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ABSTRACT
Traditional taxi fleet operators world-over have been facing intense
competitions from various ride-hailing services such as Uber and
Grab (specific to the Southeast Asia region). Based on our studies
on the taxi industry in Singapore, we see that the emergence of
Uber and Grab in the ride-hailing market has greatly impacted the
taxi industry: the average daily taxi ridership for the past two years
has been falling continuously, by close to 20% in total. In this work,
we discuss how efficient real-time data analytics and large-scale
multi-agent optimization technology could potentially help taxi
drivers compete against more technologically advanced service
platforms.

Our technology is based on an earlier theoretical work proven
to work in a series of simulation studies. Our major contribution
in this paper is the demonstration that the proposed design, when
coupled with a real-time data feed of close to 20,000 taxis around
Singapore, can indeed help drivers to improve their performances.
To provide concrete real-world evidence that such technology can
indeed benefit taxi drivers, we have tested the driver guidance sys-
tem (DGS) operationally since September 2017. With 361 recruited
drivers and 5 months of operational data, we have demonstrated
that when drivers actively follow our guidance during their roam-
ing (more than 60% of roaming time before acquiring a trip), their
expected roaming times can be reduced by 22% when compared to
the cases where guidances are not followed. By further breaking
down the analysis by time periods, workdays, and areas, we point
out the spatial-temporal combinations in which the DGS is most
useful.
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taxi driver guidance;multiagent optimization; transportation;mobility-
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1 INTRODUCTION
In recent years, we have witnessed a surge in the popularity of
mobility-on-demand services, most notably Uber1. Despite various
controversies surrounding Uber and Uber-like services, most critics
agree that Uber-like services have indeed significantly improved
the delivery of mobility-on-demand services, which were previ-
ously dominated by traditional taxis. Compared to traditional taxi
services, Uber-like services bring in innovations in three major
areas: 1) the use of smartphones in engaging commuters, 2) the use
of data science in enabling better supply-demand matching, and 3)
the use of price mechanism in nudging both demand and supply
levels. These innovations have made mobility-on-demand services
more accessible and affordable in many cities, and taxi industry
everywhere is facing enormous pressure in catching up.

Not all aforementioned innovations are new, in fact, the taxi in-
dustry has long been using GPS-based dispatch systems for match-
ing drivers and commuters, and along the way generated large
amount of data (the most notable such data is the New York taxi-
cab dataset, which is openly available). Based on these datasets,
researchers from various fields have come up with a wide spectrum
of studies, for example, on behavioral studies [1, 2], big-data an-
alytics [7], and guidance systems [13]. However, very few (if not
none) of such research outputs have been adopted by the taxi in-
dustry. As the operation environment changes with the emergence
of Uber-like services, it is the time for taxi industry to evolve.

By surveying the existing research, we can see that there are
many promising ways in which the competitiveness of the taxi
industry could be improved. One such idea is to perform big-data
analytics and generate personalized guidance for individual drivers.
In this paper, we have implemented one such system designed by
Jha et al. [6] and tested it in a small-scale field trial. The system
contains two major components: 1) the demand/supply prediction
engine that relies on a real-time data feed which provides taxi status
and locations, and 2) a multi-agent optimizer that generates person-
alized driving recommendations based on real-time demand/supply
predictions. We launched our field trial in September 2017 and have
since recruited 361 drivers to our field trial in phases. With five
months of operational data, we demonstrate that when drivers are
following provided guidances actively (according to our definition,
this refers to trips where guidances are followed more than 60% of
the whole roaming time), the resulting roaming times are 22% less
than the cases where the guidances are not followed this closely

1Uber is certainly not the only player in the field; other important players in this area
include DiDi in China, Ola in India, Grab in the Southeast Asia, Taxify in EU and
Africa, and EasyTaxi in Brazil; just to name a few.
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(including cases where the system is not used at all). We further
break down the analysis by looking at the temporal and spatial
dimensions, and we pinpoint the time periods of a day, workday
(or not), and regions in Singapore that the guidance would work
the best.

