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ABSTRACT
The continuous double auction (CDA) is the predominant mecha-
nism in modern securities markets. Many agent-based analyses of
CDA environments rely on simple non-adaptive trading strategies
like Zero Intelligence (ZI), which (as their name suggests) are quite
limited. We examine the viability of this reliance through empirical
game-theoretic analysis in a plausible market environment. Specifi-
cally, we evaluate the strategic stability of equilibria defined over a
small set of ZI traders with respect to strategies found by reinforce-
ment learning (RL) applied over a much larger policy space. RL can
indeed find beneficial deviations from equilibria of ZI traders, by
conditioning on signals of the likelihood a trade will execute or the
favorability of the current bid and ask. Nevertheless, the surplus
earned by well-calibrated ZI policies is empirically observed to be
nearly as great as what the adaptive strategies can earn, despite
their much more expressive policy space. Our findings generally
support the use of equilibrated ZI traders in CDA studies.
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1 INTRODUCTION
The continuous double auction (CDA) is the preeminent security
trading mechanism, accounting for trillions of dollars in transac-
tions annually [16]. In a CDA, buyers and sellers submit orders to
the market, and any order that crosses the best-priced prior order
of opposite type clears, producing a trade. Bidding in a CDA is a
dynamic game of imperfect information, as trading agents do not
know each other’s valuations and generally do not observe all bids.

Despite the mechanism’s prevalence, attempts at game-theoretic
characterizations have generally been limited to highly stylized
scenarios [33], or numeric solution of abstract models [10]. Many
other research efforts aim to establish stylized facts about CDA
market outcomes, based on simulation or analysis of rule-based
traders in action [2, 3, 11]. The literature also includes a progres-
sion of works, each presenting a novel policy for CDA trading
agents and experimental evidence comparing it beneficially to less
sophisticated policies from earlier papers [5, 8, 18, 23–25].

Prior studies of heuristic strategies contribute to our understand-
ing of the CDAmechanism, but results based on heuristic strategies
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may be subject to doubt due to the possible strategic instability of
these profiles. We can equilibrate over a class of heuristic strategies,
but the question remains: how much gain is available by going
beyond this class? In particular, one way to refine a strategy is to
condition its actions on additional features, adapting its behavior by
accounting for more state information. We seek to evaluate whether
agents can benefit significantly by adopting more complex, adap-
tive policies, as extending to such larger strategy spaces may be
difficult or costly. Recent work suggests the outcomes of economic
simulation studies can be biased by which learning modality agents
use, and reinforcement learning (RL) is a useful tool for exploring
how the learning environment affects equilibrium results [13].

We present a systematic experimental study of the CDA, inwhich
we derive trading policies via RL and empirical game-theoretic anal-
ysis (EGTA). We use as our baseline trading heuristic the Zero Intel-
ligence (ZI) strategy, which has severely limited ability to adapt to
market state. The version of ZI we use has a few parameters, which
we tune via EGTA to find approximate Nash-equilibrium mixtures
in the baseline set. Against these policies we train more adaptive
trading policies using Q-learning [30]. We conduct a statistically
rigorous analysis of the benefit of conditioning a policy on market
state, relative to the non-adaptive baseline. Results suggest the equi-
librated non-adaptive CDA policies leave positive, but surprisingly
modest, room for gain through conditioning on market state.

We also conduct a detailed analysis on the nature of our learned
CDA trading strategies, employing regression trees [18]. We then
classify conditions where learned policies demand more or less
surplus from trade than the ZI mixed-strategy baseline.

Additionally, we present simple analytical arguments on the
conditions under which conditioning a CDA trading policy on
market state can be beneficial. A further empirical analysis shows
that market state indicates to a trading agent, most critically, the
likelihood at which an order at some price will be executed. The
most useful signals for the agent appear to be the recent order
history and the current bid and ask.

1.1 Prior Work: Heuristic CDA Strategies
A Zero Intelligence trader sets its order price as a random surplus
offset from its valuation, based on a uniform distribution from a
specified range. ZI was introduced by Gode and Sunder [9], to
demonstrate how a CDA market’s allocative efficiency approaches
its optimum, even if all traders use such a simple strategy. The ZI
policy model in various forms has been popular among experimen-
tal and analytical researchers alike, for its simplicity and ability
to capture stylized facts of real markets or fit real-world financial
data [7, 14, 15]. Several recent works have employed ZI traders in
models of financial markets or prediction markets [3, 14, 26, 28].

Recently, Wah and Wellman [27] used ZI traders in a model of
latency arbitrage between two markets, where an equilibration
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process (EGTA) was used to find Nash-equilibrium parameters for
the ZI agents, with or without a latency arbitrageur present. Li and
Das [14] also used a ZI model to compare the CDA mechanism to
frequent batch auctions. Wah et al. [28] used ZI again to study the
effect of market makers on other traders in a CDA. Other groups
have commonly employed ZI traders for similar ends, for instance
Chakraborty et al. [3] used a ZI model to study the effectiveness
of a market making strategy for prediction markets, as did Wah et
al. [26] and, earlier, Othman [17].

