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ABSTRACT
In this paper, we design reinforcement learning based (RL-
based) strategies to promote convention emergence in multia-
gent systems (MASs) with large convention space. We apply
our approaches to a language coordination problem in which
agents need to coordinate on a dominant lexicon for efficient
communication. By modeling each lexicon which maps each
concept to a single word as a Markov strategy representa-
tion, the original single-state convention learning problem
can be transformed into a multi-state multiagent coordina-
tion problem. The dynamics of lexicon evolutions during an
interaction episode can be modeled as a Markov game, which
allows agents to improve the action values of each concept
separately and incrementally. Specifically we propose two
learning strategies, multiple-Q and multiple-R, and also pro-
pose incorporating teacher-student mechanism on top of the
learning strategies to accelerate lexicon convergence speed.
Extensive experiments verify that our approaches outper-
form the state-of-the-art approaches in terms of convergence
efficiency, convention quality and scalability.
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1 INTRODUCTION
Conventions are effective mechanisms to facilitate coordina-
tions among agents. Since top-down approaches require global
knowledge to synthesize a convention beforehand, bottom-
up approaches, which investigate how a convention emerges
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through repeated local interactions via learning among agents,
are more suitable for distributed MASs [14, 18, 20, 24].

Until now, there exist two major classes of approaches
for investigating the convention emergence problem: the
spreading-based approach [4, 6, 10, 15, 16] and the rein-
forcement learning based (RL-based) approach [1, 12, 19, 22–
25]. Traditional spreading-based approaches [4, 15] usually
combine two decision mechanisms, local optimization and im-
itation, to establish conventions. However, these approaches
can only deal with relatively simple convention spaces with
two convention alternatives. With the increase of the con-
vention space, there are a number of challenging issues to
be addressed. First, there usually exist multiple convention
seeds in a complex convention space. These spreading-based
approaches fail to converge to conventions in this type of
scenarios. Second, the existing convention seeds may not be
good enough. Not all the convention seeds are equally pre-
ferred, because some of them can promote coordination more
effectively. Later, some techniques [6, 10, 16] are proposed to
study the language coordination problem with large conven-
tion space to overcome the above limitations of traditional
spreading-based approaches. However, these approaches use
simple transfer strategy to update lexicons based on the in-
formation of the current interaction episode, which causes
lexicon qualities to oscillate frequently. They cannot converge
efficiently into a dominant convention within a reasonable
amount of time for large convention space.

Reinforcement learning based approaches enable conven-
tion emergence through reinforcement social learning [19].
Sen and Airiau [1] characterize the emergence of conventions
through distributed adaption by agents from their online
experiences. However, they only focus on relatively small-size
games with two convention alternatives. Most of the existing
approaches result in very slow convention emergence or even
fail to converge for large convention space. Recently, some
hierarchical learning strategies [12, 22–25] are proposed to
improve the convention emergence rate for relatively large
convention space problem of up to 6 conventions. However,
the current RL-basd approaches learn conventions by explor-
ing the convention space directly and usually fail when the
convention space becomes significantly large.
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In this paper we explore the question of how RL-based
strategies can be used for solving convention emergence prob-
lems for large convention spaces. Similar to previous works
[6, 10, 16], we focus on investigating the challenging language
convention emergence problem, whose convention space is
significantly huge and exponential to the number of words.
In MASs, communication is a key factor for agents to success-
fully interact with each other. When agents rely on explicit
communication, a shared language (or lexicon) is required.
Nevertheless, in open, heterogeneous MASs, such a lexicon
does not exist since no central authority exists. Therefore, an
approach that allows agents to reach a consistent language
convention through local interactions is quite necessary.

