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ABSTRACT
We introduce a new type of distributional constraints called ratio

constraints, which explicitly specify the required balance among

schools in two-sidedmatching. Since ratio constraints do not belong

to the known well-behaved class of constraints called M-convex

set, developing a fair and strategyproof mechanism that can handle

them is challenging. We develop a novel mechanism called Quota

Reduction Deferred Acceptance (QRDA), which repeatedly applies

the standard DA by sequentially reducing artificially introduced

maximum quotas. As well as being fair and strategyproof, QRDA

always obtains a weakly better matching for students compared to

a baseline mechanism called Artificial Cap Deferred Acceptance

(ACDA), which uses predetermined artificial maximum quotas. Ex-

perimentally, QRDA performs better in terms of student welfare and

nonwastefulness than ACDA and another fair and strategyproof

mechanism called Extended Seat Deferred Acceptance (ESDA), in

which ratio constraints are transformed into minimum/maximum

quotas.

KEYWORDS
two-sided matching; strategyproofness; distributional constraints;

deferred acceptance mechanism; M-convex set

ACM Reference Format:
Kentaro Yahiro, Yuzhe Zhang, Nathanaël Barrot, and Makoto Yokoo. 2018.

Strategyproof and Fair Matching Mechanism for Ratio Constraints. In Proc.
of the 17th International Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2018), Stockholm, Sweden, July 10–15, 2018, IFAAMAS,

9 pages.

1 INTRODUCTION
The theory of matching has been extensively developed for mar-

kets in which two types of agents (e.g., students/schools, hospi-

tals/residents) are matched [28]. Recently, this topic has been at-

tracting considerable attention fromAI researchers [1, 17, 19, 21, 24].

A standard market deals with maximum quotas, which are capacity

limits that cannot be exceeded. However, many real-world match-

ing markets are subject to a variety of distributional constraints,
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including regional maximum quotas, which restrict the total num-

ber of students assigned to a set of schools [20], minimum quotas,

which guarantee that a certain number of students are assigned to

each school [2, 9, 13, 16, 29, 30], and diversity constraints, which

enforce that a school satisfies a balance between different types of

students, typically in terms of socioeconomic status [5, 15, 22, 24].

Policymakers often hope for a well-balanced matching outcome,

i.e., where the number of students (or doctors) assigned to each

school (or hospital) is not too diverse. For example, the Japanese

government does not want the number of doctors assigned to rural

hospitals to be drastically fewer than the number to urban hospi-

tals [20]. The United States Military Academy solicits cadet prefer-

ences over assignments to various army branches, while simultane-

ously trying to keep a good balance among the branches [29, 30].

In China, there are two types of master’s degrees: professional and

academic. Since academic master programs are much more popu-

lar than professional ones, the Chinese government seeks a good

balance between these two programs [20]. One way to obtain a

balanced outcome is to impose artificially low maximum quotas

to guarantee that students/doctors are not overly concentrated in

popular schools/hospitals. Another way is to introduce minimum

quotas to guarantee that a certain number of students/doctors are

allocated to unpopular schools/hospitals.

In this paper, we introduce a new type of constraints called ratio
constraints that can explicitly specify the required balance among

schools/hospitals, where parameter α specifies the acceptable min-

imum ratio between the least/most popular schools. Such ratio

constraints are used in practice. For example, in many universities

(including the authors’ university), a department is divided into sev-

eral courses. When assigning undergraduate students to courses, ra-

tio constraints are imposed to maintain the balance among courses.

To the best of our knowledge, we are the first to formally ex-

amine ratio constraints even though a similar concept called “pro-

portionality constraints” is introduced [26]. However, that model

is fundamentally different from ours since it assumes students are

partitioned into different types (e.g., minority/majority) and deals

with the ratio between different types of students within a school;

our model considers the ratio among schools. Also, in their model,

proportionality constraints are soft, which can be violated to some

extent; in our model, constraints are hard and cannot be violated.

Furthermore, they do not consider strategyproofness.

In this paper, we develop a novel mechanism called Quota Re-

duction Deferred Acceptance (QRDA), which repeatedly applies the
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well-known Deferred Acceptance (DA) mechanism [12] by sequen-

tially reducing artificially introduced maximum quotas. Fragiadakis

and Troyan [10] use the idea of sequentially reducing maximum

quotas for a different goal. In their model, students are partitioned

into different types and the goal is to satisfy type-specific mini-

mum/maximum quotas.

Note that developing a non-trivial strategyproof and fair mech-

anism that can handle ratio constraints is theoretically interest-

ing/challenging. In existing works, it is shown that if constraints

belong to a well-behaved class (which is called M-convex set), then

a mechanism called generalized DA, which is based on DA, is strat-

egyproof and fair [14, 23]. As we discuss later, ratio constraints do

not belong to this class. Our result is a first step toward identify-

ing a class beyond an M-convex set, such that we can develop a

non-trivial strategyproof and fair mechanism. As well as being fair

and strategyproof, we show that in terms of student welfare, QRDA

outperforms a baseline mechanism called Artificial Cap Deferred

Acceptance (ACDA), which uses predetermined artificial maximum

quotas, both theoretically and experimentally. In terms of another

desirable property called nonwastefulness (i.e., no student claims

an empty seat of a more desirable school), we experimentally show

that QRDA outperforms ACDA. We extend these experiments by

comparing QRDA with an additional mechanism, Extended Seat

Deferred Acceptance (ESDA), with similar conclusions. Finally, we

propose an extended model in Section 5.

2 MODEL
A student-school matching market with ratio constraints is defined

by a tuple (S,C,X ,≻S ,≻C ,α).

• S = {s1, . . . , sn } is a finite set of n students.

• C = {c1, . . . , cm } is a finite set ofm schools.

