
Verifiable Control of Robotic Swarm
from High-level Specifications

Robotics Track

Ji Chen

Cornell University

Ithaca, New York

jc3246@cornell.edu

Salar Moarref

Cornell University

Ithaca, New York

sm945@cornell.edu

Hadas Kress-Gazit

Cornell University

Ithaca, New York

hadaskg@cornell.edu

ABSTRACT
Designing controllers for safe, scalable and flexible collective behav-

iors of large numbers of robots is an important and challenging prob-

lem in swarm robotics. In this paper, we focus on provably-correct

controller synthesis from high-level specifications and demonstrate

the approach on several physical swarms. To this end, we first au-

tomatically synthesize discrete controllers (symbolic plans) from

high-level task specifications expressed in temporal logic. Then, we

automatically synthesize continuous controllers that implement

the symbolic plans while ensuring collision avoidance and describe

methods for mitigating deadlocks that might occur. In addition,

centralized and decentralized continuous controller design are com-

pared and analyzed. Finally, we demonstrate the flexibility and

versatility of the control paradigm by applying it to three different

examples of swarm systems with two different types of robots.

KEYWORDS
Swarm robotics; Formal methods; Controller synthesis

ACM Reference Format:
Ji Chen, Salar Moarref, and Hadas Kress-Gazit. 2018. Verifiable Control of

Robotic Swarm from High-level Specifications. In Proc. of the 17th Interna-
tional Conference on Autonomous Agents and Multiagent Systems (AAMAS
2018), Stockholm, Sweden, July 10–15, 2018, IFAAMAS, 9 pages.

1 INTRODUCTION
Swarm robotics research, inspired by self-organized social animals,

aims to make a large number of robots have intelligent collective

behaviors [7]. There are many advantages for swarm robotic sys-

tems, including larger sensing capabilities, better exploring abilities,

inherent fault tolerance, as well as cheaper and simpler individual

robot design [4]. However, how to control swarm robots to perform

global tasks as well as behave safely remains a challenging problem

as the number of robots is typically large [24].

Work in swarm robotics often focuses on the bottom-up design

of local rules for individual robots that create emergent swarm

behaviors; a trial and error process based on iterative design and

testing is an essential part of many existing design methods [7].

In contrast, in [18], we took a top-down approach and considered

the following problem: how can one specify a desired collective

behavior and automatically synthesize decentralized controllers to

Proc. of the 17th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2018), M. Dastani, G. Sukthankar, E. André, S. Koenig (eds.), July 10–15, 2018,
Stockholm, Sweden. © 2018 International Foundation for Autonomous Agents and

Multiagent Systems (www.ifaamas.org). All rights reserved.

achieve the collective objective in a provably correct way? A for-

mal specification language for the high-level description of swarm

behaviors was proposed on both swarm and individual levels, and
algorithms were developed for automated synthesis of decentralized
controllers and synchronization skeletons that describe how groups

of robots must coordinate to satisfy the specification. In this paper,

we focus on the continuous implementation of the symbolic plans

constructed using the framework introduced in [18] and guarantee

the correct and safe swarm behavior at the continuous level.

As a motivating example, consider a workspace divided into 4

regions A,B,C, and D as shown in Fig. 1. Assume the task requires

(1) all the robots in the swarm to gather in regions A and B repeat-

edly, i.e., part of the swarm must occupy region A while the rest of

the swarm is in region B and this behavior must happen repeatedly

during the execution, (2) all the robots to visit region C repeatedly,

however, they can do so at different times, i.e., it is not required that

the whole swarm be present in C at the same time, and (3) when

part of the swarm is in region C , the rest of the swarm cannot be

in regions A or B and vice versa, when robots are in A or B, there
should not be any robots in C .

Figure 1: (a) Workspace (b) Possible problems arising during
the continuous execution.

Several issues related to correct swarm behavior need to be

considered, as illustrated in this example: (1) The collective swarm

behavior during the execution must satisfy the specified task, (2) the

robotsmust not collidewith each other during the execution, (3) The

robots must avoid collision with the obstacles in their environment,

and (4) The resulting system should be free of deadlocks, i.e., the

robots must always be able to make progress toward their goals.

To address these challenges, we approach swarm control synthe-

sis at two levels: (1) given task specifications, we synthesize discrete
controllers that guarantee the swarm robots will complete the task

Session 13: Robotics: Multi-Robot Coordination AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

568

(symbolic plans), and (2) given a symbolic plan, we design continu-

ous controllers that implement the symbolic plans while ensuring

collision avoidance as well as deadlock mitigation (continuous).

To validate the proposed swarm control framework, we syn-

thesize controllers for different physical swarm robotic systems -

Robotarium [21], a remotely accessible swarm testbed, and Sphero

SPRK robots, small rolling sphere robots.We automatically generate

discrete (symbolic) controllers from the high-level tasks offline, dis-

tribute the symbolic controllers to the robots, create the continuous

controllers based on the symbolic ones, and execute the continuous

controllers in both centralized and decentralized manners.

Related work. The controller synthesis problem for systems with

multiple controllable agents from a high-level temporal logic speci-

fication is considered in many recent works (e.g., [13–17, 20, 28, 29]).

A common theme to these approaches, similar to this paper, is that

they first compute a discrete controller satisfying a specification

over a discrete abstraction of the system, and then synthesize or

implement continuous controllers guaranteed to fulfill the high-

level specification. In this work, we focus on swarms of robots

where collisions and deadlocks are more likely due to the number

of robots, and we consider synthesis of decentralized controllers,

both on the symbolic and continuous levels. Moreover, we imple-

ment and deploy the proposed framework on two swarm robotic

platforms with different number of robots, demonstrating that our

approach is agnostic to the number of robots in the swarm.

For safety at the continuous level, there are many approaches

to multi-agent collision avoidance (e.g. [5, 10, 12]), most of which

consider collision avoidance as the primary goal. In this work, high-

level symbolic plans are transformed into continuous controllers

that faithfully implement them, in addition to guaranteeing safety.