In this work, we represent each lexicon as a Markov strat-
egy to transform the original single-state convention learning
problem into a multi-state multiagent coordination problem.
Under the above formalization, we propose two RL-based
strategies: multiple-Q and multiple-R, which learn to improve
the action values of each concept separately and incremen-
tally during agent interactions. We improve distributed value
function [17] by incorporating the observation mechanism
[8] and replacing the original maximum estimator with a
weighted target value. Multiple-Q improves the estimation of
Q-values by extending the idea of double estimator to the so-
cial learning framework. In contrast, multiple-R improves the
estimation of the immediate reward under each state-action
pair directly to improve the Q-values estimations. Simula-
tion shows both multiple-Q and multiple-R outperform the
state-of-the-art approaches. We also propose incorporating
a teacher-student mechanism [3] on top of the above two
learning strategies, which allows student agents to ask for ad-
vice from teacher agents. We make a series of improvements
upon the original teacher-student framework to accelerate
convention emergence speed in large convention spaces. Ex-
perimental results show that it can facilitate the acceleration
of convention emergence speed for both strategies.

2 RELATED WORK
Conventions play an important role in regulating agents’ be-
haviours to ensure coordination among agents and functioning
of agent societies. Spreading-based approaches are proved to
establish conventions in agent populations [4, 6, 10, 15, 16].
Typically, a spreading mechanism encompasses some spread-
ing (information transfer) strategy along with some selection
strategy for incoming transfers. The common information
transfer strategy [4, 15] is copy-transfer: each agent com-
pletely replicates an agent’s convention seed to its neighbors.
However, these traditional spreading-based models are only
applicable to two possible convention alternatives. With the
increasing of the action space, they usually fail to converge.

To address this issue, some works [6, 10, 16] extend the
traditional spreading-based mechanisms to achieve a high-
quality convention when multiple alternatives exist. Typically
there will be some challenging problems in large and open
MASs. Firstly, there is no guarantee that the good convention
seeds are known by any of the agents. Secondly, if agents’

communication becomes unreliable, convention emergence
may fail. Salazar et al. [16] (SRA) first extend the existing
spreading-based mechanism by incorporating evolutionary
algorithm principles to solve aforementioned problems. How-
ever, they require extensive additional architecture (e.g., self
protection) to be built into agents and not always converge
to a high-quality convention. Franks et al. [6] (FGJ) propose
inserting a number of influencer agents (IAs) with specific
conventions, guides agents to emerge high quality conven-
tion efficiently. Unlike the above approaches, Hasan et al.
[10] (TA) extend SRA [16] by leveraging the network reor-
ganization mechanism to accelerate convention emergence.
However, all these approaches use simple transfer strategy to
update convention alternatives based on the information of
the current interaction episode instead of all the information
of the course of interactions, and thus they cannot maximize
agents’ accumulated rewards during interaction. This may
also cause the qualities of the convention seeds to fluctuate.

Another class of techniques for convention emergence is
reinforcement learning [1, 12, 19, 22–25]. Sen and Airiau
[19] propose the social learning model to investigate the con-
vention emergence problem over random networks. Later a
number of papers [1, 18] extend this work by leveraging more
realistic networks to evaluate the influence of agent systems
on convention emergence. However, all these works focus
on relatively small-size games, and do not address the issue
of efficient convention emergence in large convention space
problems. Recently, Yang et al. [22] propose a hierarchically
heuristic learning strategy for relatively large convention
space problem of up to 6 conventions. However, they ex-
plore the convention space directly and thus fail to emerge
convention when the space becomes significantly large.

Some other distributed learning methods to coordinate
the behaviour between agents are also remotely connected
to our work. One such solution technique is based on the
framework of coordination graphs (CGs) [7, 13]. Under this
framework, a number of distributed optimization algorithms
(e.g., max-sum) are proposed for learning the behavior of a
group of agents for the single-state case in a collaborative
multiagent setting. They use the locally optimized action-
value function of the individual agents to approximate the
maximal global action value. Kok et al. [13] propose Sparse
Cooperative Q-learning to extend the single-state case to
sequential decision making tasks. One may view the conven-
tion emergence problem under a single state as a distributed
optimization problem and similar techniques can be used
to generate conventions. However, the above techniques re-
quire thoughtful design of coordination and communication
among all agents. This implicitly requires that all agents
are inherently cooperative and social-oriented. In contrast,
in convention emergence problems, agents are purely selfish
and may have different preference towards different conven-
tions, thus making these approaches unfeasible in convention
emergence problems in open and heterogeneous MASs.
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Table 1: A coordination game under concept “belt”

