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ABSTRACT

This paper addresses the problem of optimizing the observa-
tion of a human scene using several mobile robots. Mobile
robots have to cooperate to find a position around the scene
maximizing its coverage. The scene coverage is defined as the
observation of the human pose skeleton. It is assumed that
the robots can communicate but have no map of the environ-
ment. Thus the robots have to simultaneously cover and map
the scene and the environment. We consider an incremental
approach to master state-space complexity. Robots build an
hybrid metric-topological map while evaluating the observa-
tion of the human pose skeleton. To this end we propose and
evaluate different online optimization strategies exploiting
local versus global information. We discuss the difference of
the performance and cost. Experiments are performed both
in simulation and with real robots.
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1 INTRODUCTION

Research in complex scene observation by mobile robots has
recently gained significant attention and practical interest. A
key direction of this research aims at coordinating robots to
explore the environment and at optimizing their positioning
so as to maximize the quality of the scene observation. This
is especially challenging when human activities must be ob-
served, or monitored, in complex structured environments.
This concerns for instance cobotics and rescue tasks.

In this paper we focus on observing a person carrying out
an activity in a specific area. Several robots have to deploy
themselves around the person to fully observe its pose (i.e.
identify its skeleton pose). As the environment is unknown to
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the robots and cluttered, robots have to explore it in order
to find the best joint observation. We assume that robots
are homogeneous, can communicate and know the relative
position of the scene to observe.

Several strategies have been proposed to coordinate robots
in tracking a set of targets. They range from very simple local
rules to heuristic-global approaches, see review [9]. However
these solutions generally consider that the environment is free
of obstacles, or they are too few to obstruct the observation.

In this paper we address multi-robot scene observation in
unknown cluttered environment. This raises new questions:
how to map the environment while searching for an optimal
positioning ? how to limit the state space to map and to
explore ? how to represent the quality of observation from
each location visited by the robots ?

To this end we build an approach which extends the cov-
erage (observation) of the targets by considering to simulta-
neously map the environment. Then we tackle another issue
which is the trade-off between exploitation and exploration,
that is moving to optimize the observation versus exploring
the environment to find new interesting observation positions.

In response to these questions we propose an incremental
mapping that refines the representation and the information
in areas where the quality of observation is promising. We
also introduce a circular topology adapted to the continuous
observation of the scene while robots move around. Then we
propose different algorithms relying on local versus global
information, leading to solutions with different computational
costs. We conduct a set of experiments in simulation and
with real robots allowing to evaluate the different approaches.

The paper is organized as follows. In Section 2 we discuss
related works on the tracking of targets with mobile robots.
Section 3 formalizes the problem and defines the coverage
and mapping tasks. Then we propose in 4 different algorithms
relying respectively on random decisions, meta-heuristics and
brute-force search. Section 5 presents a simulator and some
experiments comparing the performances of the different
approaches. Finally, we conclude and draw some perspectives
to this work in section 6.

2 RELATED WORK

The last decade have seen a growth of the research on network
of fixed cameras to detect, track and recognize objects or
persons [1, 16]. However, a set of static cameras cannot deal
with non-covered zones or occlusions. That’s why recent
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works in the field of active perception are interested in
using mobile cameras that can move to adequate places to
cover blind spots or to react to changing conditions as lighting
or dynamic obstacles.

Cooperative active perception considers multiple decision
makers that cooperate and merge information from their sen-
sors. In the URUS1 project [15], the objective is to assist and
guide people in urban settings. Active cooperative perception
has been here considered only between one mobile robot and
a set of fixed surveillance cameras. In Giusti et al. work [4],
distributed visual recognition of hand gestures is carried out
with a group of mobile robots. They use a distributed con-
sensus protocol to decide, between individual classifications
made by each robot, the issued gesture. In this work, the
navigation and coordination of the robots is very simple and
is not used to improve the recognition. Indeed, although the
robots are mobile, once they are positioned uniformly in a
semi-circular arc centered on the target scene, they maintain
this formation. Moreover, the environment is assumed to be
without obstacles, which facilitates the navigation and the
observation.

Exploration and mapping of cluttered environments with
autonomous mobile robots have been intensively studied since
two decades. The objective is to explore as quickly as possible
all the area of the environment in order to build a complete
map. Using a fleet of robots instead of a single one allows
to divide the task, leading to a gain of time, robustness and
accuracy, see e.g. [3, 8, 12, 14]. However, these works do
not consider that the mapping has to be conduced in order
to help the positioning and coordination of robots so as to
optimize the observation of a scene, which is our problem.