Our initial operational experience shows that there is great po-
tential in pushing driver guidance to the real-world operation.

The rest of the paper is organized as follows: in the next section,
we present a brief review of the related literature. The succeeding
sections present an overview of the deployed guidance system, and
the specifics of our field trial. The analysis of the results gathered
from the five months of the field trials is discussed next before
concluding the paper.

2 RELATED LITERATURE
The development of taxi driver guidance system has been widely
studied in the literature [12–16]. Besides providing guidances to
drivers, another stream of research is to provide demand-related
information to drivers. For example, in the work by Moreira-Matias
et al. [9], taxi demands at various taxi stands are predicted and
sent to drivers directly. In Zhang et al. [16], the authors propose
a model to learn the driving behaviors and decision-making of
taxi drivers using Bayesian learning. By analyzing the historical
GPS traces of the movement of various taxi drivers, the authors
extract several cues such as origin and destination of trips along
with a drive-by information. These sources of information are then
modeled to supplement the knowledge of taxi drivers (based on
their individual experiences) about the expected demand in various
parts of the city.

Yuan et al. [14] propose a recommendation system catering to the
taxi drivers as well as passengers. Using a probabilistic model, they
derive the temporal distribution of taxis’ pick-ups and drop-offs.
They use the temporal distributions to predict a preferable parking
spot to the taxi drivers (based on their current location) with a
high likelihood of passengers arrivals. The authors provide these
locations to the taxi drivers as a hotspot based on a score returned
by their model. This may lead to imbalances as the global demand
and supply is not considered for all the taxis in different states. In
Yuan et al. [13], the same set of authors derive the fastest travel
routes for a source and destination pair at different times of the
day using the movement of taxis. They use the movement patterns
of different taxis from the GPS traces to build a time-dependent
landmark graph and calculate the practically viable fastest route
for a user.

Chiang et al. [4] propose a model to predict booking demands.
They divide the space in a set of grids and for each grid they use
Gaussian mixture models for estimating the distributions for book-
ing or call based demand at different times of the day. Their model
only serves the booking based passengers and does not consider the
demand from street-hails and taxi queues. Zhang et al. [15] derive a
hotness parameter for the passenger demand at different locations
and times using historical traces. This parameter is then used to
provide a set of top-k recommendations to the taxi drivers based
on their current location and the distance of desired locations with
demand. The model does the assignment of taxi drivers at different

demand location in a greedy manner which could lead to a global
imbalance of demand and supply.

In Qu et al. [11], instead of providing a set of potential locations to
look of passengers, the authors construct a complete driving route
for each taxi drivers with high net profits. The authors use historical
GPS traces to construct the taxi movement trajectories which is
then represented as a graph. Each trajectory is then evaluated using
a net profit objective function. Finally the taxi drivers are provided
with complete driving route in order to maximize their earnings. In
a similar approach, Ge et al. [5] provide a set of pick-up locations
to the taxi drivers. These locations are derived considering the
location of the taxi and the amount of distance to be traveled along
with the expected revenue.

As discussed above, various solutions proposed in the literature
emphasizes mostly on the prediction of demand hotspots which
are then provided to the taxi drivers as recommendations. There
are two basic flaws with such systems : 1) Usually the demand pre-
diction models are derived from historical GPS traces. Such models
are less reactive to the real-world situations as the latest informa-
tion is usually not considered. 2) The demand is only considered
locally based on the current location of the taxi drivers which leads
to greedy matching of demands and supplies. This often leads to
imbalances of demands and supplies as the taxis often gets crowded
in a few selected areas (such as a city center) while other areas are
constantly running low on supplies.

When choosing the framework to power our driver guidance sys-
tem, we carefully evaluate the candidates so that the implemented
system would achieve the following two most critical goals: 1) The
chosen system must be reactive to the real-world data feed. This
is to avoid the first flaw mentioned above, 2) The chosen system
must explicitly consider the interaction among tens of thousands
of taxi drivers. This is to ensure that the system can easily scale
up regardless of number of drivers who we intend to serve, and 3)
Finally, the chosen system must also be scalable computationally.
This implies that the guidance engine should be constructed so that
the execution time of the engine does not depend on the number of
users. In the next section, we will briefly describe a driver guidance
system that satisfy all these three important properties.