In [27], by integrating control barrier functions (CBF) and quadratic

programming (QP), continuous controllers are augmented to ensure

collision avoidance. The proposed approach enables robots to move

towards their objectives most of the time and execute collision

avoidance controllers when they really need to, i.e., when some

robots get too close to each other and might collide.

Robots also need to avoid collisions with obstacles for safety. Sim-

ilar ideas of barrier functions and calculating the safe and optimal

control inputs are used in [1, 26, 27]. In this paper, we leverage and

extend the work of [27] to handle irregular obstacles represented

as polygons.

Deadlock situations where robots cannot make progress towards

their goals might happen if the robots only use local information.

Most works take a detection-avoidance process tomitigate deadlock,

e.g., giving a perturbation input [27] or planning an alternative

trajectory [11] after detecting that the robots are in a deadlock

situation. However, these approaches cannot guarantee that robots

will not get into the same deadlock situation again. In [31], a check-

wait approach for avoiding deadlocks is used, i.e., the workspace

is discretized and the robot checks whether the next state might

cause a deadlock; however, for continuous control, it is impossible

to check the next state. In this paper we discuss deadlocks at the

continuous level, detect precondition for deadlock, and provide a

roadmap-based approach for deadlock mitigation.

Contributions. The contributions of this paper are as follows: (i)
Extending the continuous controller design methodology of [27]

by using barrier certificates to make robots avoid collision with

polygonal obstacles and maintain region boundaries, (ii) Mitigating

deadlock by building a road map over the workspace and perform-

ing path planning online, and (iii) Demonstrating high-level swarm

behaviors using different physical swarm systems to illustrate the

versatility of the approach.

The rest of the paper is structured as follows: Synthesis of sym-

bolic controllers is briefly introduced in Section 2. The continuous

controller design for collision avoidance and deadlock mitigation

is described in Section 3. Task specifications of three examples and

the resulting symbolic controllers are given in Section 4. Then, re-

sults of those demonstrations are discussed in Section 5 and finally

conclusions are made in Section 6.

2 SYNTHESIS OF SYMBOLIC CONTROLLERS
The work in [18] showed how to specify a desired collective be-

havior in a fragment of Linear Temporal Logic (LTL), and how to

automatically synthesize decentralized controllers that can be dis-

tributed over robots to achieve the collective objective in a provably-

correct way. Decentralized controllers can be viewed as local pro-

grams, each executed by a group of robots (i.e. subswarms) of

variable size.

Synthesized controllers are executed asynchronously, i.e., robots
can move with different speeds while executing their symbolic

plans. However, to ensure that all the objectives are fulfilled, it may

be necessary for the robots to synchronize at some points, e.g., if

it is required that the whole swarm must be in a region simulta-

neously, then the robots in different groups must communicate to

determine whether the whole swarm is in the particular region or

not. Thus, synthesized controllers are automatically augmented

with synchronization skeletons that describe how groups of robots

must coordinate to satisfy the specifications. In this section, we

briefly outline the framework of [18].

Linear Temporal Logic (LTL).We use LTL to specify the global

objectives of the swarm system. LTL is a formal language consisting

of propositions, Boolean and temporal operators. Let AP be a set of

Boolean propositions. The syntax of LTL is defined as follows:

φ ::= π | ¬φ | φ ∨ φ | ⃝ φ | φUφ

where π ∈ AP is a proposition, ¬ is negation, ∨ is disjunction, ⃝
is next and U is until. Other logical operators such as conjunction

(∧), implication (⇒) and temporal operators such as always (□) and
eventually (^) can be derived from these basic operators. An LTL

formula over propositionsAP is interpreted over infinite wordsw ∈
(2AP)ω . The language of an LTL formula φ, denoted by L(φ), is the
set of infinite words that satisfy φ, i.e., L(φ) = {w ∈ (2AP)ω | w |=
φ}. Further details can be found in [8].

In the framework proposed in [18], the user is allowed to specify

desired swarm behaviors as a temporal logic specification at two

levels: a macroscopic specification φM that describes how groups
of robots should behave, and a microscopic specification φµ that

describes how individual robots must behave. Roughly speaking,

there are two types of properties allowed in the specifications:

safety properties which states that “something bad never happens”,

and liveness requirements which indicate “something good eventu-

ally happens”. More formally, assume R = {r1, · · · , rk } is a set of
regions partitioning the workspace. Let πr be a proposition that

is true iff a part of the swarm is currently in region r . Moreover,

Session 13: Robotics: Multi-Robot Coordination AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

569

q0 : πD q1 : πA,πB

q2 : πDq3 : πC

(a)

u0 : π
1

D ,π
12

s u1 : π
1

A,π
12

s

u3 : π
1

D ,π
12

su2 : π
1

C

v0 : π
2

D ,π
21

s v1 : π
2

B ,π
21

s

v2 : π
2

D ,π
21

sv3 : π
2

C

(b)

Figure 2: (a) A centralized LTS (b) Partitioning of the centralized LTS of (a) into two LTSs

to distinguish between when we talk about groups or individual
robots, a parametric proposition is introduced for each region. Let

πa
r be a proposition that is true iff an individual robot is in region

r . The macroscopic specification φM is given as a temporal logic

specification over region propositions Π = {πr1 , · · · ,πrk }. The
microscopic specification φµ is given as conjunction of formulas

∀a. □^(πa
r), e.g., ∀a.□^(πa

r) means that all robots must visit re-

gion r but not necessarily at the same time. Note that microscopic

specification can include safety formulas, e.g., ∀a.□(¬πa
r) (no robot

may enter region r). Such safety formulas can also be described at

the macroscopic level, e.g., □(¬πr) (no part of the swarm may enter

region r). To keep the presentation simple, only liveness formulas

are allowed in φµ [18]. Furthermore, in this paper, following [18],

we assume that the environment is static and known.

Example 2.1. The example outlined in Section 1 can be formally

specified with a macroscopic specification φM = □^(πA ∧ πB ∧
¬πC ∧ ¬πD) ∧ □(¬(πC ∧ (πA ∨ πB))) that indicates (i) the swarm
must repeatedly visit regionsA and B at the same time and (ii) avoid

occupying region C when there are robots in regions A or B and

vice versa, and a microscopic specification φµ = ∀a.□^πa
C saying

that all robots must repeatedly visit region C , possibly at different

times.