It has always been clear that ZI is not an optimal trading strat-
egy. Cliff and Bruten [5] showed that ZI tends to yield efficient
allocations only if agents’ aggregate supply and demand curves
have equal slopes, and the authors proposed one of many strategic
improvements on ZI, known as ZI Plus (ZIP). ZIP and other ZI suc-
cessors such as GD and GDX [8, 23, 24] and AA [6, 25] adjust the
surplus demanded by the agent during a run, based on the prices
of recent trades. Studies have shown such policies to be beneficial
deviations from a single, fixed ZI policy [24, 29]. Even stronger
policies have been derived by RL, to deviate beneficially from a
mixed strategy of GDX agents [18]. These studies have the limita-
tion that they compare a new policy against a single, uncalibrated
parameterization of ZI, which may be a straw man form of the ZI
agent. The more relevant comparison, we argue, is to equilibrated
ZI mixtures rather than to arbitrary ZI instances.

The prior work most similar to ours is a study by Schvartzman
and Wellman [18], which employed Q-learning in a particular CDA
setting to derive beneficial deviations from profiles using a fixed
ZI strategy, as well as more sophisticated strategies like ZIP and
GDX. Our work builds on these methods to serve a different goal.
We employ RL in an attempt to characterize when and how CDA
traders can benefit from conditioning their actions on market state.
We compare equilibrated ZI mixed strategies to (approximate) best
responses learned via RL. In addition, we analyze the relative im-
portance of features for learning proposed in prior work, through
regression over experimentally learned policies.

1.2 Research Contributions
• We evaluate the strategic stability of equilibrated ZI policies
against (approximate) best responses from Q-learning. Some
surplus is lost by forgoing adaptation, but the amount is small
compared to the loss from non-equilibration of parameters.
• We study the nature of adaptive policies that outperform ZI.
• We provide intuition for when an adaptive agent can deviate
beneficially from a ZI policy baseline, and offer insight into
the tradeoffs facing such an agent.
• Our findings suggest equilibrating over many ZI policies
yields a profile where no alternative ZI policy can earn sig-
nificantly greater surplus, but an adaptive policy can still
earn a small positive amount more.When this holds, the com-
mon practice of using equilibrated ZIs as an approximation
of efficient behavior may be considered acceptable.

2 CDA MARKET MODEL
Our study is based on a CDA market model, similar to those of
prior works by Wah et al. [27, 28]. The market has a single security
and many traders. The security’s value to an agent is the sum of the

agent’s private value for the good (drawn from some random distri-
bution), and the fundamental value, which evolves by a stochastic
process. Agents trade the security with one another via the CDA
mechanism, by submitting limit orders to the market. Each agent
can submit an order only in time steps when it arrives at the market,
as determined by a random (exponential) inter-arrival time process;
at each arrival, an agent is independently randomly assigned to
buy or sell. Each agent’s payoff from the CDA game is defined as
the final fundamental value of its inventory, plus the cumulative
private value of its inventory, plus its final cash holdings.

Our market model is populated by 17 trading agents, comprising
16 background traders and one market maker (MM). The MMmain-
tains a ladder of buy and sell orders separated from the expected
final fundamental value by a fixed spread, updated each time it
arrives. The background traders act according to parameterized
forms of the ZI policy.

2.1 Zero Intelligence
ZI is a simple strategy for CDA trading that can converge to efficient
prices and allocations in many settings [9]. Our variant of ZI, intro-
duced by Wah et al. [28], has three parameters: d , d , and η ∈ (0, 1].
At each arrival, a ZI agent places a limit order that demands a sur-
plus uniformly drawn from interval [d,d]. The exception is if the
agent would earn at least η fraction of its randomly drawn surplus
goal at the current quote; in that case, the agent opportunistically
places an executable order at the quote instead.

2.2 Market Model Description
Our market model includes several adjustable parameters, such as
the number of time steps per simulation and the degree of mean
reversion in the security’s fundamental value. We selected these
parameters’ values based on experience with similar models from
prior studies [27, 28], in an effort to ensure a reasonable level of
trading would occur in typical simulation runs, and simulations
could be completed quickly enough to allow many epochs of RL.

All 17 agents arrive at the market with independent inter-arrival
times, drawn from an exponential distribution with rate λBG for
background traders, λMM for themarket maker.We let λBG = 0.012
and λMM = 0.05, with a game duration of T = 2000 time steps.
Hence, each background trader arrives roughly every 83 time steps
in expectation, the market maker every 20 time steps.

The fundamental value evolves as a mean-reverting randomwalk
with zero-mean Gaussian noise and long-run mean µ.1 At each time
step, the fundamental value is updated, rt ← κµ + (1 − κ)rt−1 +
N(0,σ 2

s ), where σ 2
s is the fundamental shock variance, and κ the

mean reversion parameter. Throughout this study, we take κ = 0.01
and σ 2

s = 20000. Given the observed fundamental at time t , the
expected terminal fundamental value is

r̂t =
(
1 − (1 − κ)T−t

)
µ + (1 − κ)T−t rt .

ZI and MM agents use this estimate in setting their order prices.
Each background trader is assigned a private value vector, in

which element θi gives the value of an additional security unit,
given a current inventory i . This vector has length 20, because the
1We take µ = 105 . The specific level does not matter, as long as the evolving funda-
mental has negligible probability of hitting the zero lower bound.
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agent is restricted to hold (or owe) no more than 10 units. The
vector is derived by sampling 20 values from N(0,σ 2

p ), where σ 2
p is

the private value variance; the samples are sorted in non-increasing
order, so that each agent’s demand decreases with inventory. This
study takes σ 2

p = 2 × 107.
When the market maker arrives, it cancels its existing orders

and places a new ladder of orders, with 100 rungs above and below
r̂t , at sell prices r̂t + 256 + 100i and buy prices r̂t − 256 − 100i , for
i ∈ {0, . . . , 99}.