Agent 2’s actions
𝑟𝑖𝑏𝑏𝑜𝑛 𝑠𝑡𝑟𝑖𝑝𝑒

Agent 1’s actions 𝑟𝑖𝑏𝑏𝑜𝑛 +𝑟, +𝑟 −𝑟,−𝑟
𝑠𝑡𝑟𝑖𝑝𝑒 −𝑟,−𝑟 +𝑟, +𝑟

3 LANGUAGE COORDINATION
GAME

First we define the components to illustrate the language
coordination game: (a) the language coordination problem,
(b) the interaction model that represents the topology of an
MAS, and (c) how a language coordination problem among
agents can be simulated as convention emergence problem.

3.1 Language coordination problem
Following the setting in [9], we consider a situation where
agents self-organize their communication system from scratch.
Initially, each agent randomly generates its lexicon represent-
ing a mapping from concepts (C) to words (W). Then agents
reorganize their own lexicons via learning from repeated inter-
action. During each round of interaction, each pair of agents
communicate over one concept. The sending agent will get a
positive reward if both agents share the same word under the
current concept and a negative reward otherwise. We model
the single-round interaction between any pair of agents as
a two-player 𝑛-action coordination game. The action space
𝑛 consists of all the words that can be chosen under each
concept. One simple 2-action coordination game is shown in
Table 1, in which under concept “belt” each agent can select
a word from ribbon and stripe to communicate. There exist
two desirable outcomes (ribbon, ribbon) and (stripe,stripe)
which are both Nash equilibria.

Moreover, communications between agents can be cor-
rupted due to different reasons such as environmental dis-
turb, unreliable transmission channel and so on. Therefore,
we assume that rewards are stochastic following certain proba-
bility distribution. On the other hand, some concepts may be
mapped to more than one word, which leads to synonym. The
quality of a lexicon is measured by its specificity. Formally,
assuming 𝑊𝑐 is the set of words associated with concept
𝑐, if |𝑊𝑐| > 0 the concept specificity is calculated as fol-
lows: 𝑆𝑐 = 1/|𝑊𝑐|. If no word is associated with concept 𝑐,
𝑆𝑐 = 0. The lexicon specificity S is defined as the average of
all concepts’ specificities:

𝑆 =
∑︁
𝑐∈𝐶

𝑆𝑐/|𝐶|, |𝐶| > 0 (1)

Thus, a highest-quality lexicon is the one with a one-to-
one mapping. Assuming all agents are rational, each agent
will update its lexicon towards a high-quality and consistent
lexicon. The convention space is defined as the space of all
lexicons, which is exponential to the number of words. We
assume that the number of concepts and words are equal,
and the convention space is |𝑊 ||𝐶|. We can see that the space

becomes significantly large even for a moderate number of
words and concepts.

3.2 Interaction model
We consider a population 𝑁 of agents where each agent is
connected following a static network topology. In each round,
each agent selects a neighbor randomly to interact with. The
interaction model of the MAS is represented by the undirected
graph, 𝐺 = (𝑉, 𝐸), where 𝐺 means the network structure, 𝑉
is the set of nodes, and 𝐸 is the set of edges between nodes.
If (𝑣𝑖, 𝑣𝑗) ∈ 𝐸, then 𝑣𝑖, 𝑣𝑗 are neighbors. 𝑁(𝑖) is the set of
the neighbors of agent 𝑖, i.e., 𝑁(𝑖) = {𝑣𝑗 |(𝑣𝑖, 𝑣𝑗) ∈ 𝐸}. Three
representative network structures are considered: random
network, small-world network [21], and scale-free network [2].