Approaches using the navigation and coordination of mul-
tiple robots to perform cooperative active perception can
be found in works about the observation of moving targets
with moving sensors. Most of these approaches are classi-
fied and discussed in a recent review [9]. Among these, the
CMOMMT (Cooperative Multi-robot Observation
of Multiple Moving Targets) framework, introduced by L.
Parker [13], aims to dynamically position robots to maximize
the number of targets under observation and the duration
of observation of each target. An on-line and distributed
heuristic approach is proposed to solve the CMOMMT prob-
lem using weighted local force vector control. However this
approach assumes uncluttered environments with either no or
simple obstacles. Moreover it is supposed that the navigation
behaviour is only influenced by the obstacles, and not by the
perception of the targets. This means that the robots observe
the targets even if there are obstacles and they do not observe
the targets only when they are too far from them. So this
approach is not adapted to our context where robots have
to evolve in an unknown cluttered environment composed of
obstacles affecting the navigation and the observation of the
scene. However we build our approach as an extension of the
CMOMMT model, and we use its formalism to define our
problem in the following section.

1Ubiquitous Networking Robotics in Urban Settings.

Figure 1: Joint observation (coverage) of a scene (hu-
man activity) with a fleet of 𝑚 = 3 robots. The nav-
igation model is based on circles with a spatial dis-
cretization in cells (𝐶 = 2 circles and 𝐷 = 8 sectors).

3 PROBLEM DEFINITION

In this section we formally define the generic task of the
multi-robot observation of a human activity in an unknown
environment. We consider in this paper a person carrying
out an activity in a quasi-static location. The observation
is defined as identifying the human body pose, that can be
characterized by a set of skeleton joints. We give general
definitions before refining the mapping and the coverage
tasks by considering a specific circular navigation topology,
more adapted to the observation around a scene.

3.1 Coverage and Mapping

We formalize the complex scene observation problem as an
extension of the CMOMMT2 framework [13]. This frame-
work aims to dynamically position robots to maximize the
coverage of mobile targets, i.e. the number of targets under
observation and the duration of observation of each target.

Definition 3.1. The CMOMMT model [13] is defined as
a tuple < 𝑆,𝒱,𝐾 > where:

∙ 𝑆 a two-dimensional, bounded spatial region;
∙ 𝐾(𝑡) a set of 𝑛 targets, where 𝜅𝑡

𝑗,𝑗=1,...,𝑛 is a target,
that is located within region 𝑆 at time 𝑡; in our case,
the human scene to observe is composed of a set of 𝑛
skeleton joints;
∙ 𝒱 a team of 𝑚 mobile robots, where 𝜈𝑖,𝑖=1,...,𝑚 is a
robot with observation sensors that are potentially
noisy and of limited range.

Observing human(s) activity in an unknown and structured
environment requires the robots to build a map. The map will
allow the robots to locate themselves, to share information,
to plan paths among obstacles, and to learn worst versus best
observation locations. Thus we complete the CMOMMT
framework and its coverage task with a simultaneous
mapping task.

To master the complexity of the state space, we propose a
discrete representation of the environment and the
robots’ positions. We define a grid of 𝐷 × 𝐶 contiguous

2Cooperative Multi-robot Observation of Multiple Moving Targets
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cells where 𝐶 is the number of concentric circles around the
scene, divided in 𝐷 sectors. Then the robots move in discrete-
circular topology by following the 𝐶 circles or changing of
circle, as it is illustrated in Fig. 1.

Definition 3.2. The position of a robot 𝜈𝑖 at time 𝑡 is
defined by 𝑥𝑡

𝑖 = (𝑑𝑖(𝑡), 𝜎𝑖(𝑡)) with 𝑑𝑖 the distance of the robot
𝜈𝑖 to the scene, and 𝜎𝑖 the angle between a reference line and
the line connecting the scene to the robot (cf. Fig. 1).

Definition 3.3. At any position of a robot 𝜈𝑖 at time 𝑡
is associated a unique cell 𝑐𝑡𝑖 = ⟨[𝑑𝑎, 𝑑𝑏]; [𝜎𝑎, 𝜎𝑏]⟩ such that
𝑑𝑖(𝑡) ∈ [𝑑𝑎, 𝑑𝑏[ and 𝜎𝑖(𝑡) ∈ [𝜎𝑎, 𝜎𝑏[. The position of a cell

𝑐 = ⟨[𝑑𝑎, 𝑑𝑏]; [𝜎𝑎, 𝜎𝑏]⟩ is defined as (𝑑𝑎,
𝜎𝑎+𝜎𝑏

2
).

This concentric topology allows the robots to maintain
their direction of observation towards the scene while they
move along circles. This also reduces dramatically the number
of position of observation. Some of these positions can be
unreachable when occupied by obstacles or other robots.

3.2 Observation data and Actions

Skeleton observation. In the considered observation
problem, a target is a skeleton joint. A joint is observed
when a robot is able to identify the joint with its sensor.