When a background trader playing a ZI strategy arrives, it can-
cels its previous order and is assigned with equal probability to
buy or sell. Suppose the agent has ZI parameters d,d,η. The agent
computes the surplus it would obtain by trading immediately at the
quote, which for a buyer is r̂t +vi+1−α , or for a seller is β−(r̂t +vi ),
where α is the ask, β is the bid, and vi is the agent’s private value
of unit i of inventory. The agent compares this surplus to ηs , where
s ∼ U [d,d]. If the agent can obtain enough surplus, it transacts
immediately. Otherwise, it places an order demanding the surplus
goal s : either a buy order at r̂t +vi+1 − s or a sell order at r̂t +vi + s .

Each background trader earns a payoff equal to the final value
of its inventory (fundamental plus private value), plus its final cash
holdings. More formally, let I jt denote the inventory (stock holdings)
of agent j at time t , and c jt its cash holdings. The final payoff for a
trader j with positive final inventory (I jT > 0) is

U j = I
j
T rT +

I jT −1∑
i=0

θ
j
i + c

j
T .

The payoff for nonpositive inventory is computed similarly.
For reinforcement learning of trading strategy, the learning

agent l is trained on an interim reward signal Rlt that it receives
after each action, plus a final signal RlT it receives at the end. If the
learning agent l arrives at time t + k , and its previous arrival had
been at time t , the interim reward signal is given by

Rlt+k =
(
I lt+k r̂t+k − I

l
t r̂t

)
+
(
clt+k − c

l
t

)
+
(
Θl
t+k − Θ

l
t

)
,

where Θl
t is the cumulative private value of l ’s inventory at time t .

These interim rewards are structured such that their sum must
equal the trader’s overall payoff:

∑
t Rlt = Ul .

3 DEFINITIONS
We use many standard terms from game theory, defined here for
completeness. By an agent policy or player pure strategy, we mean
a mapping from the set of observation states to the (possibly sto-
chastic) action taken in each state. A mixed strategy is a probability
distribution over pure strategies. A profile is an assignment of a
strategy (pure or mixed) to each player. A symmetric profile as-
signs the same strategy to each player. A Nash equilibrium (NE) is
a profile such that no player can achieve a higher expected payoff
by unilaterally deviating from its assigned strategy to any alterna-
tive. The regret of a profile is the maximum over players, of the
maximum gain in expected payoff obtainable by deviating to any
alternative strategy. A Nash equilibrium thus has zero regret.

We call a profile an equilibrium over strategy set S, if all pure
strategies played with positive probability are in S, and no player

can achieve higher expected payoff by deviating to a strategy in
S. We say a profile has regret x with respect to strategy set S′, if x
is the maximum any player gains in expectation by deviating to a
strategy in S′.

4 REINFORCEMENT LEARNING METHODS
To learn improved background trader policies, we first fix the poli-
cies of all but one agent, which converts the trading game into a
decision problem for the one strategic agent. This agent can then
use RL to search for an approximate best response to the policies
of the others. We tested several RL approaches2 before settling on
a variant of Q-learning [30] that empirically worked well in our
setting. The Q-learning agent progresses through a sequence of
observing states s , getting reward R, and taking actions a. The
agent maintains an estimate of the Q-value of each state-action
pair,Q(s,a), which represents the expected value of taking action a
in state s and playing optimally thereafter. On experiencing the
sequence (s,a,R, s ′), the agent performs a Q-learning value update,

Q(s,a) ← (1 − ρ)Q(s,a) + ρ
(
R + γ max

a′
Q(s ′,a′)

)
,

where ρ is the learning rate, and γ is the discount factor for future
values. We set γ = 0.9 for learning, as a regularizer, but decay
γ toward 1 as learning progresses. (The underlying game has no
discounting.) We set ρ(s,a) to the reciprocal of the number of (s,a)
observations to this point.

Learning Feature Set. Our learning agents use the following fea-
tures in their state observations.

• P , the profit that would be obtained by trading immediately
at the current price quote.
• V , the private value of the next unit to be traded.
• O , the omega ratio, estimated at recent trade prices, of the
price X with respect to a threshold k defined at the next
unit’s valuation,

E(X − k | X > k) Pr(X > k)
E(k − X | X < k) Pr(X < k) .

• A, whether the action assigned to the player is buy or sell.
• D, the duration in time steps since the most recent trade.

Note that the omega ratio seeks to measure the recent favorability
of the market, in terms of the expected upside in proportion to the
expected downside of purchasing a unit of stock. To discretize the
observations for Q-learning, we employ a tile coding system with a
single tiling [18, 19]. That is, we threshold the numerical features
(P , O , V , and D), dividing each into three buckets, using boundary
values chosen empirically in pilot simulations to provide evenly
distributed observations over buckets.

The action set of the Q-learning agent is the same as the ZI
strategy set available to the other background traders. That is, the
learner trains a policy that maps each observation state to one of
the 10 ZI strategies listed below in Section 5.1.