3.3 Convention emergence problem
Our goal is to engineer the emergence of the high-quality
lexicon in an open and large MAS. We can model this lan-
guage coordination problem among agents as a convention
emergence problem. A desirable convention corresponds to
all agents adopting the same high-quality lexicon with a one-
to-one mapping. Similar to TA [10], each interaction episode
for each agent consists of a sequence of interactions. We are
interested in investigating how a population of agents can
learn to coordinate on a consistent convention through re-
peated interactions. The original convention space is |𝑊 ||𝐶|,
which is too large to learn directly. Thus, we decouple the
lexicon convention into concept-word mappings. Then each
lexicon which maps each concept to a single word can be
defined as a Markov strategy. By transforming the original
single-state convention learning problem into a muti-state
multiagent coordination problem, we propose modeling the
dynamics of lexicon evolutions during each episode of inter-
action as a two-player Markov Game, which is defined by a
tuple ⟨𝑆, {𝐴𝑖}𝑖∈𝑁 , {𝑅𝑖}𝑖∈𝑁 , 𝑇 ⟩, where
∙ 𝑆 is the set of states and represents the set of concepts.
∙ 𝑁 is the total amount of agents in the network.
∙ {𝐴𝑖}𝑖∈𝑁 is the collection of action sets, 𝐴1, 𝐴2, . . . , 𝐴𝑛,

one for each agent in the network. Each action set 𝐴𝑖

contains all the words.
∙ {𝑅𝑖}𝑖∈𝑁 is the set of payoff functions, 𝑅𝑖 : 𝑆 × 𝐴𝑖 ×

𝐴𝑗 → ℛ is the payoff function for agent 𝑖, where agents
𝑖 and 𝑗 are the interacting agents at the current time-
step of interaction. It is positive if two agents select
the same action and negative otherwise. 𝑅𝑖 satisfies
the Gaussian distribution.
∙ 𝑇 is the state transition function: 𝑆 × 𝐴𝑖 × 𝐴𝑗 →

𝑃 𝑟𝑜𝑏(𝑆), where agents 𝑖 and 𝑗 are the interacting
agents. The probability distribution over next states for
each state and joint action is represented as 𝑃 (𝑠′|𝑠, (𝑎𝑖, 𝑎𝑗)).
The state transition function models the concepts usage
frequencies.

Note that this Markov game is slightly different from the
normal definition of a Markov game, in that the set of agents
are not static since agent 𝑖 randomly chooses a neighbor to
interact during each round of interaction. And our approach

 Session 20: Agent-based Simulation 1 AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

797



does not put any limitation on the concept usage frequency.
Any reasonable concept frequency distribution specific to the
lexicon can be used.

4 CONVENTION EMERGENCE
FRAMEWORK

Algorithm 1 describes the overall interaction framework of
agents playing language coordination games. During each
round of interaction, each agent first randomly selects a
neighbor to interact with (Line 4); second, each agent chooses
a word for the current concept following its learning strategy
and then communicates with the neighbor (Line 5); after that,
it receives the corresponding reward to update strategy (Line
6); last, another concept is selected following the concept
usage frequency and the next-round communication starts
(Line 7). Each agent continues the interaction with others
for 𝜆 rounds during each episode of interactions.

Since we model the language communication dynamics
among each pair of agents during each episode of interaction
as a Markov Game, it is natural to leverage reinforcement
learning based (RL-based) approaches to design agents’ strate-
gies to promote convention emergence. There are mainly two
benefits of RL-based approaches. First, RL-based learning
strategies enable agents to compute the lexicon quality in
a more accurate way. Each agent learns to maximize the
accumulated quality during the course of interactions, which
can make better use of the historical experiences. In con-
trast, the quality computation mechanism of spreading-based
approaches are based on the information of the current inter-
action episode, which may cause the quality of each lexicon
to fluctuate frequently.

Second, the other benefit of RL-based approaches is to
allow updating lexicons in a more fine-grained way. RL-based
approaches allow agents to calculate the quality for each
concept-word mapping and improve concept-word mapping
separately and incrementally until convention emerges. Each
agent can update its value function during each round of inter-
action. In contrast, spreading-based approaches use transfer
strategy to update lexicons. Each agent chooses an optimal
lexicon from all its neighbors’ lexicons to simply replicate
some part of this lexicon with its own. This may cause that
the optimal lexicon low-quality mappings replace its high-
quality mappings to reduce its lexicon quality to slow down
the convergence rate. Based on the above analysis, we pro-
pose two RL-based strategies: multiple-Q and multiple-R,
which will be described in details next.