Definition 3.4. The observation vector 𝑜𝑖(𝑥
𝑡
𝑖) of a robot

𝜈𝑖 at time 𝑡 is defined as a binary vector of size 𝑛 such that:

𝑜𝑖(𝑥
𝑡
𝑖) = [𝑜𝑖𝑗(𝑥

𝑡
𝑖)]𝑗=1..𝑛 = [𝑜𝑖1(𝑥

𝑡
𝑖), ..., 𝑜𝑖𝑛(𝑥

𝑡
𝑖)] (1)

where:

𝑜𝑖𝑗(𝑥
𝑡
𝑖) =

⎧⎨⎩
1 if robot 𝜈𝑖 is observing target 𝜅𝑡

𝑗

from its position 𝑥𝑡
𝑖

0 otherwise.

Definition 3.5. The individual observation quality 𝑞𝑖(𝑥
𝑡
𝑖)

made by a robot 𝜈𝑖 at time 𝑡 is defined as:

𝑞𝑖(𝑥
𝑡
𝑖) =

1

𝑛

𝑛∑︁
𝑗=1

𝑜𝑖𝑗(𝑥
𝑡
𝑖). (2)

The quality 𝑞𝑖(𝑥
𝑡
𝑖) is the percentage of skeleton joints ac-

curately tracked by the robot 𝜈𝑖 at 𝑡.

Definition 3.6. The observation matrix 𝑂 of the team
𝒱 at time 𝑡 [13] is defined as :

𝑂(𝑥𝑡
1, ..., 𝑥

𝑡
𝑚) = [𝑜𝑖(𝑥

𝑡
𝑖)]𝑖=1..𝑚 = [𝑜𝑖𝑗(𝑥

𝑡
𝑖)]𝑖=1..𝑚;𝑗=1..𝑛

Definition 3.7. The joint observation quality 𝑄 made
by the team 𝒱 at time 𝑡 is defined as:

𝑄(𝑥𝑡
1, ..., 𝑥

𝑡
𝑚) =

1

𝑛

𝑛∑︁
𝑗=1

𝑔𝑗(𝑂(𝑥𝑡
1, ..., 𝑥

𝑡
𝑚)) (3)

where:

𝑔𝑗(𝑂(𝑥𝑡
1, ..., 𝑥

𝑡
𝑚)) =

{︂
1 if ∃𝑖 ∈ 𝒱 such that 𝑜𝑖𝑗(𝑥

𝑡
𝑖) = 1

0 otherwise.

To quantify the individual contribution of each robot to
the joint observation, we introduce the notion of marginal
contribution. This refers to the marginal contribution of a
player to a coalition in the Shapley value [6].

Definition 3.8. Themarginal contribution 𝑤𝑖 of a robot
𝜈𝑖 in the joint observation of the team, at time 𝑡, is defined
as:

𝑤𝑖(𝑥
𝑡
1, ..., 𝑥

𝑡
𝑚) =

1

𝑛

𝑛∑︁
𝑗=1

𝑜𝑖𝑗(𝑥
𝑡
𝑖) ∧ (𝑜𝑖𝑗(𝑥

𝑡
𝑖)⊕ 𝑔𝑗(𝑂(𝑥𝑡

𝑘,𝑘 ̸=𝑖)))

(4)
with ⊕ the exclusive disjunction.

The marginal contribution corresponds to the part of the
observation that robot 𝜈𝑖 is the only one to see. It depends
on the positions of all the robots of the team.

Coverage criterion example. The objective is to max-
imize the joint observation quality 𝑄, i.e. the number of
targets observed by the team. Notice that maximizing 𝑄 is
not decomposable into maximizing 𝑞𝑖 for each robot, which
could lead to redundant information. For instance, consider
the following example with 𝑚 = 3 robots and 𝑛 = 7 tar-
gets. Observation vectors, individual qualities and marginal
contributions of each robot at time 𝑡 are:

𝑜𝑡1 = [0, 0, 0, 1, 1, 0, 0], 𝑞𝑡1 = 0.29, 𝑤𝑡
1 = 0.29

𝑜𝑡2 = [1, 1, 0, 0, 0, 1, 1], 𝑞𝑡2 = 0.57, 𝑤𝑡
2 = 0

𝑜𝑡3 = [1, 1, 1, 0, 0, 1, 1], 𝑞𝑡3 = 0.71, 𝑤𝑡
3 = 0.14

Even if Robot 𝜈2 has a high individual observation quality,
its contribution is low because it observes the same targets as
another robot. Conversely, 𝜈1 has a low individual quality, but
it is the only one to observe some targets, so its contribution is
the highest. This illustrates that the objective of maximizing
𝑄 requires to find the most complementary information.

Map data. In each cell 𝑐 of the map we compute the
following data :

∙ an obstacle occupancy probability (computed from the
robots’ SLAM3 function);
∙ a number of visits (considering all the robots);
∙ the set of observation vectors done so far from that cell.
The size of this set is equal to the number of visits.

From this, we can compute4 the mean and rounded
mean observation vector 𝑜(𝑐).