Labeled Transition System (LTS). We represent the symbolic

controllers as LTSs. An LTS is a tupleT = ⟨Q,q0,AP ,δ ,L⟩ whereQ
is a finite set of states, q0 ∈ Q is an initial state ,AP is a set of propo-

sitions, δ ⊆ Q ×Q is a transition relation, and L : Q → 2
AP

is a

labeling function which maps each state to a set of propositions that

are true in that state. A run of an LTS is an infinite sequence of states
q0q1q2... where qi ∈ Q and (qi ,qi+1) ∈ δ , ∀i ≥ 0. The language

of an LTS T is defined as the set L(T) = {L(q0)L(q1)L(q2) · · · ∈
(2AP)ω | q0q1q2 · · · is a run of T}, i.e., the set of (infinite) words
generated by the runs ofT . An LTST realizes an LTL specificationφ
iff all infinite words in its language satisfyφ, i.e.,∀w ∈ L(T).w |= φ.
Given an LTL specification, the synthesis problem is to find an LTS

that realizes it.

Synthesis of Discrete Controllers. In the framework introduced

in [18], the user provides a region graph that represents the con-

nectivity of the workspace. They also provide a temporal logic

specification describing the objectives of the system. To synthesize

decentralized controllers, first a centralized LTS T is obtained that

satisfies the input specification. The next step is to partition T to

obtain a set of decentralized controllers. Each robot is assigned a

decentralized controller, based on its assignment to a subswarm.

The synthesis process automatically determines the number of re-

quired subswarms and the robot assignment to subswarms can

be automated. Subswarms may be of variable size. Note that it is

assumed that each subswarm moves (almost) together between the

regions, e.g., if a subswarm is moving from regionA to B, and some

members of it reach B, they wait for other members to enter B
before executing their next step.

Finally, a synchronization skeleton for each decentralized con-

troller is constructed that indicates when each subswarm must

synchronize with other subswarms to satisfy a liveness or safety

guarantee, e.g., to gather in some region. Figure 2a shows a cen-

tralized LTS automatically synthesized from the specification in

Example 2.1. The swarm, initially in D, moves toward regions A
and B. After visiting regions A and B and synchronizing, the robots

move towardC throughD, and this behavior is repeated indefinitely.
To ensure that robots do not violate the safety requirement, they

synchronize after moving out ofA and B, and also after moving out

of C . Figure 2b shows partitioning of the LTS in Fig. 2a into two

LTSs, each executed by one group of robots. States where group

i synchronizes with group j are labeled with a synchronization
proposition π

i j
s for i, j ∈ {1, 2}, i , j as shown in Fig. 2b.

3 CONTINUOUS CONTROLLER DESIGN
The synthesized controllers in Section 2 define the transition of

the swarm robots in the symbolic abstraction, i.e., transitions from

regions to regions. When implementing the controllers on physical

swarm robots, the continuous controllers should be designed to

guarantee the following properties: (i) correct behaviors: the contin-
uous trajectory faithfully implements the runs of the synthesized

LTS, (ii) region invariance: if robots are moving from region ri to
region r j , they stay within the boundaries of regions ri and r j and
do not enter any other region r ∈ R\{ri , r j } until the transition
is complete, thereby continuously implementing the discrete ab-

straction regarding the motion, (iii) collision avoidance: robots must

avoid collision with each other and obstacles in their environment,

(iv) deadlock mitigation: robots should be able to escape deadlock

situations. To this end, we synthesize the continuous controllers

as follows: First we create nominal controllers based on the geom-

etry of the workspace and the synthesized symbolic plans. Then

we modify the nominal controllers as needed to avoid collisions,

maintain region boundaries and mitigate deadlocks.

In this section, we describe the system model, the generation

of the nominal controller based on the symbolic plan, a safety-

enhanced controller that guarantees collision avoidance and region

invariance based on control barrier functions (CBF) [3, 6, 19] and a

roadmap based approach to mitigate deadlocks.

3.1 System model
While the approach generalizes to different robot models, in this

paper we consider a swarm robotic system with N planar mobile

Session 13: Robotics: Multi-Robot Coordination AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

570

robots, which are indexed by M = {i | i = 1, 2, ...,N }. Every single

robot is modeled as a first-order system: Ûpi = ui , where pi ∈ R2
represents the position and ui ∈ R2 represents the velocity inputs

of agent i . The velocity of agent i is bounded by | |vi | |∞ ≤ αi , where
αi is the maximum speed of agent i . For safety in continuous space,

we require that any two robots keep a safety distance Ds away

from each other at all times. That yields

| |∆pi j | | ≥ Ds (1)

where ∆pi j = pi − pj as shown in Fig. 3(a).

3.2 Nominal controller
An intuitive way to design continuous controllers is to use a goal

point in the 2D Cartesian space to represent each region, which

makes a run of the LTS become a trajectory connecting several goal

points. Then, an effective controller for every single robot is a vector

pointing to the goal position. We use this approach for defining

the nominal controller. In this paper, a proportional controller is

used as the nominal controller, which is a vector with the norm

proportional to the distance from the current position to the goal

position.