• X = S ×C is a finite set of all possible contracts. Contract

(s, c) ∈ X means that student s is matched to school c . For
ÛX ⊆ X , ÛXs denotes {(s, c) ∈ ÛX | c ∈ C}, and ÛXc denotes

{(s, c) ∈ ÛX | s ∈ S}. In other words, ÛXs (resp. ÛXc ) denotes all
contracts in ÛX related to s (resp. c)
• ≻S= (≻s1 , . . . ,≻sn ) is the profile of the student preferences,

where each ≻s is a strict preference over all contracts that

are related to s . For example, if s strictly prefers c over c ′, it
is denoted by (s, c) ≻s (s, c

′). We sometimes write c ≻s c ′

instead of (s, c) ≻s (s, c
′).

• ≻C= (≻c1 , . . . ,≻cm ) is the profile of the school preferences,

where each ≻c is a strict preference over all contracts that

are related to c . For example, if c strictly prefers s over s ′, it
is denoted by (s, c) ≻c (s

′, c). We sometimes write s ≻c s ′

instead of (s, c) ≻c (s
′, c).

• 0 ≤ α ≤ 1 defines the acceptable minimum ratio between

the least/most popular schools.

For ÛX ⊆ X , we define r ( ÛX ) as follows:

r ( ÛX ) =
minc ∈C | ÛXc |

maxc ∈C | ÛXc |
.

In other words, r ( ÛX ) is the ratio between the numbers of students

in the least/most popular schools in ÛX .

Definition 2.1 (Feasibility). For ÛX ⊆ X , ÛX is student-feasible if

| ÛXs | = 1 for all s ∈ S . We call a student-feasible set of contracts a

matching. ÛX is school-feasible if r ( ÛX ) ≥ α . ÛX is feasible if it is both

student/school-feasible.

In this market, we assume all schools are acceptable to all stu-

dents and vice versa.
1
To guarantee the existence of a feasible

matching, ratio α must be at most ⌊n/m⌋/⌈n/m⌉, since even in the

most balanced matching, the most popular school has ⌈n/m⌉ stu-
dents and the least popular school has ⌊n/m⌋ students. Formatching

ÛX , we say school c is strictly minimum if for all c ′ , c , | ÛXc | < | ÛXc ′ |
holds. Also, school c is strictly maximum if for all c ′ , c , | ÛXc | > | ÛXc ′ |
holds.

With a slight abuse of notation, for two matchings ÛX and ÜX , we

denote ÛXs ≻s ÜXs if ÛXs = {x
′}, ÜXs = {x

′′}, and x ′ ≻s x ′′ (i.e., if
student s prefers the school she obtained in ÛX to the one in ÜX ).
Furthermore, we denote ÛXs ⪰s ÜXs if either ÛXs ≻s ÜXs or ÛXs = ÜXs .

A mechanism φ is a function that takes a profile of student

preferences ≻S as input
2
and returns the set of contracts. Letφs (≻S )

denote ÛXs , where φ(≻S ) = ÛX . Let ≻S\{s } denote a profile of the
preferences of all students except s , and let (≻s ,≻S\{s }) denote a

profile of the preferences of all students, where s’s preference is ≻s
and the profile of the preferences of the other students is ≻S\{s } .

Definition 2.2 (Strategyproofness). Mechanism φ is strategyproof

if for all s , ≻s , ≻S\{s } , and ≻
′
s (where ≻

′
s is an arbitrary preference

of student s), φs ((≻s ,≻S\{s })) ⪰s φs ((≻
′
s ,≻S\{s })) holds.

Definition 2.3 (Fairness). In matching ÛX , where (s, c) ∈ ÛX , student

s has justified envy toward another student s ′ if for some c ′ ∈ C ,
(s, c ′) ≻s (s, c), (s

′, c ′) ∈ ÛX , and (s, c ′) ≻c ′ (s
′, c ′) hold. Match-

ing ÛX is fair if no student has justified envy in ÛX . Furthermore, a

mechanism is fair if it always produces a fair matching.

In other words, student s has justified envy toward student s ′ if
she is assigned to school c ′, which is better for s than her current

school, even though c ′ prefers s over s ′.

Definition 2.4 (Nonwastefulness). In matching ÛX , where (s, c) ∈ ÛX ,

student s claims an empty seat of c ′, if (s, c ′) ≻s (s, c) and ( ÛX \
{(s, c)}) ∪ {(s, c ′)} is school-feasible. Matching ÛX is nonwasteful if

no student claims an empty seat in ÛX . Furthermore, a mechanism

is nonwasteful if it always produces a nonwasteful matching.

In other words, s claims an empty seat of c ′, which is better than

her current school c , if moving her from c to c ′ does not violate
ratio constraints.

In standard matching terminology, fairness and nonwastefulness

are combined to form a notion called stability [10, 13, 14]. However,

in our setting, fairness and nonwastefulness are incompatible as

Theorem 2.6 shows. Thus, in this paper, we divide the notion into

fairness and nonwastefulness, and focus on finding a fair outcome,

while reducing wastefulness as much as possible. Dividing stability

into fairness and nonwastefulness is commonly used when dealing

with distributional constraints [9, 14, 20, 23].

We use the following example to show that, when considering

ratio constraints, fairness and nonwastefulness are incompatible in

general.

1
Even though this is a strong assumption, we require it to guarantee the existence of a

feasible matching. The same assumption is widely used in existing works [9, 13, 14].

2
We assume the profile of school preferences ≻C is publicly known and concentrate

on strategyproofness for students (the proposing side). Thus, we do not specify it as

an input of a mechanism.
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Example 2.5.