Definition 3.9. The mean observation vector 𝑜𝑡(𝑐) of
the cell 𝑐 at time 𝑡 is the sum of the observation vectors done
so far, divided by the number of visits of that cell until 𝑡.

Definition 3.10. The rounded mean observation vec-
tor of the cell 𝑐 at time 𝑡 is the mean observation vector where
each elements of the vector is rounded to 1 or 0 according to
its comparison to 0.5.

Incremental division of cells. To master the time to
explore the environment, we propose an incremental divi-
sion of cells based on a quadtree structure. The idea is to
have at the beginning a coarse representation of the environ-
ment with few initial cells. A leaf cell can be split into four

3Simultaneous Localization and Mapping
4Incremental averaging is used.
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(a) Coverage quadtree data. (b) Obstacle quadtree data.

Figure 2: Two quadtree maps constructed by 3
robots (colored squares) on different environments.
Map data are: (a) cell qualities in shades of green
(the greener the cell, the better is the local observa-
tion; white is for cells where the scene is not visible,
dark for obstacle cells) (b): obstacle probability in
shades of grey.

sub-cells (sub-cells become the new leaf cells), and recursively,
sub-cells can be split until the max depth of the quadtree
is reached. This is illustrated in Fig. 2. The objective is to
refine the discretization only in interesting areas of
the environment. Thus the number of cells to explore is
reduced while refining the joint observation quality over time
as the robots split interesting cells.

Robots actions. Robots can execute two kind of ac-
tions:

∙ split its current cell ; then the robot goes randomly to
one of the four children cells;
∙ move to a cell: move to an adjacent cell or compute
a path to a specific cell. Robots are moving on cells
which are leaf nodes of the quadtree.

Cell’s data are updated following probabilistic quad-tree
principle [11]. When a cell is split, all the data of the children
cells are initialized with the data of their parent node, except
the obstacle occupancy probability that is computed from
the occupancy grid map.

Exploration-Exploitation compromise. The problem
is defined as two concurrent tasks, which are mapping the
environment and covering the scene. The objective is to reach
as soon as possible a robots’ joint position that maximises
the coverage criterion. The exploitation consists in using
the information gathered by robots in each cell, i.e. in the
map, to find this joint-position.

In all cases, we need to explore at the beginning of the
task to acquire and gather cells data. Then, a compromise
between exploration and exploitation is required. The
compromise is between the quality of the found solution (the
more we explore cells and gather data, the more cells data
will be pertinent), and the time to find a good solution (how
long do we need to explore to gather pertinent enough data).
Especially if the scene is dynamic and the targets are moving,
robots do not have a lot of time to find a solution.

4 ALGORITHMS

In this section we present different strategies for the simul-
taneous exploration of the environment and coverage of the
scene. In each strategy, or algorithm, robots/agents are homo-
geneous and supposed at least to communicate their location
and split actions. These algorithms do not exploit the same
data and do not compute/store the same information. We
discuss in the end of the section their differences in term
of computational and memory cost, before comparing their
performances in the next section.

4.1 Heuristics algorithms

Consider the state space that 𝑚 robots have to explore in
order to find the best position. This set is bounded5 by
(𝐶×𝐷)𝑚 if robots are heterogeneous. If robots are identical6,

the size of the state space goes down to
(︀
𝐶×𝐷
𝑚

)︀
. Given the

obstacles, it does not reduce to
(︀
𝐷
𝑚

)︀
as it is not sufficient

for the robots to explore the cells situated the closest to the
scene as they are not guaranteed to be reachable. To handle
this complexity we combine the incremental mapping
with heuristics algorithms to guide the exploration
of the state space.

In general, exploration consists in moving to unknown
cells to gain new information and to avoid possibly the team
remaining in a local optimum; while exploitation consists
in moving to known cells to optimize the joint observation.
Here exploration consists for a robot in moving to one of
its unvisited adjacent cells. If there are no unvisited adjacent
cells, the robot tries to move to adjacent cells by choosing
first the less visited ones. Exploitation consists for a robot
in moving to its best adjacent cell, or split its current cell if it
is already the best one or if moving is not possible7. The best
adjacent cell is defined for a robot as the cell that, among
the current cell of the robot and its adjacent cells, maximizes
the joint quality given the current cells of the other robots.
The rounded mean observation is used to compute the joint
quality and especially, to infer the observations made from
the adjacent cells.