3.3 Collision avoidance and region invariance
In [27], the collision avoidance problem for swarm robots was

formulated and solved using control barrier function (CBF) and qua-
dratic programming (QP), where the CBF provides linear constraints
on the control input that guarantee that the system stays within

a safe set, and QP is done in real-time to modify the nominal con-

troller as little as possible while satisfying the constraints on the

control input. In this paper, we leverage the work of [27] and con-

struct CBF that guarantee swarm robots do not collide with each

other as before, but also do not collide with polygonal obstacles in

the environment and maintain region invariance. In the following,

we review the work of [27] (Sections 3.3.1-3.3.3) and describe this

paper’s contributions (Section 3.3.4-3.3.5)

3.3.1 Control barrier functions (CBF). Consider the general form
of a continuous system given as

Ûx = f (x) + д(x)u (2)

where x ∈ Rn is the state vector of the system, u ∈ Rm is the control

input vector, and f and д are locally Lipschitz continuous functions

[25]. In this paper, we consider a homogeneous swarm system

consisting of N planar robots where x = [pT
1
, pT

2
, ..., pTN]T is the

2N dimensional position vector for all robots, u = [uT
1
, uT

2
, ..., uTN]T

is the 2N dimensional control input (velocity vector), f (x) = 0, and
д(x) = I2N×2N . Following (1), we define a pairwise safe set ζi j for
every two robots

ζi j = {pi , pj ∈ R2 | hi j (p) ≥ 0} ∀i , j,

hi j (p) = | |∆pi j | | − Ds .
(3)

The safe set ζ for the swarm system is the intersection of all pair-

wise safe set ζi j

ζ =
∏
i ∈M

{
⋂
j ∈M
j,i

ζi j } (4)

where the product is the Cartesian product of the state space of all

robots, resulting in 2N dimensional ζ . When the state of the swarm

is in ζ the distance between any two robots is at least Ds .

To guarantee safety of the system at all times, the safe set needs

to be forward invariant: if the system starts from the safe set, it

always stays in the safe set, i.e., if x(0) ∈ ζ , then x(t) ∈ ζ ,∀t ≥ 0.

The control barrier function (CBF) is a function defined over state and
input such that when it satisfies a set of constraints, it ensures the

safe set is forward invariant [30]. In this paper, we define the pair-

wise CBF as Bi j (x, u) =
dhi j (x)
dt + γh3i j (x), where γ is an arbitrary

positive number. Note that hi j (x) = 0 is the boundary of the safe

set. Combined with (3), the pair-wise CBF can be calculated as

Bi j (x, u) =
∆pTi j

| |∆pi j | |
∆ui j + γh3i j (5)

where ∆ui j = ui − uj . It was proved in [27] that the safe set ζ is

forward invariant and asymptotically stable when all Bi j (x, u) are
non-negative and the control input u is Lipschitz continuous. Thus,

as long as the control input u satisfies Bi j (x, u) ≥ 0, ∀i, j i , j, the
forward invariance of safe set ζ can be guaranteed.

3.3.2 Centralized Safety Barrier Certificates. Centralized safety

barrier certificates consider all the robots simultaneously, giving

control inputs to every robot such that all pair-wise inequality con-

straints in (1) are satisfied. Note that there are
N (N−1)

2
inequalities

Bi j (x, u) ≥ 0, leading to a set of linear constraints Ai ju ≤ bi j ,

where Ai j = [0, ...,−∆pTi j , ...,∆p
T
i j , ..., 0], u = [uT

1
, uT

2
, ..., uTN]T is

the joint control inputs for all robots, and bi j = γh
3

i j | |∆pi j | |. Nomi-

nal controllers are modified as little as possible to ensure collision

avoidance. To this end, QP can be used to minimize the difference

between the nominal controller and the actual controller. The QP

problem for centralized control is formulated as

u = argmin

u∈R2N
J (u) =

N∑
i=1

| |ui − ûi | |2

s .t . Ai ju ≤ bi j , ∀i , j

| |ui | |∞ ≤ αi , ∀i ∈ M .

(6)

Where ui is the actual controller and ûi is the nominal controller

for agent i , respectively. This way, a 2N dimensional continuous

control input u that leads robots to their goals without any collision

is computed.

3.3.3 Decentralized Safety Barrier Certificates. The centralized
controller requires and computes over full state information of all

the robots, which may lead to poor scalability, reactiveness and

robustness as the number of robots grows [27]. In order to avoid

the drawbacks of centralized control, decentralized safety barrier

certificates can be constructed [27]. In decentralized control, the

computation is distributed to each robot. To satisfy Bi j (x, u) ≥ 0,

decentralized safety barrier certificates are formed as

− ∆pTi jui ≤
αi

αi + α j
bi j (7)

∆pTi juj ≤
α j

αi + α j
bi j (8)

Session 13: Robotics: Multi-Robot Coordination AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

571

where i and j represent robot i and robot j, respectively. Note that
switching i and j in (7) gives the same constraint as (8). Such decen-

tralized safety barrier certificates distribute the collision avoidance

control to each robot according to their agility. Satisfying the safety

barrier constraints for all robots will guarantee the collective be-

haviors are collision-free [27]. In the decentralized case, instead

of solving a 2N -dimensional QP, 2-dimensional QPs in terms of

ui are solved for each robot i . Detailed formulations for decentral-

ized QP can be found in [27]. The decentralized control approach

scales better with the number of robots; however, it might result

in deadlocks as it only relies on local information. In Section 4,

decentralized barrier certificates will be used in Example 1 and

3, while centralized and decentralized barrier certificates will be

compared in Example 2.

3.3.4 Static/dynamic circular obstacle avoidance. To ensure safety
of the system, swarm robots must not only avoid collision with each

other, but also with static and dynamic obstacles in their environ-

ment. In [27], the authors briefly mentioned that obstacles bounded

by circles can be avoided by using control barrier functions and

regarding obstacles as virtual robots without control inputs. Here,

for first-order systems, we extend the work to collision avoidance

with dynamic obstacles which are modeled as virtual robots with

limited control inputs.

Let robot i have the smallest velocity bound αi in the swarm,

and dynamic obstacle j have velocity bound βj . We assume βj ≤ αi ,
otherwise the obstacle can always move toward robot i and cause

a collision. Then, we revise the barrier certificate in (7) to be

− ∆pTi jui ≤ bi j − ||∆pi j | |βj (9)

where we regard obstacle j as a virtual robot with position pj . We

add all linear constraints (9) to the decentralized barrier certificate

to synthesize collision-free continuous controllers for each robot.

Note that when considering two swarm robots, both controllers

actively avoid collisions; however in the case of a dynamic obstacle,

the obstacle could have an arbitrary velocity within the bound

βj . Eq. (9) provides the most conservative constraint for robot i
and guarantees a non-negative CBF Bi j for robot i and obstacle

j. In addition, bi j − ||∆pi j | |βj ≥ −||∆pi j | |βj ≥ −||∆pi j | |αi , which
ensures that there are always feasible solutions for (9). In the case of

static obstacles, we apply βj = 0, which models the static obstacle

as a robot with zero control input.