S = {s1, s2, s3, s4}, C = {c1, c2, c3}, α = 1/2,

s1, s3: c2 ≻s c3 ≻s c1,
s2, s4: c3 ≻s c2 ≻s c1,

c1: s1 ≻c1 s2 ≻c1 s3 ≻c1 s4,
c2: s3 ≻c2 s2 ≻c2 s1 ≻c2 s4, and
c3: s4 ≻c3 s1 ≻c3 s2 ≻c3 s3.

Theorem 2.6. With ratio constraints, fairness and nonwasteful-
ness are incompatible in general.

Proof. Assume the situation in Example 2.5. For satisfying the

ratio constraints, two students must be assigned to exactly one

school, and each of the other two schools must be given one stu-

dent. If feasible matching is fair, it must contain (s3, c2) and (s4, c3);
otherwise, either s3 or s4 has justified envy. Here, c1 is the least
popular school for everybody, but at least one student must be

assigned to it. Assigning both s1 and s2 to c1 is wasteful. Assume

we assign s1 to c1. If we assign s2 to c2, s2 claims an empty seat

of c3. If we assign s2 to c3, s1 has justified envy toward s2. Next,
assume we assign s2 to c1. If we assign s1 to c3, s1 claims an empty

seat of c2. If we assign s1 to c2, s2 has justified envy toward s1. □

For ÛX , let ζ ( ÛX ) denotem-element vector (| ÛXc1 |, | ÛXc2 |, . . . , | ÛXcm |).
Assume distributional constraints are defined by a set of vectors

V , i.e., ÛX is school-feasible if ζ ( ÛX ) ∈ V . IfV is an M-convex set

(which is a discrete analogue of maximum elements of a convex set

in a continuous domain),
3
then a mechanism called generalized DA,

based on DA, is strategyproof and fair [14, 23].

Definition 2.7 (M-convex set). Let χi denote anm-element unit

vector, where its i-th element is 1 and all other elements are 0.

A set of m-element vectors V ⊆ Nm
0

forms an M-convex set, if

for all ζ , ζ ′ ∈ V , for all i such that ζi > ζ ′i , there exists j ∈ {k ∈
{1, . . . ,m} | ζk < ζ ′k } such that ζ −χi +χj ∈ V and ζ ′+χi −χj ∈ V
hold.

The following theorem shows we cannot apply the generalized

DA for ratio constraints.

Theorem 2.8. In general, ratio constraints cannot be represented
as an M-convex set.

Proof. Assume n = 10, m = 4, and α = 1/3. Consider two

school-feasible vectors: ζ = (1, 3, 3, 3) and ζ ′ = (2, 2, 2, 4). For i = 2,

we can choose either j = 1 or j = 4. For j = 1, ζ ′+χ2−χ1 = (1, 3, 2, 4)
is not school-feasible, and for j = 4, ζ − χ2 + χ4 = (1, 2, 3, 4) is not
school-feasible. □

3 QUOTA REDUCTION DEFERRED
ACCEPTANCE MECHANISM (QRDA)

3.1 Mechanism Description
Let us first introduce the standard DA, which is a component of

QRDA. A standard market is a tuple (S,C,X ,≻S ,≻C ,qC ), whose

3
To be precise, this condition [14, 23] is an M

♮
-convex set, which is a generalization of

an M-convex set. When all students must be assigned to schools, it becomes equivalent

to an M-convex set. Their results are built upon various earlier works [7, 8, 11, 18].

definition resembles a market with ratio constraints. The only dif-

ference is that its constraints are given as a profile of maximum

quotas: qC = (qc )c ∈C . Matching ÛX is school-feasible if for all c ∈ C ,
| ÛXc | ≤ qc holds. The standard DA is defined as follows:

Mechanism 1 (standard DA).

Step 1 Each student s applies to her most preferred school ac-
cording to ≻s from the schools that did not reject her so far.

Step 2 Each school c tentatively accepts the top qc students from
the applying students based on ≻c and rejects the rest of them
(no distinction between newly applying students and already
tentatively accepted students).

Step 3 If no student is rejected, return the current matching. Oth-
erwise, go to Step 1.

Let σ denote the sequence of schools
4
based on the round-robin

order c1, c2, . . . , cm . Let σ (k) denote the k-th school in σ , i.e., σ (k) =
c j , where j = 1 + (k − 1 mod m).

Let qmax be the largest value that satisfies the following equa-

tion:

α · qmax ≤
⌊n − qmax

m − 1

⌋
. (1)

If t (t > qmax ) students are assigned to c , there exists a school that
is assigned at most t ′ = ⌊(n − t)/(m − 1)⌋ students. Since qmax
is the largest value satisfying Eq. (1), t ′/t < α holds. Thus, any

matching is infeasible where t students are assigned to c; a school
accepts at most qmax students in a feasible matching.

The Quota Reduction Deferred Acceptance (QRDA) mechanism

is defined as follows.

Mechanism 2 (QRDA).

Initialization:
For all c ∈ C , q1c ← qmax , k ← 1.

Stage k (k ≥ 1):
Step 1 Run the standard DA in market (S,C,X ,≻S ,≻C ,qkC )

and obtain matching ÛXk .
Step 2 If ÛXk is school-feasible, then return ÛXk .
Step 3 Otherwise, for school c ′ = σ (k), qk+1c ′ ← qkc ′ − 1, and

for c , c ′, qk+1c ← qkc . Go to Stage k + 1.

Let us illustrate the execution of QRDA in Example 2.5. We

choose qmax = 2 such that Eq. (1) is satisfied. In Stage 1, s1 and s3
are assigned to c2, and s2 and s4 are assigned to c3. This matching

is infeasible. Thus, in Stage 2, the quota of c1 is decreased but

the obtained matching is identical. In Stage 3, the quota of c2 is
decreased. Then s2 is assigned to c1, s3 is assigned to c2, and s1 and
s4 are assigned to c3. This matching is feasible and fair.