4.1 Multiple-Q learning strategy
4.1.1 Value function update. Q-learning may perform poorly

in stochastic environments due to overestimation. Double Q-
learning replaces the maximum estimator of Q-learning with
double estimator to avoid the positive bias [5, 11]. Double
estimator splits the sample set into two independent sets.
Agents use one estimator to determine the action with the
maximum value and use the other one to provide the target
value estimation. We extend the distributed value function

Algorithm 1 The framework of convention emergence using
RL-based approaches

1: for each episode of interaction do
2: for each agent 𝑖 ∈ 𝑁 do
3: while state transition times < 𝜆 do
4: neighborSelection();
5: actionSelection();
6: UpdatingStrategy();
7: stateTransfer();
8: end while
9: end for

10: end for

[17] using the idea of double estimator to the social learning
framework. Specifically, we propose a new weighted multi-
ple estimator to improve each agent’s Q-value estimation by
utilizing the estimators of agents in the neighborhood.

First, agent 𝑖 selects the action 𝑎* with the maximum
payoff under next state 𝑠′ from its own Q-value function:

𝑎* = 𝑎𝑟𝑔𝑚𝑎𝑥𝑎𝑄𝑖(𝑠′, 𝑎) (2)

Second, each agent observes its neighbors’ Q-values of the
state-action pair (𝑠′, 𝑎*) using the observation mechanism [8],
and computes a weighted target value to replace the original
maximum estimator:

𝑉 (𝑠′) =
∑︁

𝑗∈{𝑁(𝑖)∪{𝑖}}

𝑓(𝑖, 𝑗)𝑄𝑗(𝑠′, 𝑎*) (3)

where 𝑁(𝑖) is the set of neighbors of agent 𝑖. The weight
𝑓(𝑖, 𝑗) reflects the relative importance of agent 𝑗 in agent 𝑖′𝑠
neighborhood. Note that we assume the order of message
(Q-values) passing is synchronous, i.e., each agent’s V-values
are updated after receiving the Q-values from all neighbors.
In case the Q-values of certain neighbors cannot be received
due to communication errors, the previous Q-value received
from that neighbor can be used instead. One way of defining
𝑓(𝑖, 𝑗) is using each agent’s connection degree as follows:

𝑓(𝑖, 𝑗) = 𝑑𝑒𝑔𝑟𝑒𝑒(𝑗)/𝑡𝑜𝑡𝑎𝑙𝐷𝑒𝑔𝑟𝑒𝑒 (4)

where totalDegree is the sum of the degree of the agent 𝑖
itself and its neighbors. Since the connection degree of each
agent determines its interaction frequency with other agents
and thus reflects its influence degree on other agents, we use
it as the criterion to model the importance of each agent on
convention emergence.

Lastly, agent 𝑖 updates its Q-values of state-action pair
(𝑠, 𝑎) as follows:

𝑄𝑖(𝑠, 𝑎)← 𝑄𝑖(𝑠, 𝑎) + 𝛼(𝑟 + 𝛾𝑉 (𝑠′)−𝑄𝑖(𝑠, 𝑎)) (5)

where 𝛼 is the learning rate, 𝑟 is the immediate reward under
the current state-action pair, and 𝛾 is the discount factor.
𝑉 (𝑠′) is the weighted average of Q-values under state-action
pair (𝑠′, 𝑎*) of agent 𝑖 and its neighbors.

4.1.2 Action selection. During the communication period,
each agent 𝑖 records the states and the corresponding actions
that have been selected. Every time agent 𝑖 selects an action,
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it excludes the actions recorded in the set 𝑅𝐴𝑖 and then uses
the 𝜀− 𝑔𝑟𝑒𝑒𝑑𝑦 strategy to choose the action with the highest
value under the current state:

𝑎𝑖 ←
{︂

𝑎𝑟𝑔𝑚𝑎𝑥𝑎̸∈𝑅𝐴𝑖 𝑄𝑖(𝑠, 𝑎) with probability 1− 𝜀

a random action ∈ {𝐴𝑖 ∖𝑅𝐴𝑖} with probability 𝜀
(6)

Note that if there exist multiple actions with the highest
value, then one of them is selected randomly. Since an agent
only selects from those words that have not been selected
by other concepts, this avoids the situation that a word may
correspond to multiple concepts. Therefore it significantly
reduces synonym to improve the quality of dominant lexicons.