We propose different algorithms based on two major steps:

∙ The first one is the selection of which robots must
move at each decision step. The proposed heuristic
is to move only the robots with the lowest marginal
contributions. Keeping static the robots with high
contributions still offers several advantages: minimizing
the decay in the current joint quality, maintaining the
group configuration stable, and detecting potential
changes in the scene (activity change).
∙ The second one is to determine which action must
be done by these selected robots. To this end we
study different strategies:

5It can be reduced if some cells are inaccessible because of obstacles
and if only one robot per cell is allowed.
6Two robots can be arbitrarily swapped without changing the joint
observation of the scene.
7A move is not possible if the target cell is an obstacle or is already
occupied by another robot.
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– RandomAction chooses to split the current cell of the
robot with a probability of 0.5, and otherwise to
move to one of the adjacent cells of the robot chosen
randomly;

– SimulatedAnnealing (SA) [10] chooses an action of
exploration according to a probability 𝜏 , and an
action of exploitation otherwise. This temperature
parameter is gradually reduced by a decreasing rate
𝛼 ∈ [0; 1] at each decision step 𝑡 according to:
𝜏𝑡 = 𝜏𝑡−1 × (1− 𝛼);

– TabuSearch (TS) [5] always performs an action of
exploitation, but forbids the visit of the cells that
are in the tabu list. The tabu list keeps tracks of a
short-term set of the last visited cells.

Two main algorithms are obtained combining the op-
tions at each step. Algorithm 1 chooses randomly which
robots to move at each step, and their actions are also se-
lected randomly. Algorithm 2 gathered various algorithms
where only the robots with the lowest marginal contributions
move at each step. In Algorithm 2, each moving robot can
choose its action according to RandomAction (it gives the
RandomWithContribution algorithm) or meta-heuristics. In
particular, using meta-heuristics as TS or SA leads to a be-
haviour where the cells that are potentially interesting for
the observation of the scene are divided and explored more
accurately.

Algorithm 1: One step of Random search

Data: The set of 𝑚 robots,
the number of moving robots 𝛿 ∈ [1..𝑚]
for 𝑖 ∈ [1, ..,𝑚] do

Update 𝑜𝑖

// 1- Choose which robots to move

𝑚𝑜𝑣𝑖𝑛𝑔𝑅𝑜𝑏𝑜𝑡𝑠← choose randomly 𝛿 robots among 𝑚
// 2- Choose an action

for 𝑖 ∈ [1, .., 𝛿] do
𝑐𝑖 ← current cell of the robot 𝑚𝑜𝑣𝑖𝑛𝑔𝑅𝑜𝑏𝑜𝑡𝑠[𝑖]
𝑚𝑜𝑣𝑖𝑛𝑔𝑅𝑜𝑏𝑜𝑡𝑠[𝑖] executes RandomAction(𝑐𝑖)

4.2 Exhaustive search (brute-force)

To compare our heuristic algorithms with a brute-force ap-
proach, we propose an exhaustive combination algorithm.
It aims to find the best joint position around the scene by
computing the qualities of all the possible joint positions,
given the cells already visited by the robots.

4.2.1 Combination definitions. A combination from the
set 𝑚 is defined as a set of 𝑚 different leaf cells and noted 𝜆.
It represents a joint position for the 𝑚 robots. The quality
of a combination at step 𝑡 is defined as the joint quality
computed with rounded mean observations of the cells.

The cost of a combination at step 𝑡 is defined as the
cost to move the robots to the cells of the combination. This
cost is computed with an A-star planning algorithm, noted

Algorithm 2: One step of search common to
RandomWithContribution and meta-heuristics (TS, SA)

Data: The set of 𝑚 robots, the number of moving
robots 𝛿 ∈ [1..𝑚], a ChooseAction function
∈ {RandomAction, SimulatedAnnealing,
TabuSearch}

for 𝑖 ∈ [1, ..,𝑚] do
Update 𝑜𝑖

// 1- Choose which robots to move

for 𝑖 ∈ [1, ..,𝑚] do
Compute 𝑤𝑖

𝑤𝑒𝑎𝑘𝑅𝑜𝑏𝑜𝑡𝑠← the 𝛿 robots with lowest 𝑤𝑖

// 2- Choose an action

for 𝑖 ∈ [1, .., 𝛿] do
𝑐𝑖 ← current cell of the robot 𝑤𝑒𝑎𝑘𝑅𝑜𝑏𝑜𝑡𝑠[𝑖]
𝑤𝑒𝑎𝑘𝑅𝑜𝑏𝑜𝑡𝑠[𝑖] executes ChooseAction(𝑐𝑖)

AStarMove(𝑚,𝜆), that searches a path for each agent ∈ [1..𝑚]
to each cell ∈ 𝜆. The graph used by A-star expands each cell
using its adjacent cells in the quadtree. The cost between two
adjacent cells in the A-star graph is the distance a robot has
to travel following the circular navigation topology. A cost
penalty is added in case of radius change to put a penalty
when the robots has to change of circle, given it requires the
robot to rotate and to slow down. The heuristic to estimate
the cost between two non-adjacent cells is the euclidean
distance between the two positions of the cells.

4.2.2 Algorithm. Algorithm 3 details each step of the ex-
haustive combination algorithm. At the beginning of each
step, the algorithm has the set of already visited leaf cells
𝐿, and the set of all possible combinations at this step Λ. Λ
contains all the 𝑚-combinations of cells from the set 𝐿 (also

noted
(︀
𝐿
𝑚

)︀
). Λ is shared among all agents.