2In particular, we also tried Sarsa with eligibility traces [21] and POMCP [20], with
neither producing results better than Q-learning for our problem.
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5 ZI REGRET STUDY
We designed an experiment to measure the regret of equilibrated
static policies (ZI) with respect to either alternative ZIs or adaptive
policies, derived via RL. As a sanity check, we wanted to show
that our automated RL process could consistently find policies that
outperformed the ZI baseline, as found in prior work [18].

With a consistently effective learning process in hand, we sought
to measure the strategic stability of equilibrated ZI mixed strategies
with respect to approximate best responses derived via Q-learning.
By an equilibrated ZI mixed strategy, we mean a probability distri-
bution over ZI strategy parameters exhibiting negligible empirical
regret, relative to a fixed set of other ZI strategies. We expected an
arbitrarily chosen ZI pure strategy would have high regret with
respect to a Q-learner or to other ZI strategies. More important,
we hypothesized that as the set of ZI strategies is increased in size,
the regret of the equilibrated mixed strategy with respect to either
other ZI policies or a Q-learner will tend to diminish. The regret
with respect to the other ZI policies necessarily approaches zero
in the limit, but we expected there would remain a small positive
regret with respect to a reinforcement learner. This regret repre-
sents the value of conditioning actions on market state in the CDA.
If the measured regret is indeed small, this is evidence supporting
the use of equilibrated ZI traders as a reasonable agent model.

We began with a set of 10 ZI policies, selected heuristically for
high fitness and broad coverage. We generated random subsets of
our base strategy set, of several sizes, and used empirical game-
theoretic analysis (EGTA) to find one or more symmetric Nash
equilibria in each subset.3 Next we challenged each ZI equilibrium
strategy, by training a Q-learner against other agents playing that
mixed strategy. We also challenged each distinct equilibrium strat-
egy with each of our 10 pure ZI strategies, to evaluate regret with
respect to the base strategy set.

5.1 ZI Strategy Set
The 10 ZI strategies (d,d,η) used in this study are as follows:

(0, 450, 0.5), (0, 600, 0.5), (90, 110, 0.5), (140, 160, 0.5),
(190, 210, 0.5), (280, 320, 0.5), (380, 420, 0.5), (380, 420, 1),

(460, 540, 0.5), (950, 1050, 0.5).

Henceforth we write a pure strategy as, for example, 280_320_.5.
A mixed strategy is a set of ordered pairs of pure strategies and their
probabilities, such as {280_320_.5 × 0.1, 380_420_.5 × 0.9}.

As noted above, we selected these particular ZI parameterizations
with the goal of having broad coverage of the space of reasonably
high-fitness strategies. We had previously observed the relative
strategic stability of many ZI strategies in a small pilot study, as
well as in prior work that used a similar market model [28].

From this base set of 10 strategies, we randomly selected subsets
of sizes two, five, or eight. Strategy subsets were selected uniformly
randomly, rejecting duplicates. We used 30 distinct subsets of each
size, in addition to the 10 singleton subsets, and the set of all 10.
Overall, we conducted parallel experiments on 101 ZI strategy sets:
10 of size 1; 30 each of sizes 2, 5, and 8; and 1 of size 10.

3As our games are finite and symmetric, symmetric NE necessarily exist [4]. We
numerically find approximate symmetric equilibria with negligible regret.

5.2 EGTA Methods
The essential EGTA process has been described at length elsewhere
[12, 26, 28, 29, 31], so we present only an overview. EGTA employs
simulation to estimate the expected payoff for each agent in a strat-
egy profile, and explores a space of profiles to identify approximate
equilibria. We used the methods of EGTA to find NE over each
subset of ZI strategies. A total of 20 distinct equilibria were iden-
tified across these subsets, including the 10 pure profiles that are
equilibria for the respective singleton sets.

To test whether a mixed-strategy profile is an equilibrium, EGTA
obtains payoff samples of each pure-strategy profile in the support
of the mixed strategy (i.e., profiles played with positive probability;
we term the collection a subgame), as well as each pure-strategy
profile where a single agent deviates to any other pure strategy.
For example, if the 16 players in our game play strategies A and
B with positive probability, it is necessary to sample payoffs of
i ∈ {0, . . . , 16} agents playing A and the rest playing B; we then
compute the expected payoff of the mixed strategy. Next, we would
compute the payoffs for corresponding profiles where one agent
deviates to any other pure strategy.

The sample count required grows rapidly in the number of agents
and strategies in support. To make this process tractable, we employ
the deviation-preserving reduction (DPR) technique of Wiedenbeck
and Wellman [32], approximating our game of 16 players with a
related 4-player game. We construct the reduced game’s payoff
table by running simulations of the full, 16-player game as follows.
To estimate the payoff for a particular player in a 4-player reduced-
game profile, we let that player control 1 agent in the 16-player
simulation, while each of the other 3 players in the reduced game
controls 5 agents in the full simulation.

We search for NE through a fully automated procedure that
begins by testing whether each pure strategy in self-play is an
equilibrium. The process then goes on to test equilibria over pairs
of strategies, based on beneficial deviations found from the self-play
profiles. Exploration continues, extending support size as necessary
based on deviations found outside the current support. The process
completes when an approximate NE is found with empirical regret
less than a numerical tolerance, and all equilibrium candidates up to
a current support size have been confirmed or refuted. For a given
subgame, we use replicator dynamics [22] and other numerical
techniques to search for a symmetric NE over those strategies.