3 THE DRIVER GUIDANCE SYSTEM (DGS)
Through a real-time data link, we are continuously receiving the
locations and states of almost all operating taxis in Singapore from
the Land Transport Authority (LTA) of Singapore (at the end of Sep-
tember 2017, there are around 24,000 registered taxis in Singapore,
and over 99% of them are included in the dataset). The location is
reported as a GPS coordinate while the state indicates whether the
taxi is Available, Busy, Hired, or On-call (we will elaborate more
on how we use these taxi states in the later section).

Our Driver Guidance System (DGS) is implemented following the
design described in Jha et al. [6]. The high-level architecture of the
DGS is illustrated in Figure 1, and there are four critical components:
1) data stream handler, 2) demand and supply prediction engine,
3) multi-agent recommendation engine, and 4) mobile App that
interacts with the drivers. The high-level design principles and
necessary details are briefly described in the following subsections.
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Figure 1: The design of the Driver Guidance System (DGS).

For complete description on the technical details, we refer interested
readers to Jha et al. [6].

3.1 Data Stream Handler
The real-time data stream contains real-time GPS coordinates and
states of all currently active taxis in Singapore2. As GPS coordinates
and status updates both can experience errors due to either hard-
ware or communication issues, we will need to identify and correct
(if possible) these errors before feeding the received data to other
components. The basic data cleaning step involves removing the ob-
vious GPS errors such as location discontinuity, out-of-bound errors,
or null signals. After basic cleaning, the next important task to be
performed in this component is the map matching, where the GPS
coordinate is mapped to an actual road link. This step allows us to
sense the activity of taxi movement along the actual road network.
All taxis’ locations are continuously mapped to physical roads using
a Hidden-Markov-Model-based map-matching algorithm [10]. This
algorithm also provides necessary corrections to the location sens-
ing where necessary. Our map-matching implementation works
in a rolling horizon manner and generates trajectories for all taxis
independently.

3.2 Demand and Supply Prediction Engine
The precise knowledge of demands and supplies forms the foun-
dation for the DGS platform. While the real-time supply is readily
available from the data stream, the prediction of demand and supply
in near future is challenging.

The major innovation in the design of the demand prediction en-
gine is to treat each free-cruising taxi as a demand probe. Empirically,
we observe that the chance of us seeing demand on a particular link
is inversely correlated with the amount of time passed since last
visit by a free taxi. In other words, it invalidates the memoryless
property of the exponential distribution and thus the demand will
not follow the Poisson arrival process, which is commonly assumed
in the literature. Based on this insight, we develop independent
prediction models for all tuples of (road link, day of week, time of
day). These models essentially return the likelihood of a cruising
taxi getting a trip (could be from either street hailing or booking).

Formally speaking, our demand prediction engine employs a
multilevel logistic regression model to estimate the likelihood of
finding a passenger on a street at different times. Let T be the state
of a taxi which is 1 if the taxi is hired (occupied), and 0 otherwise.
The likelihood of finding a passenger on a street s is given by:

P (T = 1|δs ) = logit−1 (αs,t,d + βs,t,d δs ), (1)

where s is the street, t is the time-interval (30 minutes) of a day, d is
the day of the week, and αs,t,d and βs,t,d are regression coefficients.
2All except 100 taxis that are managed by HDT, the newest fleet that is exempted from
the data requirement.

The independent variable is δs , which represents the time elapsed
since the last arrival of an empty taxi on street s .

By monitoring taxi movements in real-time, we can utilize the
above regressionmodels and predict the likelihoods of taxi demands
along all links. However, these models do not provide us with
predictions on demand counts within a given time interval, which
would be needed when we engage the optimization model. To
predict the demand counts, we simulate the arrivals of empty taxis
by utilizing historical data, and calculate the expected demands
that would be generated.