The exhaustive combination algorithm first searches the
best combination 𝜆* in Λ. The best combination 𝜆* is the
combination with the optimal quality and the lowest cost
given the current position of the robots. So 𝜆* defines a joint
position that gives an optimal observation on the scene. If
𝜆* is found, the robots move to the corresponding cells of
𝜆*. Otherwise, the robots explore the map to complete and
update the set of combinations. The exploration consists in
moving to unvisited cells in priority, otherwise trying to split
and in last resort, moving to less visited cells.

4.2.3 Combination set updates and complexity. At the be-
ginning of each step, Λ is the 𝑚-combinations of cells from
the set 𝐿 so it is composed of

(︀
𝐿
𝑚

)︀
combinations. To find

the best combination, algorithm 3 must look over all these
combinations.

The set of combinations Λ is also updated and can increase
at each step given the actions of the robots.

∙ If a robot moved to a cell never visited before, Λ is
increased with

(︀
𝐿

𝑚−1

)︀
new combinations formed with

the new cell and all the combinations of the already
visited cells 𝐿 (the new cell is not considered in 𝐿 here).
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Algorithm 3: One step of Combination search

Data: The set of 𝑚 robots, the set of combinations Λ,
the set of unvisited leaf cells 𝑈𝑛𝑣𝑖𝑠𝑖𝑡𝑒𝑑, the set of
leaf cells sorted by their number of visits
𝐿𝑒𝑠𝑠𝑣𝑖𝑠𝑖𝑡𝑒𝑑

for 𝑖 ∈ [1, ..,𝑚] do
Update 𝑜𝑖

𝜆* ← the best and closest combination ∈ Λ, given
positions of the 𝑚 robots
if 𝜆* exists then

AStarMove(𝑚,𝜆*)// Move the robots to 𝜆*

else if 𝑈𝑛𝑣𝑖𝑠𝑖𝑡𝑒𝑑 ̸= ∅ then
AStarMove(𝑝, 𝑈𝑛𝑣𝑖𝑠𝑖𝑡𝑒𝑑)// Move 𝑝 ≤ 𝑚 robots

else if Agents with no assignment can split then
Agents not assigned try to split

else if Agents with no assignment cannot split then
AStarMove(𝐴𝑔𝑒𝑛𝑡𝑠𝑁𝑜𝑡𝐴𝑠𝑠𝑖𝑔𝑛𝑒𝑑, 𝐿𝑒𝑠𝑠𝑣𝑖𝑠𝑖𝑡𝑒𝑑)

for 𝑖 ∈ [1, ..,𝑚] do
Update Λ

∙ If a robot split a cell, all the combinations in Λ where
the split cell is are modified to replace the split cell by
one of its children (the one where the robot has chosen
to move).

4.3 Local vs. Global approaches

Table 1 summarizes the four proposed algorithms given differ-
ent characteristics. In each algorithm, robots are supposed at
least to share the obstacle map characteristics. This means
that they build a cooperative obstacle quadtree, i.e. they all
have the same quadtree structure decomposed in cells, and
obstacle occupancy associated to these cells (but observation
data are not required). Observation communication charac-
teristic requires the robots to communicate at each time step
their current observation vectors. This is an assumption of
all the algorithms that compute the marginal contribution
to choose which robots to move at each step. Observation
map is when the algorithm requires the robots to build a
full cooperative quadtree, with all the cell data detailed in
the Map Data (cf. subsection 3.2). Finally the space search

characteristic defines if the robots are searching in a local
space (adjacent cells around their current cells) or in a global
search (all leaf cells of the quadtree).

This tables allows to underline which approaches rely on
local vs. global information leading to different computational
cost. Among them two extreme solutions are proposed : i) the
random action selection, having a null cost in computation
and memory, ii) the exhaustive search having an exponential
complexity and requiring to store all observation vectors
obtained in each cell. Between the two we examine how the
selection of robots to move, depending on their marginal
contribution, could improve dramatically the performances.
Then we aim to study how meta-heuristic exploiting local

Obstacle Observ. Observ. Space

Algorithm Map Comm. Map search

random x - - -

random-contrib x x - local

meta-heuristic x x x local

exhaust.-search x x x global

Table 1: Characteristics of the four compared algo-
rithms. x means that the characteristic is required.

information compares to the exhaustive search approach,
while requiring few computational expenses.

5 COMPARISON OF PERFORMANCE
AND COST

5.1 Simulator

To perform experiments, we developed a simulator that al-
lows to run a large quantity of experiments in order to test
the validity of our approach. A main feature of our simu-
lator is that its main parts (data structures, e.g. cell,
quadtree, decision algorithms, interface) are used
both for the simulation and for the control of our
robots during real experiments. For the simulation part,
specific modules have been developed to simulate in the
most accurate and realistic way key features of real mo-
bile robots, environments and scene. A video presenting the
simulator interface, the exploration and incremental map-
ping with simulated and real robots can be found at https:
//liris.cnrs.fr/crome/wiki/doku.php?id=videoaamas2018.