5.3 Pure-Strategy Regret Measurement
We set out to accurately measure the regret of each equilibrium we
found over a subset of ZI strategies, with respect to the base strategy
set. This value serves as an empirical signal of how strategically
stable a ZI mixed strategy is, with respect to the universe of all
ZI strategies, if we believe that our base strategy set is sufficiently
large and varied.

To estimate the regret of a mixed strategyM with respect to one
of the 10 ZI strategies in the base strategy set, we run simulations
where all but one agent plays a strategy sampled independently
fromM , but one agent deviates to that pure strategy. We explored
the 10 pure strategies as if they were arms of a multi-armed bandit,
seeking an upper bound on the regret with respect to the best arm.
Initially, we sampled each strategy in turn, for 50,000 simulations
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each. Thereafter, following each batch of 2500 simulations, we
sampled a bootstrap distribution from the set of all payoffs of the
current deviating strategy and selected the pure strategy with the
highest 95th percentile for the mean payoff as the deviation to
sample next. Thus, we obtained low-variance estimates for the
upper confidence bound on those pure strategies that appeared
to have a significant chance of being beneficial deviations. We
terminated the process when either the greatest upper confidence
bound became lower than the expected payoff of the equilibrium
policy, or a total of 800,000 simulations had been taken.

This pure-strategy regret measurement procedure lets us evalu-
ate the strategic stability of supposed NE, in case of approximation
error caused by player reduction. It is possible for a mixed strategy
to be an exact Nash equilibrium in the reduced game of our DPR
approximation, but not an equilibrium in the original game, because
the distribution of profiles in the original game includes many not
reflected in the reduced game. Our procedure evaluates the regret
of reduced-game NE with respect to the original game, that is, it
samples profiles where any number of background traders from 0
to 16 adopts each strategy in the equilibrium support.

5.4 Q-Learning Regret Measurement
We aimed to measure the regret of each equilibrium over a sub-
set of ZI strategies, against the best adaptive policy derived in a
large policy space by Q-learning. This provides a lower bound on
how much improvement can be obtained through adaptive trading
relative to the ZI equilibria.

We conducted Q-learning against each equilibrium ZI profile
as described above. In summary, we performed a single run of Q-
learning against each equilibrium, of 106 playouts. Our exploration
policy was ϵ-greedy, with ϵ = 0.1. We modified conventional Q-
learning based on what we found to be useful tricks in our setting:
We truncated reward observations to ±3000, used an artificial dis-
count factor of 0.9 that decays to 1.0with increasing iterations, used
hand-tuned thresholds in each feature for observation bucketing,
and used early stopping.

To measure the expected payoff of a policy from RL, we run
our simulator with one agent playing the learned policy, and all
others playing the baseline mixed strategy. We conduct at least
2 × 105 simulations per learned policy, and use the bootstrap to
derive a confidence interval for the mean payoff. We then compare
this payoff to the expected payoff of the baseline policy.

Note that the policy space used by our Q-learner is a strict super-
set of the ZI policies in the base strategy set. This means that the
Q-learner can in theory deviate at least as successfully against any
opponent profile as the best fixed response from the base strategy
set. However, a Q-learner may not always match or outperform the
ZI best response, due to insufficient time to converge, or problems
converging in a POMDP.

6 RESULTS
In our experiments, the RL method consistently found policies of
greater expected value than the equilibrated ZI baselines. However,
the learned policies achieved only slightly greater payoff than those
ZI equilibria that were derived from large sets of ZI pure strategies.
The results suggest that there is a small but consistent advantage to

conditioning actions on state in our CDA environment, relative to
playing a well-calibrated mixed strategy of ZI policies. This benefit
of an adaptive policy is small compared to the difference between a
well-calibrated ZI strategy and a poorly chosen one.

6.1 Studying Effects of ZI Strategy Set Size
As the set of ZI strategies available to EGTA is augmented, the regret
of the equilibrium mixed strategy over that set decreases, both with
respect to our base set of ZI strategies, and to the adaptive strategy
response produced by Q-learning. The regret with respect to other
ZI strategies empirically is almost always lower than the regret
with respect to adaptive strategies; or in other words, adaptive
policies almost always achieve greater benefit in deviating from
the ZI baseline than an alternative ZI strategy does.
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Figure 1: Regret of equilibria over ZI policy subsets. Each
row comprises equilibria over ZI policy subsets of a given
size. Left: regret w.r.t. Q-learning response; right: regret w.r.t.
best-response ZI policy of full policy set. Solid lines present
row means.

Fig. 1 presents the regrets of each ZI subset’s NEs, with respect
to Q-learning (left) and with respect to the best-response ZI pure
strategy (right). For example, in row 5 we display a marker for
each equilibrium in each of the 30 ZI strategy subsets of size 5 that
were randomly selected. In any row, each equilibrium is plotted
with multiplicity equal to the number of strategy subsets of the
appropriate size in which it occurs. With a line, we plot the mean
regret of these equilibria for each strategy subset size.

Note in Fig. 1 how the regret of ZI equilibria grows smaller on
average as the number of strategies equilibrated over increases
from 1 to 10. This trend holds for regret with respect to Q-learning
and with respect to the best-response ZI policy. The only exception
to this trend is the small increase, from 4.4 to 4.7, in the mean
regret with respect to Q-learning, from subset size 8 to size 10; this
reversal may be due to noise in payoff sampling or the like. To
provide a sense of scale in these payoff differences, we note that
in the two Nash equilibria found over the base strategy set, the
expected payoffs per background trader were 461.8 and 462.6.