3.3.5 Static polygonal obstacle avoidance and Region Invariance.
Section 3.3.4 describes collision avoidance with circular obstacles;

however, in most cases, static obstacles such as walls cannot be

approximated well by circles. Instead, polygons are better suited

to represent irregular obstacles. Hence, strategies of avoiding col-

lisions with polygonal obstacles are needed for applications of

swarm robots in realistic environments. In this section we define

safe sets and develop the appropriate barrier certificates to ensure

no collisions with polygonal obstacles.

Definition 3.1: For a point obstacle C in the workspace, the safe

set ζC of pointC is the set of robot positions such that the distance

between the robot and point C is at least the safety distance Ds ,

i.e., ζC = {p ∈ R2 | | |p − pC | | ≥ Ds }, where p is the position of the

robot, pC is the position of point C and Ds is the safety distance.

Definition 3.2: The safe set of a straight line AB is the union of

the safe sets of all points on that line, i.e., ζAB = ∪BC ′=AζC ′ , where

C ′
is a point on the line segment AB.
In the following, we explain the control synthesis approach that

guarantees the swarm robots avoid collisions with the obstacles.

Theorem 3.1. For a straight line obstacle, if the controller ensures
that the agent is in the safe set ζC of the closest pointC , then the agent
is guaranteed to be in the safe set of the whole straight line ζAB .

Proof: Consider a single robot, a line obstacle and a goal position
for the robot, as is shown in Fig 3(b). We draw a circle centered at

the robot position with a radius of the safety distance Ds . If the

robot is in the safe set of the closest point, then the circle has no

intersection with the line, which means the robot is currently in the

safe set of the line. For the robot pose after applying the control, we

consider the most "dangerous" case where the robot is distance Ds
away from the line, which indicates that the circle is tangential to

the line. As the synthesized controller ensures that the robot is still

in the safety set of the closest point, the actual control input can

only be in the blue (shaded) region. Therefore, the robot cannot get

any closer to the line no matter where the goal position is, thereby

ensuring that the robot is always in the safe set of the entire line.

Based on Theorem 3.1, we add constraints by dividing all the

polygonal obstacles into lines, finding the closest point to each

line, and considering those points as virtual agents with no control

inputs. Then, we formulate CBFs in terms of virtual agents as well

as real agents and add those constraints to the original QP (6) to

compute the control inputs for collision-free motion.

To guarantee region invariance, as described in Section 3, when

a subswarm is moving between two regions, we construct virtual

obstacles on the boundaries of any other region and follow the

procedure above to modify the QP with additional constraints. For

example, in Example 2.1, when some robots are required to move

from region D to region A, we construct a virtual obstacle at the
entrance of region B and use the methods in 3.3.5 to ensure those

robots do not enter B.

3.4 Deadlock mitigation
Deadlock is defined as a situation where no progress can be made

towards the goal. In swarm motion, when the effects of the barrier

certificates counteract the nominal controller, swarm robots might

get into a deadlock situation. Consistent perturbations are used in

[27] to solve the deadlock problem between the robots themselves,

where tangential control inputs in opposite directions are given to

two robots. However, the same strategy might not work when deal-

ing with polygonal obstacles. Figure 4(a) shows a possible deadlock

scenario: when the robot is at point P , the control input drives the
robot "closer" to the goal (towards the pointQ). However, when the

robot reaches Q , it cannot make progress toward the goal position

any more. Note that giving a perturbation does not help the robot

get out of the deadlock situation as the robot always tends to move

to Q if the wall is between the robot and the goal because point Q
resembles a local minima.

In this section, we address deadlock due to the interaction be-

tween a robot and a line obstacle, and then briefly discuss multiple

robots and multiple walls scenarios. One-robot-one-wall deadlock

happens when the robot is exactly Ds away from the wall and the

Session 13: Robotics: Multi-Robot Coordination AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

572

Figure 3: (a) Relative positions between two robots. (b) Rela-
tive positions between the robot and the line obstacle.

Figure 4: (a) Deadlock scenario when there is a line obstacle
between the robot and its goal. (b) Road map over the work
space, where red circles represent nodes and blue dashed
lines represent edges.

line connecting the robot to the goal perpendicularly intersects the

wall (e.g. a robot at point Q in Fig. 4 is in deadlock).

We note that the robot will never go into a deadlock if the line

connecting the robot and the goal has no intersection with the

wall. Thus, we can revise the nominal controller (replan the path)

whenever we detect a wall between the robot and its goal. To

this end, with a priori knowledge of the environment, we build a

roadmap [2] over the workspace, which consists of multiple nodes

(waypoints) and edges connecting nodes in free space. As is shown

in Fig. 4(b), a roadmap ensures that any starting point can get to

any goal point through nodes in a collision-free path. Whenever

we detect there is an intersection between the wall and the desired

path, we use Dijkstra’s algorithm [9] to find another path to the goal

point through the connected nodes. Then, the nominal controller

is altered to direct to the next waypoint on the roadmap . Note that

when applying this deadlock mitigation technique, we ensure that

the roadmap does not create paths that violate region invariance.

With the roadmap, robots will never get stuck in a deadlock caused

by static polygonal obstacles.

In the multi-robot-multi-wall case, deadlocks can be mitigated

by tangential perturbation [27] together with the roadmap-based

planning, although we cannot guarantee deadlock avoidance in all

situations.

(a) Workspace for Example 1

(b) Workspace for Example 2 (c) Workspace for Example 3

Figure 5: Workspaces for the examples in Section 4

4 PHYSICAL DEMONSTRATION
In this section, we present two different experimental setups and

three examples which demonstrate the physical behaviors of swarm

robots performing high-level tasks. For examples 1 and 3, the swarm

is composed of Sphero SPRK robots. Example 2 was implemented

on the Robotarium [21]. Decentralized barrier certificates were im-

plemented for the SPRK robots, while both centralized and decen-

tralized barrier certificates were used and compared in Robotarium.