3.3 Multi-agent Recommendation Engine
The recommendation engine generates personalized recommenda-
tions for all taxi drivers based on their locations, with the objective
of balancing overall demands and supplies across the city. This
problem can be viewed as a specialized spatio-temporal match-
ing problem, where taxis (agents) are instructed to move around
and match with (stationary) passengers. We solve this multiagent
matching problem using a centralized multi-period stochastic op-
timization model proposed by Lowalekar et al. [8]. The decision
space for the recommendation is discretized into 1km-by-1km grid
cells. These grid cells are also used for aggregating demand and
supply predictions. The objective function is defined as:

max
(
−
∑
i ∈G

∑
j ∈G

Cost1i j · u
1
i j

)

+
1
|D |

∑
k≤ |D |

T∑
t=1

∑
i ∈G

( ∑
d ∈Dk

t

Rtid · x
t,k
id

)

−
1
|D |

∑
k≤ |D |

T∑
t=2

∑
i ∈G

( ∑
j ∈G

Cost ti j · u
t,k
i j

)
, (2)

where G is the set of grid cells, D is the number of demand samples
considered for the optimization, T is the time horizon, Costi j is the
cost of movement from grid i to grid j, Rid is the net revenue for
serving demand d in grid i , xt,kid is a decision variable that assigns
agents in grid i to demand d at time t within sample k . After the
assignment, the number of unassigned taxis moving from grid i to
grid j is denoted by ui j .

The objective function used in the recommendation engine is
essentially a global function reflective of the total revenues earned
by all drivers. The goal is to calculate an optimal matching for
all drivers such that demand fulfillments and movement costs are
balanced over the planning horizon. A practical concern with DGS
is to explicitly consider its adoption by taxi drivers. Although the
DGS is designed to serve all taxi drivers, a significant number of
taxi drivers will not be using the system for various reasons. We
handle such taxi drivers by simulating their behaviors based on
historical cruising patterns. When performing demand assignments
in our optimizationmodel, we explicitly consider the part of demand
fulfilled by drivers not using DGS.

To generate most up-to-date recommendations, the engine is
loaded with latest information on demands and supplies and exe-
cuted every minute. The planning horizon is 30 minutes.
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3.4 Mobile Application
In order to deliver personalized recommendations to drivers, we
have developed mobile phone Apps for both iOS and Android plat-
forms. Versions for both platforms look identical and display rec-
ommendations as an overlay over the map of Singapore. The App
is designed to work without any need for user interaction: the user
just leaves the App active, and recommendations are streamed to
the App based on user’s current location. The App is designed to
automatically adjust its zoom level and display different details in
the following two modes:
• Region mode (see Figure 2a): The region-level recommen-
dations are generated by the engine described above. The
highlighted region provides the general direction in which
the driver should move into.
• Street mode (see Figure 2b): The streets (or taxi stands)
are highlighted probabilistically based on the likelihoods of
demand generation derived from Equation (1).

(a) Region-level (b) Street-level

Figure 2: Mobile App UI displaying recommendations at dif-
ferent levels.

3.5 Evaluation
To evaluate the effectiveness of the DGS, we simulate the operation
of the DGS using a realistic agent-based taxi fleet simulation plat-
form called TaxiSim [3]. TaxiSim is calibrated using the actual taxi
driver’s movement traces we obtained from the LTA. To prepare the
simulation environment, we populate the simulation with 24,000
taxis, and randomly generate passenger demands using the demand
profiles chosen from a list of representative days (including both
typical workdays and non-workdays). To evaluate the effectiveness
and the scalability of the DGS, we execute the simulations with
different percentages of taxi drivers using the DGS (from 5% to
100%).

The simulation is designed to provide streaming data feed exactly
like the real API, and the DGS is attached to this emulated stream
data and generates recommendations as if it is used in the real-world
environment.