3.2 Mechanism Properties
Theorem 3.1. QRDA returns a feasible and fair matching.

Proof. QRDA terminates when it obtains a feasible matching.

Assume QRDA continues to reduce the maximum quotas of the

schools without obtaining a feasible matching. Eventually, there

will be stagek such that the following conditions hold:

∑
c ∈C qkc = n

4
For simplicity, we assume σ is based on a fixed round-robin order, but the results in

this paper hold for any balanced sequence σ , i.e., for each ℓ ∈ N0 , σ (mℓ+1), σ (mℓ+
2), . . . , σ (mℓ+m) is a permutation of c1, c2, . . . , cm . This requirement is necessary

to guarantee the strategyproofness.
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and for all c ∈ C , ⌊n/m⌋ ≤ qc ≤ ⌈n/m⌉. In this stage k , for obtained
matching ÛX , r ( ÛX ) = ⌊n/m⌋ / ⌈n/m⌉ ≥ α holds. Thus, ÛX is feasible.

Therefore, QRDA must terminate at stage k ′ (k ′ ≤ k). Also, ÛXk ′

is identical to the matching obtained by the standard DA for the

market (S,C,X ,≻S ,≻C ,q
k ′
C ). Since DA is fair [12], ÛXk ′

must be

fair. □

From the proof of Theorem 3.1, we immediately obtain the fol-

lowing lemma.

Lemma 3.2. During the execution of QRDA, the maximum quota
of any school is at least ⌊n/m⌋.

QRDA’s strategyproofness is not trivial at all. Since schools’ quo-

tas are decreasing, a student might have an incentive to terminate

the mechanism early to secure the seat of a school, which might

not be available in later stages. To show such manipulations are

useless, we utilize several lemmas.

Lemma 3.3. Assume in stage k of QRDA that obtained matching
ÛXk is infeasible, and school c ′ is strictly maximum, i.e., for all c , c ′,
| ÛXk
c ′ | > |

ÛXk
c | holds. Let t denote | ÛX

k
c ′ | −1. In stage k +1, if the number

of students assigned to c ′ is decreased (due to the reduction of qc ′ ) to t ,
and the number of students assigned to another school c ′′ is increased,
i.e., | ÛXk+1

c ′′ | = |
ÛXk
c ′′ | + 1, then one of the following two cases must be

true:
(a) | ÛXk+1

c ′′ | = t + 1 holds, and c ′′ is strictly maximum.
(b) | ÛXk+1

c ′′ | ≤ t holds, and for each school c , the number of assigned
students is at most t .

Proof. If the number of students assigned to c ′′ in stage k is

t , then the first condition of case (a) holds. Furthermore, for each

school c (where c , c ′, c ′′), | ÛXk+1
c | = | ÛXk

c | < t +1 holds. Thus, c ′′ is
strictly maximum. If the number of students assigned to c ′′ in stage

k is strictly smaller than t , then the first condition of case (b) holds.

Also, for each school c (where c , c ′, c ′′), | ÛXk+1
c | = | ÛXk

c | < t + 1
holds. □

When analyzing the effect of manipulations of student s in stage

k , it is convenient to assume in stage k (and thereafter) that a match-

ing is obtained as follows. First, all students except s are tentatively

matched to schools by DA with respect to qkC . Continue the DA
procedure by adding s to the current tentative matching. The match-

ing obtained in this way is identical to the matching obtained by

applying DA when all the students enter the market simultaneously

[4]. If the matching satisfies the ratio constraints, QRDA terminates.

Otherwise, the quota of school c = σ (k) is reduced and the mecha-

nism proceeds to stage k + 1. In the current tentative matching, if

school c is accepting qkc students, the least preferred student s ′ is
rejected. Then s ′ applies to the next school, and so on. Otherwise,

the quota of school c = σ (k + 1) is reduced, and the mechanism

proceeds to stage k + 2, and so on.

In the above procedure, when s enters the market, she first ap-

plies to some school c . If c accepts all the students applying to it,

then the current stage terminates. Otherwise, c rejects one student,
s ′ (s ′ can be s or another student), who applies to the next school,

and so on. We call such a sequence of applications and rejections a

rejection chain. More formally, let Cs = (c, c
′, . . . , c ′′) denote a list

of schools to which student s is going to apply, i.e., s applies first

Stage Step Action

k 1 Student s applies to school c1.
2 School c1 rejects student s1.
3 Student s1 applies to school c2

(and is accepted).

k + 1 1 School c3 rejects student s2
(due to its quota reduction).

2 Student s2 applies to school c4.
. . .

Table 1: Example of rejection chain

to c; if rejected, she applies to c ′, and so on. Cs is called a scenario,
which does not need to be exhaustive. Assume s enters the market

with scenario Cs . Define R(Cs ) as the rejection chain of Cs . It starts

when s applies to the first school in Cs and describes the sequence

of applications and rejections until s is rejected by the last school

in Cs , or the mechanism terminates.

Table 1 shows an example of a rejection chain. For rejection

chains, the following property holds, inspired by the original Sce-

nario Lemma [4], which proves the strategyproofness of the stan-

dard DA in a one-to-one matching.

Lemma 3.4 (Scenario Lemma). Consider two scenarios, Cs and
C′s , of student s starting from the same stage of QRDA. If (1) each
school that appears in C′s also appears in Cs (the order is immaterial),
(2) student s applies to all the schools in Cs , and (3) all the actions of
R(C′s ) happen in the same stage, then all the actions in R(C′s ) also
happen in R(Cs ).

