0.
56

0.
61

0.
67

0.
72

0.
79

0.
85

0.
92

0.
52

0.
56

0.
61

0.
67

0.
72

0.
79

0.
85

0.
92

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Difficulty (ρb
*
)

E
x
it
 p

ro
b

a
b

ili
ty

 (
E

N
)

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

DMVD DMMD DC

0.
52

0.
56

0.
61

0.
67

0.
72

0.
79

0.
85

0.
92

0.
52

0.
56

0.
61

0.
67

0.
72

0.
79

0.
85

0.
92

0.
52

0.
56

0.
61

0.
67

0.
72

0.
79

0.
85

0.
92

0

40

80

120

160

200

240

280

320

360

400

Difficulty (ρb
*
)

C
o

n
s
e

n
s
u

s
 t

im
e

 (
T

Nc
o
rr

e
c
t /

 1
0

)

Experiment without Byzantine robots (Blockchain approach)

DMVD DMMD DC

0.
52

0.
56

0.
61

0.
67

0.
72

0.
79

0.
85

0.
92

0.
52

0.
56

0.
61

0.
67

0.
72

0.
79

0.
85

0.
92

0.
52

0.
56

0.
61

0.
67

0.
72

0.
79

0.
85

0.
92

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Difficulty (ρb
*
)

E
x
it
 p

ro
b

a
b

ili
ty

 (
E

N
)

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

DMVD DMMD DC

0.
52

0.
56

0.
61

0.
67

0.
72

0.
79

0.
85

0.
92

0.
52

0.
56

0.
61

0.
67

0.
72

0.
79

0.
85

0.
92

0.
52

0.
56

0.
61

0.
67

0.
72

0.
79

0.
85

0.
92

0

40

80

120

160

200

240

280

320

360

400

Difficulty (ρb
*
)

C
o

n
s
e

n
s
u

s
 t

im
e

 (
T

Nc
o
rr

e
c
t /

 1
0

)

Figure 3: Exit probability (EN) and consensus time of correct outcomes (T correct
N

) as a function of the difficulty of the task ρ∗
b
∈

{0.52, 0.56, 0.61, 0.67, 0.72, 0.79, 0.85, 0.92} (top row: classical approach; bottom row: blockchain approach). The data is collected

by executing 40 repetitions for each combination of difficulty level and decision-making strategy.

calculated (remember that T correct
N

is based on correct outcomes

only). The reliability of the consensus time of the classical approach

is hence lower because the sample is much smaller. T correct
N

of

the DCcl strategy is particularly high (with a high variability) at

k ∈ {3, 4, 5}; for these values of k , the Byzantine robots manage to

influence someÐbut not allÐof the non-Byzantine robots, making

it difficult to find consensus on any color. In contrast, the DCbc is

fast and T correct
N

decreases with the number of Byzantine robots.

The slight increase of EN for k = 9 for both the classical and

the blockchain approach is due to the small number of remaining

non-Byzantine robots: since out of the N = 20 robots, ten (non-

Byzantine) robots start with initial opinion ‘white’, there is only

one remaining non-Byzantine robot with initial opinion ‘black’ that

has to change its opinion to ‘white’ to reach sub-swarm consensus.

Discussion. Even with the relaxed sub-swarm consensus met-

ric, the classical approach breaks down with a small number of

Byzantine robots. In contrast, the DMVDbc and DMMDbc decision-

making strategies yield high exit probabilities since a robot is added

to the blacklist whenever there is a mismatch between the opinion

it sends to the smart contract residing on the blockchain and its

opinion as written in the blockchain.

6 DISCUSSION

In this section, we list the advantages and disadvantages of the

classical and blockchain approaches and discuss the results of the

experiments in more general terms.

In presence of Byzantine robots, the classical approach always

converges to the wrong color if the simulation is not stopped when

sub-swarm consensus is reached. In the blockchain approach, in

contrast, consensus could be achieved in a fully decentralized way

via the smart contract, without a priori knowledge regarding which

robots are Byzantine. However, we considered sub-swarm consen-

sus measured by an external observer. Even though this metric can-

not be measured in a real robot deployment (as we would not know

which robots are Byzantine), we use it to see whether the “block-

chain machineryž causes the convergence of the non-Byzantine

robots to be much slower compared to the classical approach.

The Proof-of-Work secures the data of the robot swarm as long

as no intruders with significantly higher hash rates get access to the

blockchain. However, the work presented in this paper is a proof-

of-concept and in future work we will consider other consensus

protocols, such as Proof-of-Stake (already implemented in some ex-

isting blockchain protocols), Proof-of-Sensing (only robots that can

produce a certain sensory output can send/validate transactions), or

even Proof-of-physical-Work (only robots that can prove that they

have performed physical workÐsuch as collecting an itemÐcan

send/validate transactions).