4.1 Experimental Setup
SPRK robots: SPRK robots

1
are rolling sphere robots with a diam-

eter of 7.3 cm. The robots communicate through Bluetooth and are

programmed using the Robot Operating System (ROS) [23]. The

control inputs are linear velocities in two perpendicular directions.

Thus, the SPRK robots can be modeled as holonomic first-order

systems. The Vicon motion capture system was used to localize the

robots; we designed rolling cages to enable placing markers on the

robots.

Robotarium: The Robotarium system is a remotely accessible

swarm testbed developed in [21] where GRITSBots serve as swarm

robots. GRITSBots are 3 × 3.1 cm wheeled robots which can be

modeled as unicycles. They are controlled through wireless com-

munication and are localized by web cameras [22].

4.2 Example Description
Example 1. This example shows the ability of the swarm to execute

tasks from high-level specifications. We synthesize and deploy

controllers on a physical swarm robotic system with 12 robots.

Consider a workspace divided into 7 regions (A −G) as shown
in Fig. 5a. All robots are initially positioned on the right side of

region G . They are required to: repeatedly visit the region C (could

be at different times) (φ
µ
1
= ∀a. □^πa

C), occupy regions D, E, and F
at the same time (ϕ11 = □^(πD ∧ πE ∧ πF ∧∧

r ∈R\{D,E,F } ¬πr)),
occupy regions A and B at the same time (ϕ12 = □^(πA ∧ πB ∧∧
r ∈R\{A,B } ¬πr)), and if some robots are in A or B, there should

not be any robots in D, E, or F and vice versa (ϕ13 = □(¬((πA ∨
πB)∧(πD ∨πE ∨πF)))). The macroscopic specification is defined as

1
https://www.sphero.com/sphero

Session 13: Robotics: Multi-Robot Coordination AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

573

φM
1
= ϕ11 ∧ ϕ12 ∧ ϕ13. Three LTSs T11,T12,T13 with the following

runs were synthesized and implemented on three groups of robots:

• T11: (ÛπG → πC → πG → ÛπD → πG → ÛπA)ω ,
• T12: (ÛπG → πC → πG → ÛπE → πG → ÛπA)ω ,
• T13: (ÛπG → πC → πG → ÛπF → πG → ÛπB)ω .

The LTSs loop back to the initial state after visiting their last state

and the three groups synchronize at states denoted with a dot.

Example 2. This example was implemented on the Robotarium

platform and shows adaptability of the synthesis framework, i.e., it

can be implemented on different physical swarm systems.

Consider two working zones connected by two long corridors

shown in Fig. 5b. The swarm, initially distributed in region C , is
required to infinitely often navigate through corridors and visit

regions G, H , and I simultaneously (ϕ21 = □^(πG ∧ πH ∧ πI ∧∧
r∈R\{H,G, I } ¬πr))). The whole swarm must also repeatedly be

in region F (ϕ22 = □^(πF ∧ ∧
r∈R\{F } ¬πr) , and infinitely of-

ten occupy regions A and B at the same time (ϕ23 = □^(πA ∧
πB

∧
r∈R\{A,B } ¬πr)). Moreover, all the robots in the swarm must

pass through corridor E repeatedly (φµ
2
= ∀a. □^(πa

E)) but they
must avoid occupying both corridors at any time (ϕ24 = □(¬(πE ∧
πD))) . Finally, if there is a robot in any regions {G,H , I }, there must

be no robots in regions {A,B} and vice versa (ϕ25 = □(¬((πG ∨
πH ∨ πI) ∧ (πA ∨ πB)))). The macroscopic specification is defined

as φM
2
=
∧

5

i=1 ϕ2i . Three LTSs T21,T22,T23 with the following runs

were synthesized and deployed on three groups of robots:

• T21: (ÛπA → πC → πE → πF → ÛπI → ÛπF → πE → πC)ω ,
• T22: (ÛπB → πC → πE → πF → ÛπG → ÛπF → πE → πC)ω ,
• T23: (ÛπB → πC → πE → πF → ÛπH → ÛπF → πE → πC)ω .

As before, the LTSs loop back to their initial state after visiting

their last state and they synchronize with each other in the regions

marked with a dot.

Example 3. This example, demonstrated with SPRK robots, shows

that two different swarm teams can complete their own tasks safely

in a shared workspace regardless of the other team’s tasks even

though there is no communication between them. This demonstra-

tion shows the potential of application in heterogeneous swarms

or swarm-human collaboration.

Assume we have two different teams of robots: team 1 with fast

robots and team 2 with slow robots. They are required to perform

specified tasks in different regions while sharing a public space. We

assume that all robots in team 1 are initially positioned in region A,
and that they must repeatedly occupy region A at the same time

(ϕ1
31
= □^(πA ∧∧

r∈R\{A} ¬πr)), be present at regions B, E, and
F infinitely often at the same time (ϕ1

32
= □^(πB ∧ πE ∧ πF ∧

¬πA ∧ ¬πG)), visit region E repeatedly (possibly at different times)

(φµ
31
= ∀a. □^(πa

E)), and finally avoid regions C and D at all times

(ϕ1
33
= □(¬(πC ∨ πD))) since those regions are working areas for

team 2. On the other hand, robots in team 2, initially positioned in

region C , must repeatedly distribute in region C and D at the same

time (ϕ2
31
= □^(πC ∧πD)). Besides, all robots in team 2 must gather

in region D repeatedly (ϕ2
32
= □^(πD ∧ ∧

r∈R\{D } ¬πr). Finally,
team 2 must avoid entering regions A, B, E and F (ϕ2

33
= □(¬(πA ∨

πB ∨ πE ∨ πF))). The macroscopic specification φM
3i for team i ∈

{1, 2} is defined as φM
3,i =

∧
3

j=1 ϕ
i
3j . Three LTss T

1

31
,T1

32
,T1

33
were

synthesized for team 1 with the runs

Figure 6: Example 1. SPRKs are divided into three groups
specified by green, blue and red. Lines represent walls in the
workspace and dashed arrows indicate the motion. The dy-
namic obstacle is circled.