Proof. The first action in R(C′s ) is “student s applies to school

c ,” where c is the first school that appears in C′s . Since c also appears
in Cs , and s applies to all the schools in Cs , R(Cs ) also includes this
action. For an inductive step, assume the first i − 1 actions in R(C′s )
also happen in R(Cs ), and consider the i-th action of R(C′s ). The

i-th action in R(C′s ) must be either (i) “student s ′ applies to school

c ′” or (ii) “school c ′ rejects student s ′.”
In case (i) with s ′ = s , since school c ′ must appear in Cs and s

applies to all the schools in Cs , R(Cs ) also includes this action. In

case (i) with s ′ , s , there must be a previous action, “school c ′′

rejects student s ′,” in R(C′s ). From the inductive assumption, this

action also happens in R(Cs ). Thus, the action “student s ′ applies
to school c ′" also happens in R(Cs ).

In case (ii), let S ′c ′ be the set of students who applied to c ′ before
the i-th action in R(C′s ), and let Sc ′ be the set of all the students
applying to c ′ until all actions inR(Cs ) are executed. Here, S

′
c ′ ⊆ Sc ′

holds since every application before the i-th action in R(C′s ) also

appears in R(Cs ). Since in the i-th action of R(C′s ), s
′
is rejected

by school c ′, she is not among c ′’s most preferred qkc ′ students in
set S ′c ′ . Since the quotas of schools are non-increasing as QRDA

continues, in some stage k ′ (k ′ ≥ k), student s ′ must not be among

the most preferred qk
′

c ′ students in Sc ′ . Thus, the action “school c ′

rejects student s ′” eventually occurs in R(Cs ). □

Now we are ready to prove our main theorem.

Theorem 3.5. QRDA is strategyproof.
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Proof. Assume student s is assigned to a better school when

she misreports. Without loss of generality, we assume her true

preference is c1 ≻s c2 ≻s · · · ≻s cm , and s is assigned to school

c j in stage k when misreporting while assigned to ci in stage k ′

under her true preference, where c j ≻s ci . If k
′ ≤ k , s cannot

benefit frommisreporting, since (i) the standard DA is strategyproof

[4, 27] and (ii) the standard DA satisfies a property called resource

monotonicity, i.e., DA’s outcome is weakly less preferred by each

student if the quotas decrease [6]. Thus, k < k ′ must hold.

Let Cs be (c1, c2, . . . , ci−1), which is based on the true preference

of s and truncated before ci . Then the last action in R(Cs ) must

be “school ci−1 rejects student s .” On the other hand, let C′s be a

sequence of schools to which s applies when s misreports, in which

the last school is c j . For C
′
s , the following two cases are possible:

(i) c j is the least preferred school for s within C′s based on her true

preference ≻s or (ii) C′s contains at least one school that is less

desired than c j based on ≻s .

In case (i), each school c that appears in C′s also appears in Cs .

Thus, we can apply Lemma 3.4. Let ÛX denote the set of contracts

obtained by assigning all students except s by DA with respect to

qkC . Assume that when s enters the market with Cs , she is assigned

to school c ′ (where c ′ , c j ) and infeasible matching ÛXk
is obtained.

Also, when s enters the market with C′s , she is assigned to c j and

feasible matching ÜXk
is obtained. From these facts, at least one

of the following four cases (which are not necessarily mutually

exclusive) must be true:

(1) c j is strictly minimum in ÛX , i.e., | ÛXc j | < | ÛXc | holds for each
c , c j .

(2) | ÛXc j | = qkc j and a student is rejected when student s applies

to school c j in scenario C′s . Then student s ′ (s ′ , s) is eventually

assigned to c ′′ (c ′′ , c j ), such that c ′′ is strictly minimum in ÛX .

(3) c ′ is strictly maximum in ÛXk
, i.e., | ÛXk

c ′ | = |
ÛXc ′ |+1 > | ÛX

k
c | = | ÛXc |

holds for each c , c ′.
(4) | ÛXc ′ | = qkc ′ and a student is rejected when s applies to school

c ′ in scenario Cs . Then student s ′′ (s ′′ , s) is eventually assigned

to c̃ (c̃ , c ′), such that c̃ is strictly maximum in ÛXk
, i.e., | ÛXk

c̃ | =

| ÛXc̃ | + 1 > | ÛX
k
c | = | ÛXc | holds for each c , c̃ .

For case (1), the last action in R(C′s )must be “student s applies to
school c j ,” which also appears in R(Cs ). Assume this action occurs

in stage k ′′ ≤ k ′.
Since c j is strictly minimum in ÛX , we obtain | ÛXc j | < ⌊n/m⌋

for the following reason. Let u denote | ÛXc j |. Then for each school

c , c j , | ÛXc | ≥ u + 1 holds. Since the total number of students

in ÛX is n − 1, and there are m − 1 schools except c j , we obtain

(u + 1)(m − 1)+u ≤ n − 1. By transforming this formula, we obtain

u ≤ n/m − 1. Since n/m − 1 < ⌊n/m⌋ holds, we obtain u < ⌊n/m⌋.
From Lemma 3.2, since the maximum quota of each school is

at least ⌊n/m⌋, c j can accept another student. As the mechanism

continues, the number of students assigned to the most popular

school in each stage never increases. Thus, when c j accepts another
student, the obtained matching is feasible, and the mechanism

terminates. Therefore, in stage k ′′, the mechanism terminates when

s applies to c j . However, this contradicts our assumption that the

last action in R(Cs ) is “student s is rejected by school ci−1.”

For case (2), we can use a similar argument as case (1) and show

that the mechanism terminates with a feasible matching in R(Cs ),

which contradicts our assumption.