Using the classical approach, the message size is 2 Bytes with the

DMVDcl/DMMDcl strategies and 4 Bytes with the DCcl strategy.

The message size in the blockchain approach is significantly larger:

approximately 160 Bytes per transaction since it contains also meta-

data, such as the digital signature and address of the receiving smart

Session 13: Robotics: Multi-Robot Coordination AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

547

Experiment with Byzantine robots (Classical approach)

DMVD DMMD DC

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Number of Byzantine robots (k)

E
x
it
 p

ro
b

a
b

ili
ty

 (
E

N
)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

DMVD DMMD DC

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

0

40

80

120

160

200

240

280

320

360

400

Number of Byzantine robots (k)

S
u

b
−

s
w

a
rm

 c
o

n
s
.

ti
m

e
 (

T
Nc
o
rr

e
c
t /

 1
0

)

Experiment with Byzantine robots (Blockchain approach)

DMVD DMMD DC

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Number of Byzantine robots (k)

E
x
it
 p

ro
b

a
b

ili
ty

 (
E

N
)

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

DMVD DMMD DC

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

0

40

80

120

160

200

240

280

320

360

400

Number of Byzantine robots (k)

S
u

b
−

s
w

a
rm

 c
o

n
s
.

ti
m

e
 (

T
Nc
o
rr

e
c
t /

 1
0

)

Figure 4: Exit probability (EN) and consensus time of correct outcomes (T correct
N

) as a function of the number of Byzantine

robots (top row: classical approach; bottom row: blockchain approach). Since T correct
N

is calculated using correct outcomes

only, it is only based on a few runs or cannot be calculated when EN is small or zero. The data is collected by executing 50

repetitions for each combination of number of Byzantine robots and decision-making strategy.

contract. For a run of 15min, the blockchain size is approximately

10MB for the DMVDbc/DMMDbc strategies, and approximately

4MB for the DCbc strategy. The size increases linearly both with

time and number of robots.

We assume that the robots are able to send at least some kB/s.

Due to digital signatures in blockchain technology, noisy commu-

nication channels will not alter the sent transactions: they will

either be received completely or be invalid. Since transactions are

distributed in a peer-to-peer manner, unreliable communication

channels could also receive past information from different robots

after the information has been disseminated in the network.

We have not investigated how sparse connectivity affects the

blockchain approach. However, we still expect good performance

since all crucial actions of different robot clusters get recorded and

a new global view could be obtained by merging the different views

of the clusters once reunited.

7 CONCLUSIONS AND FUTUREWORK

While swarm robotics systems are often claimed to be highly fault-

tolerant, in some cases one or a few malfunctioning robots suffice

to make a robot swarm unable to continue operating. To the best

of our knowledge, in this paper we have described, implemented,

and evaluated the first proof-of-concept of a robot swarm that

manages malfunctioning robots via blockchain technology. Using a

blockchain-based smart contract, we demonstrated that Byzantine

robots can be identified and excluded from the swarm.

Until now, blockchain technology was mainly used on the Inter-

net with communication gaps of a few seconds. Its use in swarm

robotics poses several challenges. For example, the communication

can be much slower and the information only locally available for

longer time periods (i.e., in local robot clusters that are separated

from the rest of the swarm). Moreover, the hardware used in swarm

robotics is usually much more limited (computational/memory limi-

tations) than the hardware used in desktop computers or computing

clusters.

In future work, we will expand the range of possible Byzantine

failures and will study how blockchain technology can be used in

other swarm robotics tasks. Additionally, we intend to scale down

the computation and memory requirements to make the blockchain

run on devices with very limited computational capabilities. Finally,

we are currently working on transferring the system to a swarm of

real e-puck robots.

8 ACKNOWLEDGEMENTS

Volker Strobel and Marco Dorigo acknowledge support from the

Belgian F.R.S.-FNRS and from the FLAG-ERA project RoboCom++.

Eduardo Castelló Ferrer acknowledges support from the Marie

Skłodowska-Curie actions (EU project BROS - DLV-751615).

Session 13: Robotics: Multi-Robot Coordination AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

548

REFERENCES
[1] M. Brambilla, E. Ferrante, M. Birattari, and M. Dorigo. 2013. Swarm robotics: A

review from the swarm engineering perspective. Swarm Intelligence 7, 1 (2013),
1ś41. https://doi.org/10.1007/s11721-012-0075-2

[2] A. Brutschy, G. Pini, C. Pinciroli, M. Birattari, and M. Dorigo. 2014. Self-
organized task allocation to sequentially interdependent tasks in swarm ro-
botics. Autonomous Agents and Multi-Agent Systems 28, 1 (2014), 101ś125.
https://doi.org/10.1007/s10458-012-9212-y