We assume that robots’ motion around the scene is per-
fect, i.e. robots can move along circles without trajectory
errors, and robots are equipped with sensors allowing them
to remotely detect nearby obstacles. Communications be-
tween robots are also supposed to be instant and errorless.

To simulate a scene, we use real data obtained from real
human captures with Kinect RGB-D sensor. These captures
were made from different human poses (standing, sitting,
crouching), with or without occlusions8 (cf. fig. 3). For each
scene, multiple captures were made from a set of point of
views along a circle centred on the scene. Skeleton data
obtained from OpenNI and NITE skeletal tracking library
[7] have been imported in the simulator to generate the
observation vectors9 for each sector.

To generate an environment in the simulator, one can
choose where to put obstacles or to randomly distribute them.
Concerning observations from each cell, it is possible to choose
random ones or observations obtained from a human pose
generated from real data. Then we use a ray tracing [2]
technique starting from the scene to assign to each cell of a
same sector a common observation until reaching obstacles.
Cells behind an obstacle have a null observation.

8Occlusions are not in the navigation space, i.e. they are in the space
between the scene and the most inner circle of the navigation model.
9i.e. skeleton information composed of 15 body joints.

Session 13: Robotics: Multi-Robot Coordination AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

564

https://liris.cnrs.fr/crome/wiki/doku.php?id=videoaamas2018
https://liris.cnrs.fr/crome/wiki/doku.php?id=videoaamas2018


Figure 3: Photos of real human captures of differ-
ent scenes representing human pose standing with
various occluded scenes.

(a) Env. A. (b) Env. B. (c) Real environment.

Figure 4: (a) - (b):Two different environments used
in the simulator. (c): Real environment with three
robots around a human scene (reading phone) and a
cluttered environment.

Once the reference environment has been generated, it is
used in all runs. Fig. 4 shows two reference environments con-
taining different obstacles (black cells). They also show cells
from which the scene is visible (green cells) and not visible
(white cells). Different shades of green indicate different local
qualities of observation: the greener the cell, the better is the
local observation. Environments we have used are designed
in such way that it’s not possible for one single robot to find
a cell from which it can see the full joint observation.

To simulate noise in camera sensor and occlusions
due to other robots, we add noise to the perception from
a cell. A noise parameter 𝛽 defines the probability for each
value of an observation vector to be flipped (compared to the
reference values). Robots occlusion is simulated as a noise
inversely proportional to inter-robot distance. This operation
is computed each time a robot asks for an observation over
the environment. Thereby, the perceived observation from
cells of a same sector may vary.

5.2 Experimental setting

We perform our experiments in two different environments,
presented in fig. 4, using 3 robots and 3 initial cells. Sim-
ulation of the scene is done using real data captured from
different human poses. Table 2 provides some information
concerning the state space of each environment and the num-
ber of optimal joint positions for each pose, illustrating their
complexity. In the following, common parameters used are
the number of agents 𝑚 = 3, the number of moving agents
at each time step 𝛿 = 2, the size of the tabu list is 5, the tem-
perature for SA algorithm is set once to 0.6 at the beginning

Env. A Env. B

# Targets 15

# Circles 8

# Sectors 24

# Leaf cells 192

# Obstacles 27

# Possible joint positions 1,661,853 1,616,586

# Optimal
joint positions

Env. A Pose seated 90,800 (5.46% )

Env. B Pose seated 146,235 (9.05%)

Env. A Pose seated with boxes 237,510 (14.29%)

Env. B Pose standing with boxes 465,158 (28.77%)

Env. A Pose standing with chair 500,319 (30.1%)

Table 2: Characterictics of env. A and B with 3
robots. Possible joint positions are all the combina-
tions of non-obstacle, leaf and non-leaf cells. This
number is not the same, as non-obstacle non-leaf
cells are not the same in A and B.

of each experiment, and decreases at each step according to
𝛼 = 0.01, but is never reset until the experiment ends.

5.3 Performance comparison

First we plot the current joint quality found by the robots
at each step with the different algorithms in Figure 5. It
shows that with the Random algorithm, the current joint
quality fluctuates a lot, contrary to the other algorithms.
This illustrates that the heuristic that consists in moving
only the robots with the lowest marginal contributions at
each step is a good solution to maintain a stable view on
the scene. Indeed, this heuristic is used with all algorithms
except the Random. Maintaining a stable view on the scene
is particularly interesting to detect potential changes in the
scene, as in case of a dynamic scene.