4.2 Multiple-R learning strategy
The above multiple-Q learning strategy focuses on improv-
ing the estimation of Q-values by leveraging the Q-value
information from neighbors. However, the root cause of over-
estimating Q-values comes from the inaccurate estimation
of immediate rewards, which propagates back to the corre-
sponding Q-values and are accumulated continuously during
Q-value updates. To alleviate this problem, here we propose
an alternative way of updating Q-functions by improving
the estimation accuracy of each immediate reward directly.
We propose that each agent first computes an average of its
own rewards and then a weighted average of its local average
rewards and those of its neighbors during each update.

First, each time agent 𝑖 receives its reward 𝑟(𝑠, 𝑎), it com-
putes its average reward during the course of interaction:

𝑅𝑖(𝑠, 𝑎) = 𝑅𝑖(𝑠, 𝑎) + 1/𝑛𝑖(𝑠, 𝑎)(𝑟 −𝑅𝑖(𝑠, 𝑎)) (7)

where 𝑛𝑖(𝑠, 𝑎) is the number of times visiting (𝑠, 𝑎).
After that, agent 𝑖 collects all the average rewards un-

der the same state-action pair from its neighborhood us-
ing the observation mechanism [8]. Formally, suppose that
agents can observe the information of their neighbors’ average
rewards: {𝑅𝑖(𝑠, 𝑎), 𝑅𝑗1 (𝑠, 𝑎), 𝑅𝑗2 (𝑠, 𝑎), . . . , 𝑅𝑗𝑛 (𝑠, 𝑎)}, where
𝑅𝑖(𝑠, 𝑎) is the average payoff of agent 𝑖 and the rest are the
average payoffs of its neighbors with the same state-action
pair. We get a weighted average of rewards of agent 𝑖 and its
neighbors:

𝑟 =
∑︁

𝑗∈{𝑁(𝑖)∪{𝑖}}

𝑓(𝑖, 𝑗)𝑅𝑗(𝑠, 𝑎) (8)

where 𝑁(𝑖) is the set of agent 𝑖′𝑠 neighbors and 𝑓(𝑖, 𝑗) is the
weight that agent 𝑗 influences agent 𝑖.

Lastly, agent 𝑖 updates its Q-table as follows:

𝑄𝑖(𝑠, 𝑎)← 𝑄𝑖(𝑠, 𝑎) + 𝛼(𝑟 −𝑄𝑖(𝑠, 𝑎)) (9)

where 𝛼 is the learning rate and 𝑟 is the weighted average.
Multiple-R uses 𝜀 − 𝑔𝑟𝑒𝑒𝑑𝑦 strategy for action selection.

Each time with probability 1 − 𝜀, it selects an action with
maximum Q-value under current state from actions that have
not been selected under other states, and a tie is broken ran-
domly if multiple optimal actions exist. With the probability
𝜀 , one action is selected randomly.

4.3 Teacher-student mechanism
The teacher-student paradigm is very flexible because the
teacher and student roles may be played by both humans
and autonomous agents. It can be used concomitantly with
other approaches to accelerate learning. We introduce an
additional teacher-student mechanism on top of the previ-
ously two learning strategies to further accelerate the lexicon
convergence speed among agents. We integrate the advising
from teachers in the action selection to reduce the interaction
times, in which an experienced teacher agent can advise a stu-
dent to guide her action exploration. In this procedure each
agent 𝑖 is equipped with a tuple ⟨𝑃 𝑖

𝑎𝑠𝑘, 𝑃 𝑖
𝑔𝑖𝑣𝑒, 𝑏𝑖

𝑎𝑠𝑘, 𝑏𝑖
𝑔𝑖𝑣𝑒, 𝐺𝑖⟩.