[3] V. Buterin. 2014. A next-generation smart contract and decentralized application
platform. Ethereum project white paper. (2014). https://github.com/ethereum/
wiki/wiki/White-Paper

[4] E. Castelló Ferrer. 2016. The blockchain: A new framework for robotic swarm
systems. pre-print (2016). arXiv:1608.00695v3

[5] A. L. Christensen, R. O’Grady, M. Birattari, and M. Dorigo. 2008. Fault detection
in autonomous robots based on fault injection and learning. Autonomous Robots
24, 1 (2008), 49ś67. https://doi.org/10.1007/s10514-007-9060-9

[6] A. L. Christensen, R. O’Grady, and M. Dorigo. 2009. From fireflies to fault-tolerant
swarms of robots. IEEE Transactions on Evolutionary Computation 13, 4 (2009),
754ś766. https://doi.org/10.1109/TEVC.2009.2017516

[7] M. Dorigo, M. Birattari, and M. Brambilla. 2014. Swarm robotics. Scholarpedia 9,
1 (2014), 1463.

[8] Ethereum Foundation (Stiftung Ethereum). 2017. Ethereum project. (2017).
https://ethereum.org/ visited on 22/10/2017.

[9] L. Garattoni, G. Francesca, A. Brutschy, C. Pinciroli, and M. Birattari. 2015. Soft-
ware infrastructure for E-puck (and TAM). Tech. Rep. 2015-004. IRIDIA, Université
libre de Bruxelles.

[10] S. Gil, S. Kumar, M. Mazumder, D. Katabi, and D. Rus. 2017. Guaranteeing spoof-
resilient multi-robot networks. Autonomous Robots 41, 6 (01 Aug 2017), 1383ś1400.
https://doi.org/10.1007/s10514-017-9621-5

[11] L. Guerrero-Bonilla, A. Prorok, and V. Kumar. 2017. Formations for resilient
robot teams. IEEE Robotics and Automation Letters 2, 2 (April 2017), 841ś848.
https://doi.org/10.1109/LRA.2017.2654550

[12] A. Gutiérrez, A. Campo, F. Monasterio-Huelin, L. Magdalena, and M. Dorigo.
2010. Collective decision-making based on social odometry. Neural Computing
& Applications 19, 6 (2010), 807ś823.

[13] H. Hamann, T. Schmickl, H. Wörn, and K. Crailsheim. 2012. Analysis of emer-
gent symmetry breaking in collective decision making. Neural Computing and
Applications 21, 2 (2012), 207ś218. https://doi.org/10.1007/s00521-010-0368-6

[14] F. Higgins, A. Tomlinson, and K. M. Martin. 2009. Survey on security challenges
for swarm robotics. In Proc. Fifth Int. Conf. Autonomic and Autonomous Systems.
IEEE Press, 307ś312. https://doi.org/10.1109/ICAS.2009.62

[15] A. G. Millard, J. Timmis, and A. F. T. Winfield. 2014. Towards exogenous fault
detection in swarm robotic systems. In Towards Autonomous Robotic Systems -
Proceedings of TAROS 2013 - 14th Annual Conference (Lecture Notes in Computer
Science), Vol. 8069. Springer, 429ś430. https://doi.org/10.1007/978-3-662-43645-5_
44

[16] M. A. Montes de Oca, E. Ferrante, A. Scheidler, C. Pinciroli, M. Birattari, and
M. Dorigo. 2011. Majority-rule opinion dynamics with differential latency: A

mechanism for self-organized collective decision-making. Swarm Intelligence 5,
3ś4 (2011), 305ś327. https://doi.org/10.1007/s11721-011-0062-z

[17] S. Nakamoto. 2008. Bitcoin: A peer-to-peer electronic cash system. (2008).
https://bitcoin.org/bitcoin.pdf

[18] C. Pinciroli, V. Trianni, R. O’Grady, G. Pini, A. Brutschy, M. Brambilla, N. Mathews,
E. Ferrante, G. Di Caro, F. Ducatelle, M. Birattari, L. M. Gambardella, and M.
Dorigo. 2012. ARGoS: A modular, parallel, multi-engine simulator for multi-
robot systems. Swarm Intelligence 6, 4 (2012), 271ś295. https://doi.org/10.1007/
s11721-012-0072-5

[19] G. Pini, A. Brutschy, M. Frison, A. Roli, M. Dorigo, andM. Birattari. 2011. Task par-
titioning in swarms of robots: An adaptive method for strategy selection. Swarm
Intelligence 5, 3ś4 (2011), 283ś304. https://doi.org/10.1007/s11721-011-0060-1

[20] A. Reina, M. Dorigo, and V. Trianni. 2014. Collective decision making in dis-
tributed systems inspired by honeybees behaviour. In Proceedings of 13th Interna-
tional Conference on Autonomous Agents and Multiagent Systems (AAMAS 2014).
Int. Foundation for Autonomous Agents and Multiagent Systems, 1421ś1422.