In the rest of this proof, we assume cases (1) and (2) do not

occur. For case (3), let t denote | ÛXc ′ |. Since ÛX
k
is infeasible and ÜXk

is feasible, if the number of students of the most popular school

becomes t + 1, then the matching becomes infeasible. If the number

of students of that school is at most t , then the matching becomes

feasible. Assume the last action in R(C′s ) is “student s
′
applies to

school cℓ ,” such that | ÜXk
cℓ | = |

ÛXcℓ | + 1 holds. Since ÜX
k
is feasible,

| ÜXk
cℓ | = |

ÛXcℓ | + 1 ≤ t must hold. According to Lemma 3.4, action

“student s ′ applies to school cℓ” also appears in R(Cs ). Assume this

action happens in stage k ′′ (k ′′ ≤ k ′).
Then from Lemma 3.3, case (a) continues to hold until stage k ′′

in R(Cs ). Otherwise, case (b) holds and the number of assigned

students for each school becomes at most t . Then the matching

becomes feasible, and the mechanism terminates. Thus, the number

of assigned students of cℓ remains | ÛXcℓ | < t . At stage k ′′ in R(Cs ),
case (b) must hold. The maximum quota of cℓ must be at least t
(since before stage k ′′, there exists a school with t + 1 students).

Thus, when s ′ applies to school cℓ , an available seat exists in cℓ , and
s ′ will be accepted. Furthermore, every school accepts at most t stu-
dents. Thus, the obtained matching is feasible, and the mechanism

terminates. This contradicts the assumption that the last action in

R(Cs ) is “school ci−1 rejects student s .”
For case (4), we can use a similar argument as case (3) and show

that the mechanism terminates with a feasible matching in R(Cs ),

which contradicts our assumption.

Furthermore, for case (ii), we can create a new scenario C′′s by

removing all the schools that are less desired than c j based on ≻s
from C′s . Then if s is assigned to c j in R(C

′′
s ), we obtain the same

contradiction as case (i) by comparing R(C′′s ) and R(Cs ). Thus,

action “school c j rejects student s” must appear in R(C′′s ). Then

by Lemma 3.4, this action also appears in R(C′s ), but this is also a

contradiction. □

To examine the time complexity of QRDA, we assume an alterna-

tive execution of DA in each stage used in the proof of Theorem 3.5:

for stage k , instead of running DA from scratch, we start from the

matching obtained in stage k − 1, and continue the execution when

a student is rejected.

Theorem 3.6. The time complexity of QRDA isO(n×m), assuming
school-feasibility can be checked in a constant time.

Proof. QRDA repeatedly applies DA (Mechanism 1). Since a

student is rejected by each school at most once, each step in Mech-

anism 1 is executed at most n ×m times in total. Thus, the time

complexity of QRDA is O(n ×m). □

3.3 Comparison with Baseline Mechanism
To the best of our knowledge, there exists no mechanism that is

fair, strategyproof, and can handle ratio constraints. One way to

handle ratio constraints is to use an indirect approach, i.e., to trans-

form ratio constraints into other types of constraints by sacrificing

flexibility to some extent. In this subsection, we present an indirect

approach in which ratio constraints are transformed into standard

maximum quotas, i.e., artificial maximum quotas are defined such
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that the obtained matching by the standard DA is guaranteed to

satisfy the ratio constraints. Such a mechanism is called Artificial

Cap Deferred Acceptance mechanism (ACDA). ACDA is used in

Japanese medical resident matching programs [20] to handle re-

gional maximum quotas as well as a baseline mechanism in many

works related to distributional constraints [9, 13, 14].

Without loss of generality, assume qc1 ≤ qc2 ≤ . . . ≤ qcm holds.

The following lemma holds:

Lemma 3.7. The matching obtained by the standard DA satisfies
the ratio constraints defined by α if qC satisfies the following condi-
tion:

α ≤
n −

∑m
i=2 qci

qcm
. (2)

Proof. Assume matching ÜX is obtained in the following method.

We first assign qcm students to cm , qcm−1 students to cm−1, and so

on. Finally, n−
∑m
i=2 qci students are assigned to c1 (or no student is

assigned to c1 if n−
∑m
i=2 qci is negative). Then for any matching ÛX

that is school-feasible in a standard market with quotas qC , r ( ÛX ) ≥
r ( ÜX ) holds. Also, from Eq. (2), r ( ÜX ) ≥ α holds. Thus, r ( ÛX ) ≥ α holds.

□

If we knew beforehand which schools are popular/unpopular,

we might be able to find qC that satisfies Eq. (2) to maximize the

student welfare. Otherwise, one simple and reasonable way for

finding appropriate qC is using σ (which is also used in QRDA).

ACDA based on σ is defined as follows:

Mechanism 3 (ACDA (based on σ )).

Initialization:
For all c ∈ C , q1c ← qmax , k ← 1.

Stage k (k ≥ 1):
Step 1 If qkC satisfies Eq. (2), then run the standard DA in mar-

ket (S,C,X ,≻S , ≻C ,qkC ) and return the obtained matching.

Step 2 Otherwise, for school c ′ = σ (k), qk+1c ′ ← qkc ′ − 1, and
for c , c ′, qk+1c ← qkc . Go to Stage k + 1.

Theorem 3.8. ACDA (based on σ ) is strategyproof and returns a
feasible and fair matching.

Proof. ACDA terminates when Eq. (2) holds. Assume ACDA

continues to reduce the maximum quotas since Eq. (2) does not hold.

Eventually, there will be stage k such that the following conditions

hold:

∑
c ∈C qkc = n and for all c ∈ C , ⌊n/m⌋ ≤ qc ≤ ⌈n/m⌉. In this

case, n −
∑m
i=2 qci = ⌊n/m⌋, and qcm = ⌈n/m⌉. Thus, Eq. (2) holds.