The average number of daily trips per driver is selected to be the
key performance metric, and we vary the market share of guided
taxis (DGS taxis) from 5% to 100%. The resulting performance is
illustrated in Figure 3, andwe can see that although the performance
of DGS drivers slowly deteriorates as the market share increases,
DGS drivers always outperform non-DGS drivers (even at 100%
DGS market share).
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Figure 3: The performance of guided versus non-guided taxi
drivers over the market share of the DGS users.

These simulation studies confirm that the DGS platform is scal-
able and ready for real-world deployment and testing.

4 THE DGS FIELD TRIAL
4.1 The Taxi Industry in Singapore
The taxi market in Singapore is made up of one big player owning
over 50% of the market share and the rest of the market is split
among 5 smaller players. Only Singapore citizens above 30 years
old are eligible as taxi drivers. After obtaining a Taxi Vocational
Driving License, the prospective driver has to rent a taxi from one
of the operators (individual taxi ownership is not allowed). Once
the taxi rental is paid, the driver can keep all the earned fares (while
paying their own fuels).

The taxi market was growing steadily until 2015 (the industry as
a whole had around 28,000 taxis at the end of 2015), after which it
faced intensive competitions from a number of ride-hailing startups,
most notably Uber and Grab (a major ride-hailing service provider
in the Southeast Asia). The fleet size of the private-hire cars is now
estimated to be 50% more than the taxi population, and due to this
competition, the taxi population is shrinking and now stands at
only 24,000 (at the end of September 2017).

Note that although we focus only on taxi drivers in our study, a
significant number of taxi drivers also receive jobs from Uber and
Grab. In particular, Grab has inked formal agreements with all taxi
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operators in Singapore (except Comfort and CityCab) to encourage
the taxi drivers to use GrabTaxi as the preferred third-party taxi
booking service. The integration went further in March 2017, when
some taxi operators and Grab collaborated and were allowed (by
LTA) to offer dynamic taxi fares booked viamobile application. Grab
launched a new service called JustGrab3, which essentially allows
riders to book from both the participating chauffeured private hire
cars and taxis. Riders pay the same fare regardless of the types of
vehicle they are assigned to.

4.2 The Field Trial Setup
As described above, the taxi industry is facing intensive competition
from the 40,000-strong chauffeured private hire cars operated under
Uber and Grab. We believe that the implementation of the DGS is
an important first step in addressing such challenge. To confirm
the effectiveness of the DGS in the real-world environment, we
have begun a series of field trials since the beginning of September,
20174. Each batch of the field trial lasts one month, and drivers
are invited to participate via open recruitment. To encourage the
participation and active usage, we provide the following two types
of incentives:

• For participation: the drivers are expected to install the
App and accumulate a minimum of 4 hours of usage time
during the one-month trial period. A S$100 incentive will be
awarded for drivers meeting the 4-hour usage requirement.
• For compliance: we track how drivers are following the
guidances shown. For drivers whose average compliance
time per day meets the requirement in Table 1, additional
incentives (on top of S$100) will be awarded (we set 2 hours
of daily compliance to be the daily goal; therefore drivers
need to achieve at least 50% of this goal to begin receiving
the compliance incentives). To avoid binge accumulation of
hours, drivers can accumulate at most 4 hours per day.

Table 1: Compliance-based incentives.

% Avg. Compliance (min) Var. Incentives

50% 60 – 71 S$50
60% 72 – 83 S$60
70% 84 – 95 S$70
80% 96 – 107 S$80
90% ≥ 108 S$100

To assist trial drivers in tracking their daily andmonthly compliance
progress, we display this information in the DGS App directly, as
seen in Figure 4. The percentage bar indicates daily compliance as
percentage of the 2-hour goal, which will be reset every day. The
monthly compliance (as percentage of the 2-hour daily average goal)
and the earned incentive are displayed below the daily compliance
bar.

3https://www.grab.com/sg/justgrab/
4Approved under IRB-17-113-A099-M1(218).

Figure 4: Compliance progress shown at the top of the App.