Second we compute for each algorithms, the distance that
the robots have to travel before covering optimally the scene,
i.e. being on a joint position with the best possible joint
quality. We do not count the number of algorithm steps,
because one time step of the algorithms can last for variable
time in real experiments. Indeed with random algorithms or
meta-heuristics, robots can only move to their adjacent cells
at each time step, so the distance travelled by each robot is
relatively small and the duration of the steps is roughly of
the same order. But with the Combination algorithm, each
robot can move to any cells of the map at each step. And
this move is done by following the circular topology (cf. §3.1).
So one step in the Combination algorithm can last much
longer than one step with the algorithms where robots are
moving only to their adjacent cells. This is why we use the
distance instead of the number of steps to fairly compare all
the algorithms in simulation. This is equivalent to compare
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Figure 5: Current joint quality vs. step number with
𝑚 = 3 robots, over 10 experiments. The environment
is Env. A and the pose is standing with occlusions.

Figure 6: Mean distance (meter) and standard devi-
ation travelled by the robots before finding the best
possible joint quality for the first time (50 expe.).

the time taken by real robots before covering optimally the
scene in case of real experiments.

Fig. 6 shows this distance for different environments and
human poses. We can see that in all cases, TS meta-heuristic
is the fastest in term of distance to cover optimally the
scene. Combination algorithm shows various results. Indeed
it needs to explore all the unvisited cells before being able
to split. In occluded environments, the best joint position
can require several split, which increases the number of cells
to potentially explore before finding a combination with the
best quality. These results highlight the importance of the use
of the marginal contribution to the search process. They also
show that strategies based on local information and meta-
heuristic obtain better results than the exhaustive exploration
/ combination algorithm, especially considering the time to

find a best joint quality. This time is an important factor
in our context where we want to observe human scene that
could be dynamic and so avoid long processes of exploration.

5.4 Real robot experiments

We performed experiments using 3 Turtlebot2 robots equipped
with a RGB-D camera (Kinect) for the skeleton tracking,
a low-cost 360° and 4 meters laser rangefinder (RP-Lidar)
for local metric mapping and navigation, a netbook with
Ubuntu/ROS connected to the mobile base and to the range-
finder for the decision and navigation part, and an Intel
NUC mini-PC with Windows connected to the Kinect for the
human observation part. ROS gmapping-package is used as
particle filter SLAM algorithm. The decision algorithms (cf.
§4) are embedded in ROS nodes. They request skeleton data
to a server running on the NUC. Data exchanged between
robots use TCP/IP socket between netbooks.

These experiments were realized with the same modules
(data structures (e.g. cell, quadtree), decision algorithms,
interface) as the one used in the simulator. The additional
components used with real robots are: (i) an hybrid mapping
mixing high-level data of the quadtree map and low-level
data of the metric map; (ii) a communication module be-
tween the robots, (ii) a distributed architecture for the algo-
rithms presented in §4; this architecture relies on asynchro-
nous communication and topological quadtree maps coopera-
tively constructed by the robots. We tested SA and TS strate-
gies and obtained similar results than with the simulator.
Videos presenting these experiments are available at https:
//liris.cnrs.fr/crome/wiki/doku.php?id=videoaamas2018.

6 CONCLUSION

We formally defined the generic task of the multi-robot ob-
servation of a human activity in an unknown cluttered envi-
ronment as a simultaneous problem of coverage and mapping.
The objective is to optimize the robot joint-observations of a
human scene while exploring the environment. We proposed
an incremental mapping based on a quadtree structure and a
concentric navigation topology allowing to manage the state
space complexity of the task. Then we proposed and evalu-
ated different strategies showing that considering each agent
marginal contribution is essential to the search process, while
approaches based on local information and meta-heuristic
optimizations obtained better results than the exhaustive
exploration/combination algorithm.

As a perspective, we plan to extend our work to dynamic
scenes, i.e. when the person is doing a sequence of activities.
In this context, the robots will have to detect the change and
adapt their positions at each new activity. This refers to a
coverage problem of multiple moving targets. To perform
this fast adaptation, keeping some map information about
obstacles and occluded cells could be helpful. Another per-
spective is to extend our approach to soft confidence values
for body joints. This would require to redefine observation
and marginal contribution in a probabilistic framework.

Session 13: Robotics: Multi-Robot Coordination AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

566

https://liris.cnrs.fr/crome/wiki/doku.php?id=videoaamas2018
https://liris.cnrs.fr/crome/wiki/doku.php?id=videoaamas2018


REFERENCES
[1] Ehsan Adeli Mosabbeb, Kaamran Raahemifar, and Mahmood

Fathy. 2013. Multi-View Human Activity Recognition in Dis-
tributed Camera Sensor Networks. Sensors 13, 7 (2013), 8750.
https://doi.org/10.3390/s130708750

[2] Arthur Appel. 1968. Some Techniques for Shading Machine Ren-
derings of Solids. In Proc. of Spring Joint Computer Conf. 37–45.
https://doi.org/10.1145/1468075.1468082

[3] Antoine Bautin, Philippe Lucidarme, Rémy Guyonneau, Olivier
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