This trend of ZI equilibrium regret growing smaller with increas-
ing ZI strategy set size is supported by statistical hypothesis testing
via unpaired t-test. In these tests, we count each equilibrium’s re-
gret with a multiplicity equal to the number of strategy subsets in
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which it appears, similarly to the plot in Fig. 1. In the case of regret
with respect to Q-learning, we find weak evidence (below statistical
significance at 0.05 level) that the regret for size-one subsets is
greater than size-two (p = 0.14), and strong evidence that regret for
size-two is greater than size-five (p = 10−8), and size-five is greater
than size-eight (p = 0.02). In the case of regret with respect to ZI
deviations, we find very similar hypothesis test results.

We also note in Fig. 1 that as the subset of ZI strategies equi-
librated over is augmented, the regret of the ZI equilibrium with
respect to the base strategy set approaches zero. This regret must be
zero when the full strategy set is included, for a Nash equilibrium
over the base strategy set cannot have any beneficial deviations
within that set. For any subset of k strategies, drawn from a base set
of N strategies, the likelihood of a zero-regret subset being selected
is simply the likelihood of drawing a superset of the support of any
Nash equilibrium of the base set.

Finally, observe how in Fig. 1 the regret of ZI equilibria with
respect to Q-learning is always strictly positive, even as the number
of ZI strategies equilibrated over becomes large. Indeed, the smallest
regret of a ZI equilibrium with respect to Q-learning we find is 3.0,
and the smallest mean regret for a subset size is 4.4, corresponding
to strategy subsets of size 8. This suggests that there is a persistent
benefit to adaptive policies, such as those we derive by RL in this
study, relative to mixtures of ZI policies, even as those mixtures are
equilibrated over many parameterizations.
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Figure 2: Paired difference in regret (w.r.t. Q-learning or ZI)
for each equilibrium, in ZI policy subsets of various sizes.
Regret w.r.t. ZI is subtracted from regret w.r.t. the Q-learning
response. Each row comprises equilibria over ZI policy sub-
sets of the given size. Solid lines present row means.

Fig. 2 presents for each equilibrium the difference in regret be-
tween the response derived by Q-learning and the pure-strategy
best response from the base strategy set. Each row corresponds
to equilibria over subsets of ZI strategies of a certain size. Each
equilibrium is plotted with a multiplicity equal to the number of
strategy subsets in which it occurs.

We note that in almost all cases, our Q-learning procedure achieves
more lift in payoff over the baseline than the ZI best response. In
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Figure 3: Empirical payoff per deviation from a base strategy
set equilibrium. Each column is a deviating strategy: blue
dot is sample mean payoff, crosses are 95% confidence inter-
val. ZI_eq is the equilibrium strategy (380_420_.5). QL is the
learned response. Dotted line is equilibrium payoff.

a few cases, it does not, likely due to insufficient iterations for Q-
learning to converge, or the instability of Q-learning in the surface
MDP of a POMDP. The mean increase in payoff improvement of Q-
learning over ZI ranges from 3.0 to 4.4, over the various subset sizes,
as shown by the solid line. These differences are statistically signifi-
cant, based on paired t-tests, for subset sizes 1, 2, 5, and 8 (p = 0.001,
10−8, 10−11, and 10−13, respectively). It is interesting that the lift
of adaptive policies from Q-learning, relative to a non-adaptive
ZI best response, appears roughly constant, even as the number
of ZI strategies used for equilibration increases. This suggests a
lingering benefit from conditioning actions on state, even against
non-adaptive agents with carefully tuned parameters, providing a
payoff gain of approximately 3.5.

6.1.1 Deviation Payoffs of an Example Equilibrium. Let us ex-
amine the range of payoffs for an agent unilaterally deviating from
an equilibrium over ZI strategies, to pure strategies in the base
strategy set. We take as our example the pure-strategy Nash equi-
librium over the base strategy set, where all background traders
play 380_420_.5.

In Fig. 3, we present the empirical distribution of payoffs for
each unilateral deviation from this equilibrium profile. The crosses
in each column indicate a 95% confidence interval for the mean,
derived via bootstrap sampling. Because we automatically collect
more samples for pure-strategy deviations that have higher upper
confidence bounds, as in the UCB-1 method of sampling [1], some
confidence intervals are narrower than others.

Note how all ZI strategies except 380_420_.5 have sample mean
payoffs lower than the equilibrium payoff, as expected. The equilib-
rium action of 380_420_.5 has a mean payoff on resampling almost
exactly equal to the independent estimate for the equilibrium pay-
off, shown as ZI_eq. This indicates we have likely collected enough
samples per policy that sampling error is under control.

Finally, observe that the expected payoff of the adaptive pol-
icy derived from Q-learning (QL) is significantly higher than the
equilibrium payoff or any pure-strategy deviation, at 468.1 over an
equilibrium payoff of 461.8. This gain from deviating to an adaptive
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policy, however, is smaller than the loss that would occur by devi-
ating to several inferior ZI pure strategies. Thus, in this example
we can see that the payoff gain from conditioning on state as this
Q-learner does is moderate, relative to the benefit of choosing a
well-calibrated ZI strategy instead of an arbitrary one.