Then ACDA must terminate at stage k ′ (where k ′ ≤ k) and the

obtained matching satisfies the ratio constraints. Also, the result

is identical to the matching obtained by the standard DA for the

market (S,C,X ,≻S ,≻C ,q
k ′
C ). Since DA is fair [12], ACDA is also

guaranteed to be fair. Furthermore, since stage k where ACDA

terminates is determined independently from ≻S and the standard

DA is strategyproof, ACDA is also strategyproof. □

Theorem 3.9. All students weakly prefer the matching obtained
by QRDA over that of ACDA (based on σ ).

Proof. If ACDA terminates at stage k , the matching obtained

by the standard DA for the market (S,C,X ,≻S ,≻C , q
k
C ) satisfies

the ratio constraints. Since ACDA and QRDA use the same quota

reduction sequence σ , QRDA also terminates if it reaches stage k .
Thus, QRDA must terminate at stage k ′, where k ′ ≤ k . Since we

haveqk
′

c ≥ qkc for any c ∈ C and DA satisfies resource monotonicity,

as described in the first paragraph of the proof of Theorem 3.5, each

student weakly prefers the matching obtained by QRDA over that

of ACDA. □

Since QRDA always obtains a (weakly) better matching for stu-

dents than ACDA, it is natural to assume that QRDA will be less

wasteful than ACDA, i.e., more students claim empty seats in ACDA

compared to QRDA. However, we cannot guarantee this property,

i.e., Theorem 3.11 holds. For its proof, we use the following example:

Example 3.10.
S = {s1, s2, s3, s4, s5}, C = {c1, c2, c3, c4}, α = 1/2,

≻s1 : c1 ≻s1 c4 ≻s1 c2 ≻s1 c3,
≻s2 : c2 ≻s2 c3 ≻s2 c1 ≻s2 c4,
≻s3 : c1 ≻s3 c2 ≻s3 c3 ≻s3 c4,
≻s4 : c4 ≻s4 c1 ≻s4 c3 ≻s4 c2,
≻s5 : c1 ≻s5 c2 ≻s5 c3 ≻s5 c4,

≻c1 : s2 ≻c1 s4 ≻c1 s1 ≻c1 s3 ≻c1 s5,
≻c2 : s4 ≻c2 s3 ≻c2 s5 ≻c2 s1 ≻c2 s2,
≻c3 : s1 ≻c3 s5 ≻c3 s3 ≻c3 s2 ≻c3 s4, and
≻c4 : s5 ≻c4 s2 ≻c4 s3 ≻c4 s4 ≻c4 s1.

Theorem 3.11. A case exists where the number of students who
claim empty seats in QRDA is larger than that of ACDA (based on σ ).

Proof. Assume the situation in Example 3.10. QRDA setsqmax =

2, which satisfies Eq. (1). In stage 1, s1 and s3 are assigned to c1, s2
and s5 are assigned to c2, and s4 is assigned to c4. Since no student

is assigned to c3, this matching is not school-feasible. Thus, qc1 is
reduced to 1. Then in Stage 2, the obtained feasible matching is as

follows: (
c1 c2 c3 c4
{s1} {s3, s5} {s2} {s4}

)
.

Here student s3 claims an empty seat in school c1, and student s5
claims an empty seat in school c1.

On the other hand, in ACDA, the maximum quotas of c1, c2, c3
are set to 1, and the maximum quota of c4 is set to 2. The obtained

matching is as follows:(
c1 c2 c3 c4
{s2} {s3} {s5} {s1, s4}

)
.

Here only student s1 claims an empty seat (of school c1). Other
students, for example, s3, can no longer claim an empty seat, since

by moving her from c2, the obtained matching is not school-feasible.

□

4 EXPERIMENTAL EVALUATION
First, in terms of student welfare, Theorem 3.9 guarantees that stu-

dents weakly prefer QRDA over ACDA. We performed a computer

simulation to examine the quantitative difference. Then, in terms
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Figure 1: Comparison between QRDA and ACDA
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Figure 2: Comparison between QRDA and ESDA

of nonwastefulness, Theorem 3.11 shows that we cannot guaran-

tee that QRDA is always better than ACDA. However, we expect

that a situation like Example 3.10 is rather extreme and would not

happen very often; on average, QRDA will surpass ACDA. We also

confirmed this conjecture by computer simulation.

Furthermore, we examine another indirect approach in which ra-

tio constraints are transformed into individual minimum/maximum

constraints [9]. Here, each school c has its minimum quota pc as
well as its maximum quota qc . At least pc students are assigned

to school c . Fragiadakis et al. [9] present a strategyproof and fair

mechanism called Extended Seat Deferred Acceptance mechanism

(ESDA). Let us examine how to transform ratio constraints into

individual minimum/maximum quotas. Assume all schools have

the same minimum/maximum quotas p̂ and q̂. Then, it is clear that
if p̂/q̂ ≥ α holds, the ratio constraints are satisfied. Then, the next

question is how to determine q̂ and p̂ appropriately. We use the

following method: choose q̂ and p̂ = ⌈α · q̂⌉ as the maximum values

that satisfy n ≥ q̂ + (m − 1)p̂. In other words, we choose q̂ to the

largest value such that the ratio constraints are satisfied and there

exist enough students to satisfy minimum quotas p̂. By choosing a

large maximum quota, we can allocate more students to popular

schools.
5

5
We tried several alternative methods for choosing q̂ and p̂ but the obtained results

were similar to the current method.

We considered a market with n = 800 students and m = 20

schools and generated student preferences with the Mallows model

[3, 25, 31]. We drew strict preference ≻s of student s whose proba-
bility is expressed as:

Pr(≻s ) =
exp(−θ · d(≻s ,≻ŝ ))∑
≻′s

exp(−θ · d(≻′s ,≻ŝ ))
.