4.3 Collected Information
When drivers register, they are asked to provide their basic de-
mographic information (age group), number of years driving pro-
fessionally, whether they accept booking jobs from Uber or Grab,
and if they do, their estimates on the number of Uber/Grab jobs
accepted per day.

During the field trial, we have collected the following two types
of information:

• DGS App-related: When the DGS App is in use, our back-
end server receives the status and the location of the device
at one-minute interval. Based on these continuous updates,
we can infer when the DGS App is used, and when the driver
follows the DGS guidance. More specifically, two critical
series are derived: 1) the usage episodes, and 2) the compli-
ance episodes. For both series, they are recorded as a series
of the following tuples: <taxi-id, start-time, end-time>. The
usage episodes are straightforward to determine, as it simply
means that the DGS App is currently being displayed. How-
ever, the compliance episodes are harder to determine. To
be as objective as we can, we assume the driver is following
the DGS guidance if the driver is: 1) currently inside the rec-
ommended region, or 2) moving closer to the recommended
region.
• Taxi trip-related: Separately, we have obtained from the
Land Transport Authority (LTA) of Singapore the compre-
hensive state updates of all participating taxis. This dataset
allows us to infer the starting and ending time and location
of all taxi trips. We can also infer how the trip is generated
(i.e., pick up from the street or via booking)

5 FIELD TRIAL ANALYSIS
As noted earlier, our field trials have begun from September 2017,
and have been running continuously since then. So far we have
collected three consecutive batches of trial results, and they look
promising. Before going into the performance analysis, we will first
introduce our performance metric, and how we calculate it.

5.1 Performance Metric and Data Processing
From the driver’s perspective, the most important measure of the
performance would be his/her productivity, i.e., the number of trips
per hour of working time. This is equivalent to the average roaming
time required to obtain a trip. Given long enough observations, we
expect that the average roaming time per trip should reflect the
actual driving skill. In our analysis, we try to determine whether the
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use of the DGS technology could significantly affect the roaming
time in acquiring the next passenger.

To measure this, we will need to provide two measurements for
each trip: 1) the estimated roaming time it takes for the driver to
acquire this trip, and 2) whether the acquisition of this trip can be
attributed to the following of DGS guidance. To estimate the roam-
ing time for each trip, we should observe the state transitions based
on the data stream provided by the LTA. For most street pickups,
we expect that the state transitions should be from Available to
Hired. For booking trips via official channel, the state transitions are
usually from Available to On-Call (the official state of responding
to booking request), to Hired. For booking trips via Apps such as
Uber or Grab, the state transitions are usually from Available to
Busy (indicates that the taxi is now committed and unwilling to
serve street pickups), to Hired.

Examples on how roaming time can be calculated for both street
pickups and booking (either official or App-based) are illustrated in
Figure 5. In Figure 5, we use circle, triangle, and square to represent
the states of Available, On-Call (or Busy, if we are trying to detect
App-based booking), and Hired respectively. According to the rules
specified earlier, for each detected trip, let t1 be the first Available
state after the previous Hired state; this would be the beginning of
the roaming. Let t2 be the first state that is not Available after t1;
this will be the end of the roaming. Let t3 be the first Hired state
after t1, and t4 be the last Hired state after t1. Once these four major
state transition time points are identified, we can then calculate
the following important durations: 1) the roaming time: t2 − t1, 2)
the response time (to taxi booking): t3 − t2, and 3) the service time:
t4 − t3.

t1 t4t2 / t3

(a) Street pickups

t1 t2 t3 t4

(b) Booking jobs

Figure 5: Examples on how roaming times are derived.

To determine whether the acquisition of a trip can be attributed
to the following of the DGS guidances, we look at the fraction of
the roaming time during which the driver is following the DGS
guidances. We assume that if the fraction of the compliant period
during the roaming time is higher than a pre-determined threshold,
the resulting trip will then be labeled as resulting from following
DGS (since the driver is sufficiently affected by the DGS). The
illustration of how the DGS compliance ratio is calculated can be
seen in Figure 6. In this example, we can see that there are two
DGS compliant episodes plotted as black bars. The fragments of
the roaming period that overlap with the DGS compliant episodes
are shaded in gray. For this example, we can then conclude that the
DGS compliance ratio for this trip is 2/3.