6.1.2 Q-Learning Performance against ZI Strategy Sets. For all
20 supposed equilibria over ZI strategies, including the 10 pure
strategies and 10 mixed strategies, Q-learning successfully discov-
ered a beneficial deviation over the larger space of adaptive policies.
In order to confirm that a learned policy had a payoff significantly
greater than the equilibrium baseline, we played back the apparent
best policy from a training run for 106 total playouts. We then took
a bootstrap 95% confidence interval about the sample mean payoff,
and in each case the lower bound thus obtained was greater than
the mean payoff of the baseline profile.

6.1.3 Summary of Effects of ZI Strategy Set Size. In this series of
experiments, our automated RL process consistently yielded a ben-
eficial deviation, even against ZI strategies that were equilibrated
over the full base strategy set. However, the regret of equilibrated ZI
policies grew lower, as the number of strategies used for equilibra-
tion was increased. The lift of an adaptive policy from Q-learning,
relative to a ZI best response, appears to be almost constant on aver-
age, even as the strategic stability of the baseline ZI mixed strategy
is increased. This benefit from policy adaptation is positive, but
reasonably small, relative to the differences in payoffs between the
deviating ZI policies we tested.

6.2 Intuition Behind Successful Policy
Adaptation

In our model CDA environment, there are several useful features
of market state that are unknown to the agent when it arrives
at the market: (a) the pure strategy drawn by each other agent
from a publicly known symmetric mixed strategy; (b) the private
value vector of each other agent; (c) the inventory of each other
agent; and (d) any orders beyond the best bid and ask in the limit-
order book. There are other unobserved aspects of state, such as
previous fundamental values and agent arrival times, but because
the fundamental value and arrival processes are memoryless, these
state features are of no value in choosing an action.

We say a policy in the CDA conditions on state, if the probability
distribution over surplus demanded differs, based on the history of
the agent’s observations and actions. If a policy does not condition
on state, the agent has the same probability distribution over surplus
demanded, regardless of the observed market state.

An agent in our model can benefit through observations, only
if its observations help it to predict the orders of the other agents,
which are the only environment events that affect its payoff besides
the final fundamental value. The agent can be intuitively viewed
as attempting to predict the likelihood its order will transact, as a
function of the surplus demanded. Some strategy proposals in the
literature, such as GD [8], attempt to maximize expected revenue
based on such a probabilistic prediction. Similarly, we expected
that in our analysis of learned policies, we would find the agent
to condition its actions on state in a way that appears to demand
more surplus in favorable conditions.

6.3 Isolating the Effect of ZI Greediness
Recall that the η parameter of our version of ZI tunes the agent’s
tendency to immediately trade at a quote that offers a correspond-
ing fraction of its desired surplus, in lieu of placing a limit order
demanding the full surplus. Thus, η can be viewed as a “greediness”
parameter, where η ≪ 1 means the agent greedily accepts quotes
with surplus far below its desired amount, while η = 1 means the
agent always demands the full amount.

Setting η < 1 thus provides a rudimentary way for agents to
condition their behavior on market state. We performed a follow-up
experiment to remove the effect of η < 1 from our results. In this
experiment, all background traders other than the learning agent
play variants of the 10 ZI strategies listed in Section 5.1, modified
such that η = 1. This led to one duplicate, yielding a new set of 9 ZI
strategies. The learning agent retained the original 10 ZI strategies
as its available actions.

We used EGTA as before to find a Nash equilibrium over the
strategies of the non-learning agents. In equilibrium, all ZI agents
used the strategy 190_210_1. Note that the mean surplus demanded
of this equilibrium is only 200, much lower than the 390 or 400 of
the equilibria with η = 0.5 available.4 This decrease is likely due to
how η = 0.5 allows agents to place high-demand limit orders, yet
also take opportunities to trade greedily; with η = 1, agents must
demand lower surplus at equilibrium.

Over three independent runs of Q-learning, learners achieved a
mean gain in expected payoff of 10.9, relative to the equilibrium
payoff of background traders. This is a much higher deviation gain
than learners averaged against the flexible-η equilibrium, which
was just 4.7. This larger gain by the adaptive agent suggests that
ZI with η = 0.5 is able to realize much of the benefit of adaptive
behavior in the CDA, in spite of the simplicity of this conditionality.
If η is fixed at 1, however, the room for gains from adaptivity are
significantly greater.

6.4 Analysis of Learned Policies
We take as a running example the pure ZI strategy equilibrium
over the base strategy set, where all agents play 380_420_.5. This
example is chosen because it is an equilibrium over all the base
strategies, so a Q-learner deviating successfully from it is making
an improvement over any of its component pure strategies. Thus, it
is an example of the benefit of policy adaptation over a fixed policy.

To study successful adaptive deviations from 380_420_.5, we
performed 10 runs of Q-learning, selecting the best policy from each
run.We analyzed the 10 resulting policies together, to findwhat they
have in common to explain how they improve on the base strategies
they are composed of. In Fig. 4, we present the distribution of
mean surplus demanded by the adaptive agent, over the 10 policies
derived by Q-learning against 380_420_.5. The Q-learner tends to
demand slightly less surplus than the baseline ZI agents: 379 on
average, compared to 400 for the ZI, and it demands strictly less
surplus than the ZI in 56% of its arrivals. It demands strictly more
mean surplus than the others, perhaps opportunistically, in 25% of
arrivals, and the same amount 19% of the time.