• T1

31
: πA → (πG → πE → πG → ÛπA → πG → ÛπB)ω ,

• T1

32
: πA → (πG → πE → πG → ÛπA → πG → ÛπE)ω ,

• T1

33
: πA → (πG → πE → πG → ÛπA → πG → ÛπF)ω .

For team 2, two LTSs T2

31
,T2

32
were synthesized with the runs:

• T2

31
: πC → (πG → ÛπD → πG → ÛπC)ω ,

• T2

32
: πC → (πG → ÛπD → πG → ÛπD)ω .

The two teams have no shared information except positions, i.e.

they do not know the other team’s tasks and they do not commu-

nicate with each other. The position data is provided through the

Vicon motion capture system and is used to emulate the sensing

information that can be gathered using on board sensors.

5 RESULTS AND DISCUSSION
Figure 6 demonstrates the implementation of Example 1. The SPRK

robots were divided into three groups, each assigned a synthesized

LTS and a color to display (blue is T11, green is T12, and red is T13).
The accompanying video shows that the swarm system satisfied the

given specification and that there was no collision among all the

robots as well as with the walls. In addition, we manually controlled

a separate SPRK robot with a black marker to model a dynamic

obstacle. When the dynamic obstacle has a velocity less than the

maximum velocity of the swarm robots, we can guarantee that

collisions do not happen.

Figure 7 shows the implementation of Example 2 in the Robotar-

ium. Centralized and decentralized barrier certificates were used in

Session 13: Robotics: Multi-Robot Coordination AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

574

Figure 7: Example 2. Robots are divided into three groups.
Lines represent walls in the workspace and dashed arrows
indicate the motion.

two trials, where 9 robots starting at region C visited regions on

two sides of the work space navigating through the corridor. For

a large portion of the execution of the centralized controller, the

swarm system satisfies the specifications and safety requirements.

However, at time t = 122s , one robot stopped during the execution

probably due to network delays or wheel slips, i.e., that robot could

not receive the commands or it could not execute the command

that it received. That failure caused collisions as the collision-free

movement of the system relies on the correct execution of velocity

commands by all the robots. After t = 169s , the failed robot started

to move again and all robots moved correctly according to the spec-

ifications and barrier certificates. In contrast, the execution with

the decentralized control barriers did not exhibit such collisions

when a single robot failed to execute. This robustness is due to the

fact that every single robot has its own barrier certificates and it

will never run into an obstacle nearby as long as it is not experi-

encing significant delays in velocity execution. Thus, decentralized

control performs better in case of individual failure as the input

of each robot only depends on local sensing information, while in

centralized control, control inputs of all robots are related.

Figure 8 shows the implementation of Example 3 on a swarm

of SPRK robots. This example demonstrated two different teams

of swarms sharing the same workspace, where team 1 consisted

of 3 "fast" SPRKs with a velocity limit of 0.2m/s and team 2 had 4

"slow" SPRKs with a velocity limit of 0.1m/s . Team 2 only patrolled

between region C and D while team 1 visited four corner regions

and went through region G . Note that there were no collisions and

the specifications for both teams were satisfied. This demonstration

implies that the synthesis scheme can be applied to swarm systems

even if the swarms share the workspace with people or other types

of robots but do not communicate with them.

Figure 8: Example 3. Two separate SPRK swarms are carry-
ing out their own tasks in a shared workspace. Lines repre-
sent walls in the workspace and dashed arrows indicate the
motion. The slow team is circled out.

6 CONCLUSIONS
A controller synthesis framework from high-level specifications

was implemented on different swarm systems. Control barrier cer-

tificates for collision avoidance were extended by considering polyg-

onal obstacles in the environment. In addition, deadlock scenar-

ios were avoided by using roadmaps. Demonstrations on different

swarm robotic platforms show the flexibility and versatility of the

proposed controller synthesis framework. In future work, we plan

to extend the algorithms in this paper to enable swarms to perform

tasks in dynamically changing environments.

7 ACKNOWLEDGMENTS
This research was supported by DARPA N66001-17-2-4058.

Session 13: Robotics: Multi-Robot Coordination AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

575

REFERENCES
[1] Javier Alonso-Mora, Andreas Breitenmoser, Martin Rufli, Paul Beardsley, and

Roland Siegwart. 2013. Optimal reciprocal collision avoidance for multiple non-

holonomic robots. In Distributed Autonomous Robotic Systems. Springer, 203–216.
[2] Nancy M Amato and Yan Wu. 1996. A randomized roadmap method for path

and manipulation planning. In IEEE International Conference on Robotics and
Automation, Vol. 1. IEEE, 113–120.

[3] Aaron D Ames, Jessy W Grizzle, and Paulo Tabuada. 2014. Control barrier

function based quadratic programs with application to adaptive cruise control.

In IEEE 53rd Annual Conference on Decision and Control (CDC). IEEE, 6271–6278.
[4] Jan Carlo Barca and Y. Ahmet Sekercioglu. 2013. Swarm robotics reviewed.

Robotica 31, 3 (2013), 345–359. https://doi.org/10.1017/S026357471200032X
[5] Andrew Best, Sahil Narang, and Dinesh Manocha. 2016. Real-time reciprocal

collision avoidance with elliptical agents. In IEEE International Conference on
Robotics and Automation (ICRA). IEEE, 298–305.

[6] Urs Borrmann, Li Wang, Aaron D Ames, and Magnus Egerstedt. 2015. Control

barrier certificates for safe swarm behavior. IFAC-PapersOnLine 48, 27 (2015),
68–73.

[7] Manuele Brambilla, Eliseo Ferrante, Mauro Birattari, and Marco Dorigo. 2013.

Swarm robotics: a review from the swarm engineering perspective. Swarm
Intelligence 7, 1 (01 Mar 2013), 1–41. https://doi.org/10.1007/s11721-012-0075-2

[8] Edmund M Clarke, Orna Grumberg, and Doron Peled. 1999. Model checking. MIT

press.