Service

DGS DGS

Roaming

Figure 6: Determining DGS compliance ratio.

5.2 Empirical Results and Analyses

Table 2: The overall statistics of non-DGS vs DGS trips (for
all drivers).

Time Period Non-DGS DGS

06-10 Avg. Roaming (min) 8.32 7.53
Trip Count 97,336 1,769

10-17 Avg. Roaming (min) 7.72 6.34
Trip Count 195,768 3,107

17-24 Avg. Roaming (min) 9.23 7.89
Trip Count 188,000 1,755

24-06 Avg. Roaming (min) 15.61 10.67
Trip Count 70,143 527

Overall Avg. Roaming (min) 9.34 7.33
Trip Count 551,247 7,158

Table 3: The overall statistics of non-DGS vs DGS trips (for
drivers with at least 20-compliant DGS trips).

Time Period Non-DGS DGS

06-10 Avg. Roaming (min) 8.32 7.58
Trip Count 11,787 1,685

10-17 Avg. Roaming (min) 7.90 6.30
Trip Count 24,405 2,917

17-24 Avg. Roaming (min) 9.06 7.94
Trip Count 24,511 1,663

24-06 Avg. Roaming (min) 17.06 10.68
Trip Count 9,254 493

Overall Avg. Roaming (min) 9.59 7.34
Trip Count 69,957 6,758

The analyses presented in this section are based on our field
trials from September 11, 2017 to January 31, 2018, participated by
361 drivers. The recruitment of drivers occurred in three batches:
26 drivers were recruited on September 11, 2017, another 31 drivers
were recruited on October 16, 2017 while 304 drivers were recruited
over two days on November 18 and 19, 2017. We set the threshold
for DGS compliance ratio to be 60%. In other words, a trip will be
labeled as being DGS compliant if the DGS compliance ratio is at
least 60% or above. The grand overview of non-DGS trips versus
DGS trips can be seen in Table 2. Note that as queueing time at
airport is significantly longer and may skew our roaming time
analysis, we have excluded airport trips from our analysis.
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As can be seen from Table 2, we have divided all days into four
time periods: 06-10 and 17-24 are morning and evening peak peri-
ods, while 10-17 and 24-06 are day-time and night-time non-peak
periods. Overall, DGS trips experience 21.5% less roaming time than
non-DGS trips. In fact, across all time periods, DGS trips experi-
ence shorter roaming time than non-DGS trips (all differences are
significant with p-values close to 0).

We also conduct similar analysis for active users of the DGS
(defined as users with at least 20 DGS-compliant trips, which include
44 drivers). The results are shown in Table 3. For this group of
drivers, the saving in roaming time is slightly higher at 23.5%, yet
their usage rates are much higher: the percentage of DGS-compliant
trips over all trips is around 10%.

To further understand the impact of DGS compliance ratio on
driver’s roaming time performance, we also plot all roaming times
against DGS compliance ratios for trips whose DGS compliance
ratios are at least 0.1. By fitting these data points to a linear model,
we have the following linear regression model:

Roaming Time (min) = −19.03 Compliance Ratio + 24.73 + ϵ,
(3)

where there are 11,800 observations, R2 = 0.1857, and all parame-
ters are significant with p < 0.001. Intuitively speaking, this implies
that for every 10% increase in the DGS compliance ratio, the empty
roaming time is expected to fall by 1.903 minutes (or close to 114
seconds).
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Figure 7: Roaming time against DGS compliance ratio for all
trips.