4The mean surplus demanded of a ZI strategy is (d + d )/2.

Session 15: Auctions and Mechanism Design 3 AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

620



100
200

300
400

500
600

700
800

900
1000

Surplus demanded

0.00

0.05

0.10

0.15

0.20

0.25

F
re

q
u
e
n
cy

Figure 4: Histogram of the mean surplus demanded by 10
Q-learned policies, deviating from 380_420_.5. Each state-
action pair is weighted by the state’s occurrence frequency.
The mean surplus demanded by the equilibrium baseline
policy is shown by the dotted red line.

6.4.1 Machine Learning for Policy Analysis. It has been noted
that tabular policies are difficult to understand intuitively [18]. To
draw useful insights into the adaptive policies for CDA trading
from Q-learning, we use machine learning techniques that can help
to summarize complicated policies.

Here we analyze the set of policies from Q-learning against a
baseline strategy of 380_420_.5, as above, but without the feature
D, which did not appear useful in a greedy feature-elimination
study (not shown). We use regression and classification methods to
summarize or draw insight from the set of policies learned in this
setting, over multiple independent runs of Q-learning.

Our first effort was to predict the mean surplus demanded by the
learner’s action in a given market state. Market state is determined
by the four features P ,V ,O , and A. Recall that A, the action type in
{buy, sell}, is a binary feature, while the other features are parti-
tioned into a low, medium, or high bucket. We encode the binary
feature as 1 for buy, 0 for sell. We encode ternary features as 0 for
low, 1 for medium, 2 for high.

Least squares regression yields a fairly poor fit, with an MAE of
159.7. (We weight each state-action pair according to its state’s oc-
currence frequency, for both learning and evaluation.) The learned
coefficients are P = 74, O = 43, A = 29, V = 4. This agrees with
the results of our greedy feature elimination study (not shown),
that P is by far the most critical feature for learning, and O is also
important. However, it suggests that V , the private value of the
next unit traded, has little linear effect on surplus demanded.

Due to the poor linear fit, we tested decision tree regression,
splitting to reduce MSE, with a maximum depth of 3. We found
normalized feature importances of P = 0.58, O = 0.34, A = 0.01,
V = 0.07. Again, P is the most important feature, with O second,
though now V is third. These results further support the idea that
P is the most useful feature for an adaptive agent in the CDA.

Beyond relative feature importances, our results give insight
into the directional effect of each feature on surplus demanded.
It appears, from the high positive coefficient in linear regression,

that a high P indicates that the agent can earn a large surplus by
trading immediately, so it may be an opportune time to demand
more surplus than usual.

Similar to our decision tree regression study, we performed de-
cision tree classification, classifying the mean surplus demanded
by each state’s action as less than, equal to, or greater than the
mean surplus demand of the equilibrium ZI (in this case, 400). Clas-
sifier splits are chosen based on the Gini coefficient. We achieved a
weighted zero-one loss of 0.34 with a decision tree of depth 3. The
relative feature importances in this tree were almost identical to
those of the decision tree regressor.

A simple, depth-2 decision tree classifier predicts the adaptive
agent will demand less surplus than the baseline, if neither P norO
is high. Only with high P (immediate surplus available) or high O
(recent transaction prices) will the agent demand higher surplus
than the baseline. Deeper decision trees yield higher accuracy, but
their rule sets do not appear as interpretable in this case.

6.4.2 Summary of Learned Policy Analysis. We discussed the
intuition behind what market information is most useful to trading
agents in our market model, as well as how agents trade off between
the likelihood an order will transact and the surplus demanded.
We showed that against a running example ZI equilibrium profile,
successful adaptive agents typically demand slightly less surplus
than the baseline agents, but occasionally demand much more.
Adaptive agents benefit most from conditioning on the features
P (immediate surplus available), O (signal of recent transaction
prices), and V (private value of next unit traded). Adaptive agents
tend to demand more surplus when P or O is high.

7 CONCLUSION
We investigated the extent to which adaptive policies yield greater
payoffs than non-adaptive, ZI policies at equilibrium in the CDA.
We thus addressed whether a calibrated ZI strategy profile is a
reasonable model for strategic behavior in the CDA.

Our findings suggest traders can benefit from conditioning ac-
tions on state in the CDA, even against an equilibrated ZI profile.
But the size of the regret of an equilibrated ZI profile, with respect to
an adaptive deviating strategy, appears to be small, especially when
ZI is equilibrated over many parameterizations. The extension of
ZI to support immediate trading when a fraction η of demanded
surplus is available appears to be pivotal for this finding, as the
gains to adaptivity are much greater when strategies are restricted
to η = 1. With this limited amount of conditionality, our results
support the use of equilibrated ZI in CDA studies.

Further, we provided insight into how a strategy that deviates
from ZI can condition on market state to achieve greater surplus. It
seems the most useful state features for adaptive CDA traders are
the immediate surplus available, the recent history of transaction
prices, and the private value of the next unit traded. These signals
can help the agent to determine how to trade off the likelihood
of an order transacting against the amount of surplus requested.
In particular, adaptive agents appear to benefit from demanding
greater surplus when the current bid or ask is favorable, otherwise
demanding less surplus to increase the likelihood of trading at all.
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