[9] Edsger W Dijkstra. 1959. A note on two problems in connexion with graphs.

Numerische mathematik 1, 1 (1959), 269–271.

[10] Gabriel M Hoffmann and Claire J Tomlin. 2008. Decentralized cooperative

collision avoidance for acceleration constrained vehicles. In 47th IEEE Conference
on Decision and Control (CDC). IEEE, 4357–4363.

[11] Markus Jager and Bernhard Nebel. 2001. Decentralized collision avoidance, dead-

lock detection, and deadlock resolution for multiple mobile robots. In Proceedings
of IEEE/RSJ International Conference on Intelligent Robots and Systems, Vol. 3. IEEE,
1213–1219.

[12] Jingfu Jin, Yoon-Gu Kim, Sung-Gil Wee, and Nicholas Gans. 2015. Decentralized

cooperative mean approach to collision avoidance for nonholonomic mobile

robots. In IEEE International Conference on Robotics and Automation (ICRA). IEEE,
35–41.

[13] Marius Kloetzer and Calin Belta. 2006. Hierarchical abstractions for robotic

swarms. In Proceedings of IEEE International Conference on Robotics and Automa-
tion (ICRA). IEEE, 952–957.

[14] Marius Kloetzer and Calin Belta. 2010. Automatic deployment of distributed

teams of robots from temporal logic motion specifications. IEEE Transactions on
Robotics 26, 1 (2010), 48–61.

[15] Marius Kloetzer, Xu Chu Ding, and Calin Belta. 2011. Multi-robot deployment

from LTL specifications with reduced communication. In 50th IEEE Conference
on Decision and Control and European Control Conference (CDC-ECC). IEEE, 4867–
4872.

[16] Hadas Kress-Gazit, Georgios E Fainekos, and George J Pappas. 2009. Temporal-

logic-based reactive mission and motion planning. IEEE transactions on robotics
25, 6 (2009), 1370–1381.

[17] Hadas Kress-gazit, Tichakorn Wongpiromsarn, and Ufuk Topcu. 2011. Correct,

Reactive Robot Control from Abstraction and Temporal Logic Specifications.

(2011).

[18] Salar Moarref and Hadas Kress-Gazit. 2017. Decentralized Control of Robotic

Swarms from High-Level Temporal Logic Specifications. In International Sympo-
sium on Multi-Robot and Multi-Agent Systems. IEEE. To appear.

[19] Quan Nguyen and Koushil Sreenath. 2016. Exponential control barrier functions

for enforcing high relative-degree safety-critical constraints. In American Control
Conference (ACC), 2016. IEEE, 322–328.

[20] Petter Nilsson and Necmiye Ozay. 2016. Control Synthesis for Large Collections of

Systems with Mode-Counting Constraints. In Proceedings of the 19th International
Conference on Hybrid Systems: Computation and Control. ACM, 205–214.

[21] Daniel Pickem, Paul Glotfelter, Li Wang, Mark Mote, Aaron Ames, Eric Feron, and

Magnus Egerstedt. 2017. The Robotarium: A remotely accessible swarm robotics

research testbed. In IEEE International Conference on Robotics and Automation
(ICRA). IEEE, 1699–1706.

[22] Daniel Pickem, Myron Lee, and Magnus Egerstedt. 2015. The GRITSBot in its

natural habitat-A multi-robot testbed. In IEEE International Conference on Robotics
and Automation (ICRA). IEEE, 4062–4067.

[23] Morgan Quigley, Ken Conley, Brian P Gerkey, Josh Faust, Tully Foote, Jeremy

Leibs, Rob Wheeler, and Andrew Y Ng. 2009. ROS: an open-source Robot Operat-

ing System. In ICRA Workshop on Open Source Software.
[24] Jeff Shamma. 2008. Cooperative control of distributed multi-agent systems. John

Wiley & Sons.

[25] Houshang H Sohrab. 2003. Basic real analysis. Vol. 231. Springer.
[26] Jur Van Den Berg, Jamie Snape, Stephen J Guy, and Dinesh Manocha. 2011.

Reciprocal collision avoidance with acceleration-velocity obstacles. In IEEE Inter-
national Conference on Robotics and Automation (ICRA). IEEE, 3475–3482.

[27] Li Wang, Aaron D Ames, and Magnus Egerstedt. 2017. Safety Barrier Certificates

for Collisions-Free Multirobot Systems. IEEE Transactions on Robotics (2017).
[28] Tichakorn Wongpiromsarn, Ufuk Topcu, and Richard M Murray. 2012. Receding

horizon temporal logic planning. IEEE Trans. Automat. Control 57, 11 (2012),

2817–2830.

[29] Tichakorn Wongpiromsarn, Alphan Ulusoy, Calin Belta, Emilio Frazzoli, and

Daniela Rus. 2013. Incremental synthesis of control policies for heterogeneous

multi-agent systems with linear temporal logic specifications. In IEEE Interna-
tional Conference on Robotics and Automation. IEEE, 5011–5018.

[30] Xiangru Xu, Paulo Tabuada, JessyWGrizzle, andAaronDAmes. 2015. Robustness

of Control Barrier Functions for Safety Critical Control. IFAC-PapersOnLine 48,
27 (2015), 54–61.

[31] Yuan Zhou, Hesuan Hu, Yang Liu, and Zuohua Ding. 2017. Collision and Deadlock

Avoidance in Multirobot Systems: A Distributed Approach. IEEE Transactions on
Systems, Man, and Cybernetics: Systems (2017).

Session 13: Robotics: Multi-Robot Coordination AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

576

https://doi.org/10.1017/S026357471200032X
https://doi.org/10.1007/s11721-012-0075-2

	Abstract
	1 Introduction
	2 Synthesis of Symbolic Controllers
	3 Continuous Controller Design
	3.1 System model
	3.2 Nominal controller
	3.3 Collision avoidance and region invariance
	3.4 Deadlock mitigation

	4 PHYSICAL DEMONSTRATION
	4.1 Experimental Setup
	4.2 Example Description

	5 RESULTS AND DISCUSSION
	6 CONCLUSIONS
	7 Acknowledgments
	References