5.3 Spatial-Temporal Breakdowns of DGS
Performance

To investigate the impact of external factors on DGS performances,
we extend the above analysis by breaking down the performance

Figure 8: Singapore’s Central Business District (CBD) is col-
ored as the shaded region in the center.

comparison spatially and temporally. More specifically, for temporal
dimension, we compare performances on workdays versus non-
workdays. For spatial dimension, we compare the performances
within the Central Business District (CBD) and non-CBD. Note that
as before, we have excluded the airport trips from our consideration.
The location of CBD in Singapore is illustrated in Figure 8.

The breakdowns of DGS performances on workday vs. non-
workday and CBD vs. non-CBD can be found in Table 4. Our focus
is on finding particular time periods and areas where we observe
relatively good performance from the DGS-compliant trips. In sum-
mary, DGS guidance appears to work best for the following four
major blocks of spatial-temporal combinations:
• Midnight hours (24-06) on all days, for all areas. The advan-
tages of DGS over non-DGS trips range from 24% to 36%.
• Daytime non-peak hours (10-17) on all days for non-CBD
areas and non-workday for CBD area. The advantages of
DGS over non-DGS trips range from 17% to 19%.
• Evening peak hours (17-24) on workdays for all areas and
on non-workday for non-CBD area. The advantages of DGS
over non-DGS trips range from 15% to 17%.
• Morning rush hours (06-10) on non-workdays, for non-CBD
areas. The advantage of DGS over non-DGS trips is 12%.

By examining these blocks, we can see that for most cases where
DGS is most helpful, demands are sporadic and less predictable
(e.g., non-peak hours and non-CBD areas).

6 CONCLUSIONS
In this paper, we have implemented and field tested a first-of-its-
kind taxi driver guidance system (DGS) in Singapore. By incorporat-
ing live data feed of close to 20,000 taxis, we show that high-quality
decision supports can be generated for taxi drivers by integrating
a dynamic demand prediction engine and a multi-agent, multi-
period optimization engine. Since September 2017, we have begun
recruiting test drivers to test DGS, and our initial findings from the
five-month trials (September 2017 to January 2018) are encouraging.

We measure taxi driver’s performance by looking at the roaming
time before each acquired trip, and we also identify if each trip
is affected by the DGS guidance. For the latter identification, we
measure whether the driver follows our DGS guidances sufficiently
long (more than 60% of the roaming time for the trip in interest).
For DGS-compliant trips, we show that the corresponding roaming
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Table 4: Performance breakdown by workdays (WD) and locations (CBD and non-CBD).

WD Non-WD

Non-CBD CBD Non-CBD CBD
Time Period Non-DGS DGS Non-DGS DGS Non-DGS DGS Non-DGS DGS

06-10 Avg. Roaming Time (min) 8.54 7.83 8.00 7.61 7.98 7.01 7.75 4.16
Trips 64,144 1,180 10,910 204 19,264 324 2,745 61

10-17 Avg. Roaming Time (min) 8.78 7.11 6.21 5.51 6.78 5.52 5.58 4.88
Trips 107,609 1,665 32,340 481 44,565 795 10,768 166

17-24 Avg. Roaming Time (min) 9.33 7.79 10.50 8.93 7.86 6.50 8.92 8.68
Trips 94,377 779 40,520 447 40,004 370 12,796 159

24-06 Avg. Roaming Time (min) 16.83 11.52 18.58 11.87 13.04 9.90 12.97 9.22
Trips 29,413 231 12,849 52 17,317 144 10,466 100

Overall Avg. Roaming Time (min) 9.70 7.73 9.86 7.44 8.23 6.42 9.09 6.93
Trips 295,513 3,855 96,619 1,184 121,150 1,633 36,775 486

time can be reduced by 22% (when compared against non-DGS
trips). After looking at the performance breakdown by time periods,
workdays, and area of service, we further pinpoint the combinations
of times and areas that the DGS is most useful for our test drivers.

To the best of our knowledge, this is the first operating guidance
system for taxi drivers that combines real-time data analytics and
high-performance multi-agent optimization. The field test of the
guidance system is still ongoing, and we expect sign ups to reach
1,000 by the end of 2018. Further in the future, we aim to roll out
the system for thousands of drivers in Singapore.
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