[21] D. Saldaña, A. Prorok, S. Sundaram,M. F.M. Campos, andV. Kumar. 2017. Resilient
consensus for time-varying networks of dynamic agents. In Proc. American
Control Conf. (ACC). IEEE Press, 252ś258. https://doi.org/10.23919/ACC.2017.
7962962

[22] I. Sargeant and A. Tomlinson. 2016. Maliciously manipulating a robotic swarm.
In Proc. of ESCS’16 ś The 14th Intern. Conf. on Embedded Systems, Cyber-physical
Systems, & Applications. CSREA Press, 122ś128.

[23] G. Valentini, D. Brambilla, H. Hamann, andM. Dorigo. 2016. Collective perception
of environmental features in a robot swarm. In Swarm Intelligence ś Proceedings
of ANTS 2016 ś Tenth International Conference (Lecture Notes in Computer Science),
Vol. 9882. Springer, 65ś76. https://doi.org/10.1007/978-3-319-44427-7_6

[24] G. Valentini, E. Ferrante, and M. Dorigo. 2017. The best-of-n problem in robot
swarms: Formalization, state of the art, and novel perspectives. Frontiers in
Robotics and AI 4 (2017), 9. https://doi.org/10.3389/frobt.2017.00009

[25] G. Valentini, E. Ferrante, H. Hamann, and M. Dorigo. 2016. Collective decision
with 100 Kilobots: Speed versus accuracy in binary discrimination problems.
Autonomous Agents and Multi-Agent Systems 30, 3 (May 2016), 553ś580. https:
//doi.org/10.1007/s10458-015-9323-3

[26] G. Valentini, H. Hamann, and M. Dorigo. 2015. Efficient decision-making in a self-
organizing robot swarm: On the speed versus accuracy trade-off. In Proceedings
of 14th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2015), R. Bordini, E. Elkind, G. Weiss, and P. Yolum (Eds.). IFAAMAS,
1305ś1314.

[27] G. Wood. 2014. Ethereum: A secure decentralised generalised transaction ledger.
Ethereum project yellow paper. (2014). http://gavwood.com/paper.pdf

[28] I. Zikratov, O. Maslennikov, I. Lebedev, A. Ometov, and S. Andreev. 2016. Dynamic
trust management framework for robotic multi-agent systems. In Proc. of 12th
Int. Conf. on Next Generation Teletraffic and Wired/Wireless Advanced Networking,
NEW2AN, and the 5th Conf. on Internet of Things and Smart Spaces, ruSMART
2016, Olga Galinina, Sergey Balandin, and Yevgeni Koucheryavy (Eds.). Springer,
339ś348.

Session 13: Robotics: Multi-Robot Coordination AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

549

https://doi.org/10.1007/s11721-012-0075-2
https://doi.org/10.1007/s10458-012-9212-y
https://github.com/ethereum/wiki/wiki/White-Paper
https://github.com/ethereum/wiki/wiki/White-Paper
http://arxiv.org/abs/1608.00695v3
https://doi.org/10.1007/s10514-007-9060-9
https://doi.org/10.1109/TEVC.2009.2017516
https://ethereum.org/
https://doi.org/10.1007/s10514-017-9621-5
https://doi.org/10.1109/LRA.2017.2654550
https://doi.org/10.1007/s00521-010-0368-6
https://doi.org/10.1109/ICAS.2009.62
https://doi.org/10.1007/978-3-662-43645-5_44
https://doi.org/10.1007/978-3-662-43645-5_44
https://doi.org/10.1007/s11721-011-0062-z
https://bitcoin.org/bitcoin.pdf
https://doi.org/10.1007/s11721-012-0072-5
https://doi.org/10.1007/s11721-012-0072-5
https://doi.org/10.1007/s11721-011-0060-1
https://doi.org/10.23919/ACC.2017.7962962
https://doi.org/10.23919/ACC.2017.7962962
https://doi.org/10.1007/978-3-319-44427-7_6
https://doi.org/10.3389/frobt.2017.00009
https://doi.org/10.1007/s10458-015-9323-3
https://doi.org/10.1007/s10458-015-9323-3
http://gavwood.com/paper.pdf

	Abstract
	1 Introduction
	2 Related Work
	3 Fundamentals of Blockchain Technology
	4 Methods
	4.1 Experimental setup
	4.2 Simulation environment
	4.3 Classical approach
	4.4 Blockchain approach
	4.5 Byzantine robots
	4.6 Metrics

	5 Experiments
	5.1 Experiment without Byzantine robots
	5.2 Experiment with Byzantine robots

	6 Discussion
	7 Conclusions and Future Work
	8 Acknowledgements
	References