Here θ ∈ R denotes a spread parameter, ≻ŝ is a central prefer-

ence (uniformly randomly chosen from all possible preferences in

our experiment), and d(≻s ,≻ŝ ) represents the Kendall tau distance

between ≻s and ≻ŝ . The distance is measured by the number of

ordered pairs in ≻s that are inconsistent with those in ≻ŝ . When

θ = 0, it becomes identical to the uniform distribution and con-

verges to Pr(≻ŝ ) as θ increases. The priority ranking of each school

c is drawn uniformly at random. We created 100 problem instances

for each parameter setting.

In Fig. 1 (a), we show the ratio of students who strictly prefer

QRDA over ACDA depending on α . Due to Theorem 3.9, no student

strictly prefers ACDA. Thus, the remainder are indifferent. We set θ
to 0.1 and 0.3 (Fig. 1 (a)). When α = 0.3 and θ = 0.1, approximately

38% of the students strictly prefer QRDA’s outcome. When α =
0.7 and θ = 0.1, approximately 8% of the students strictly prefer

QRDA’s outcome. We expect that policymakers will prefer QRDA

over ACDA since it is never worse than ACDA and a non-negligible
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amount of students strictly prefer QRDA. As α becomes smaller,

i.e., the set of school-feasible matchings expands, more students

strictly prefer QRDA; there is more room for improvement in QRDA

compared to ACDA. When θ = 0.3, students’ preferences are more

similar and the competition among them becomes more severe. In

such a case, the improvement obtained by QRDA is smaller than

where student preferences are more diverse (i.e., θ = 0.1).

To show that QRDA is less wasteful than ACDA, we measured

the ratio of students who claim empty seats in bothmechanisms and

show the difference, i.e., by plotting (|SACDA | − |SQRDA |)/n, where
SACDA (resp. SQRDA) is the set of students who claimed empty seats

in ACDA (resp. QRDA). If this value is positive, it means more

students claimed empty seats in ACDA compared to QRDA. We

illustrate the results in Fig. 1 (b). For all the instances that we

generated, the number of claiming students in QRDA is weakly

smaller than that of ACDA. Similar to Fig. 1 (a), asα becomes smaller,

i.e., the set of school-feasible matchings expands, the difference

becomes larger; there is more possibility to improve the matching

using QRDA compared to ACDA, but the trend is less definite

compared to Fig. 1 (a).

In Fig. 2 (a), we show the ratio of students who strictly prefer

QRDA over ESDA depending on α . We cannot theoretically guaran-

tee that students always weakly prefer QRDA over ESDA. However,

for all the instances that we generated, all students weakly prefer

QRDA over ESDA. The trend is similar to Fig. 1 (a). Actually, in

terms of students welfare, ESDA is worse than ACDA. Indeed, to sat-

isfy minimum quotas, many students are assigned to less preferred

schools.

In Fig. 2 (b), we show the difference in the ratio of claiming

students between QRDA and ESDA in a similar fashion as Fig. 1 (b).

For all the instances that we generated, the number of claiming

students in QRDA is weakly smaller than that of ESDA. The trend

is similar to Fig. 1 (b).

5 EXTENDED MODEL WITH MINIMUM
QUOTAS

The model presented in Section 2 would be appropriate when all

schools are about the same size. We can extend the model to the

case where schools are of different sizes. Let us assume each school

c has its minimum quota pc , i.e., c must be allocated at least pc
students. Each school has its own minimum quotas, i.e., pc can vary

according to the size of c . Then, we enforce ratio constraints for

the number of students assigned beyond pc .
Formally, the extended model is defined by a tuple (S,C,X ,≻S ,

≻C ,pC ,α). Here, pC = (pc )c ∈C is a profile of minimum quotas.

We assume

∑
c ∈C pc +m ≤ n, i.e., each school can be assigned

at least one student beyond its minimum quota. Furthermore, we

assume α must be at most ⌊(n −
∑
c ∈C pc )/m⌋/⌈(n −

∑
c ∈C pc )/m⌉

to guarantee the existence of a feasible matching. For ÛX ⊆ X , let us

(re-)define r ( ÛX ) as follows:

r ( ÛX ) =
minc ∈C (| ÛXc | − pc )

maxc ∈C (| ÛXc | − pc )
.

ÛX is school-feasible if r ( ÛX ) ≥ α and | ÛXc | > pc for all c ∈ C .
Let n̂ denote n −

∑
c ∈C pc , i.e., the number of students beyond

the sum of minimum quotas. Then, let q̂max be the largest value

satisfying the following formula:

α · q̂max ≤

⌊
n̂ − q̂max

m − 1

⌋
.

We can apply the same mechanism as Mechanism 2, where q1c
is initialized to q̂max + pc . In a similar way to Theorems 3.1 and

3.5, we can show that this mechanism returns a feasible and fair

matching, and it is strategyproof.

6 CONCLUSIONS
This paper introduced ratio constraints, which explicitly specify

the required balance among schools in two-sided matching. Since

they do not belong to a known well-behaved class of constraints

(i.e., an M-convex set), we cannot use a general mechanism based

on DA. We developed a fair and strategyproof mechanism called

QRDA and showed that in terms of student welfare, it theoretically

outperforms ACDA. Furthermore, we experimentally showed that

QRDA is better than ACDA and ESDA in terms of student welfare

and nonwastefulness.

Future works will: (i) clarify the class of constraints (broader than

an M-convex set) that can be handled by QRDA (or its variant); and

(ii) generalize our model such that schools are divided into different

types (e.g., small/large schools) and different α values are imposed

for different combinations of types (e.g., within small/large schools,

α should be 0.9, while between small and large schools, α should

be 0.3).
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