∙ 𝑃 𝑖
𝑎𝑠𝑘 is the probability of agent 𝑖 asking the neighbors

for action advice.
∙ 𝑃 𝑖

𝑔𝑖𝑣𝑒 represents the probability of agent 𝑖 giving advice
when requested. It encodes the confidence of agent 𝑖
in its own policy.
∙ 𝑏𝑖

𝑎𝑠𝑘 is the budget constrain of asking for advice for
agent 𝑖.
∙ 𝑏𝑖

𝑔𝑖𝑣𝑒 is the budget constrain of giving opinions for
agent 𝑖. This models the intrinsic willingness of agent
𝑖 giving advice.
∙ 𝐺𝑖 is the set of all reachable agents for agent 𝑖. It is

equal to its neighborhood.
The two probabilities 𝑃 𝑖

𝑎𝑠𝑘 and 𝑃 𝑖
𝑔𝑖𝑣𝑒 change over time. Intu-

itively 𝑃 𝑖
𝑎𝑠𝑘 should be decreased as agents’ behaviors converge.

In contrast 𝑃 𝑖
𝑔𝑖𝑣𝑒 increases over time since the confidence of

teacher agents increases as more experience is gained.
The probability 𝑃 𝑖

𝑎𝑠𝑘 only specifies the probability of an
agent asking for advices. Another related question is which
neighbor a student agent should resort to ask for advice.
One straightforward way of defining the probability of an
agent asking for advice from a neighbor agent is based on
their relative closeness, which can be defined as their shortest
distance. Formally agent 𝑖 asks for advice from neighbor 𝑗
according to the following probability distribution:

𝑃 𝑗
𝑖 =

1
𝑑

𝑗
𝑖∑︀𝑁𝑖

𝑗=1
1

𝑑
𝑗
𝑖

(10)

where 𝑃 𝑗
𝑖 represents the probability of agent 𝑖 choosing neigh-

bor 𝑗, 𝑁𝑖 is the neighborhood size and 𝑑𝑗
𝑖 is the closeness

between agent 𝑖 and 𝑗. The neighborhood size is set as 1
by default, which means agents interact with the immediate
neighbors.

Algorithm 2 describes the action selection strategy for
advisees, in which we use the connection degree to evaluate
the expertise of an advisor. An agent with higher degree
can interact with more agents to gain more experience and
improve its expertise in giving advices. At each time step,
agent 𝑖 observes the advice asking budget 𝑏𝑖

𝑎𝑠𝑘. If the value
of 𝑏𝑖

𝑎𝑠𝑘 is greater than zero, agent 𝑖 asks for advice with
probability 𝑃 𝑖

𝑎𝑠𝑘 (Line 4). For each reachable agent 𝑗, agent 𝑖

asks for its advice with probability 𝑃 𝑗
𝑖 (Lines 7 - 9). If agent

𝑖 receives action advice, its budget 𝑏𝑖
𝑎𝑠𝑘 is decremented by

1. Then it calculates the relative weighted frequency 𝑓𝑎 of
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each action 𝑎 in the receiving set Π using the advisor degree
as the weight 𝑤𝑎 and selects the action with the maximum
frequency as the advice (Lines 10 - 18). Finally, if no advice is
provided, agent 𝑖 selects its action following the same action
selection strategy as multiple-Q (Lines 16 - 18).

Algorithm 3 describes how an advisor gives opinions. When
agent 𝑖 receives a call for advice, it first measures whether
there is still any budget 𝑏𝑖

𝑔𝑖𝑣𝑒 available. If yes, agent 𝑖 provides
advice using any learning strategy (e.g., multiple-Q) with
probability 𝑃 𝑖

𝑔𝑖𝑣𝑒 (Line 3). Each time an advice is given, the
advice giving budget 𝑏𝑖

𝑔𝑖𝑣𝑒 is decremented by 1 (Lines 4 - 9).
The remaining question is how to define 𝑃 𝑖

𝑎𝑠𝑘 and 𝑃 𝑖
𝑔𝑖𝑣𝑒.

Intuitively, the lower confidence agent 𝑖 has under state 𝑠,
the higher the probability of agent 𝑖 should ask for advice.
Agent 𝑖 should be more likely to give advice when it is more
confident about currently learned strategy. Formally, we have:

𝑃 𝑖
𝑎𝑠𝑘(𝑠, ϒ) = (1 + 𝑉𝑖(𝑠))−ϒ𝑖(𝑠) (11)

𝑃 𝑖
𝑔𝑖𝑣𝑒(𝑠, Ψ) = 1− (1 + 𝑉𝑖(𝑠))−Ψ𝑖(𝑠) (12)

where ϒ and Ψ are confidence functions about the number of
times that state 𝑠 is encountered and 𝑉𝑖(𝑠) is the maximum
action value under state 𝑠. The confidence functions ϒ and
Ψ are defined as follows:

ϒ𝑖(𝑠) =
√︀

𝑛𝑖
𝑣𝑖𝑠𝑖𝑡(𝑠) (13)

Ψ𝑖(𝑠) = log2 𝑛𝑖
𝑣𝑖𝑠𝑖𝑡(𝑠) (14)

where 𝑛𝑖
𝑣𝑖𝑠𝑖𝑡(𝑠) is the number of times that agent 𝑖 visites

state 𝑠.

Algorithm 2 action selection strategy for an advisee
1: for during the interaction period do
2: observe current state s;
3: if 𝑏𝑎𝑠𝑘 > 0 then
4: 𝑃 ← 𝑃𝑎𝑠𝑘(𝑠, ϒ);
5: 𝑝← 𝑔𝑒𝑡𝑅𝑎𝑛𝑑𝑜𝑚𝑁𝑢𝑚𝑏𝑒𝑟(0, 1);
6: if 𝑝 < 𝑃 then
7: for each agent 𝑗 ∈ 𝐺 do
8: ask agent 𝑗 for advice with probability 𝑃 𝑗

𝑖 ;
9: end for

10: define Π as the set of receiving advices;
11: if Π ̸= ∅ then
12: 𝑏𝑎𝑠𝑘 ← 𝑏𝑎𝑠𝑘 − 1;
13: set 𝑓𝑎 for each action 𝑎 ∈ Π as 0;
14: for each action 𝑎 ∈ Π do
15: 𝑓𝑎 = 𝑓𝑎 + 𝑤𝑎/|Π|
16: end for
17: 𝑎← 𝑎𝑟𝑔𝑚𝑎𝑥𝑎𝑓𝑎;
18: end if
19: end if
20: end if
21: if no action is executed then
22: perform the action selection strategy in any learning

strategy(e.g., multiple-Q);
23: end if
24: end for

Algorithm 3 action selection strategy for an advisor
1: observe the advisee’s state s;
2: if 𝑏𝑔𝑖𝑣𝑒 > 0 then
3: 𝑃 ← 𝑃𝑔𝑖𝑣𝑒(𝑠, Ψ);
4: 𝑝← 𝑔𝑒𝑡𝑅𝑎𝑛𝑑𝑜𝑚𝑁𝑢𝑚𝑏𝑒𝑟(0, 1);
5: if 𝑝 < 𝑃 then
6: choose action using any learning strategy (e.g.,

multiple-Q);
7: response to advice requirement;
8: 𝑏𝑔𝑖𝑣𝑒 ← 𝑏𝑔𝑖𝑣𝑒 − 1;
9: return 𝜋(𝑠)

10: end if
11: end if
12: return ∅

5 SIMULATION AND RESULTS
ANALYSIS

We conduct experiments on the language game with 1010

convention space to compare the performance of multiple-Q
(MQ), multiple-Q with teacher-student mechanism (MQ+TS),
multiple-R (MR), and multiple-R with teacher-student mech-
anism (MR+TS) with the state-of-the-art approaches SRA
[16], FGJ [6], and TA [10], (detailed in Section 2), on differ-
ent networks including random, small-world and scale-free
networks. The existing RL-based strategies [1, 19, 25], are
not compared here since they are only designed for small-size
convention emergence problems. We define the dominant lex-
icon convention as the one adopted by the largest number of
agents. We use the following metrics for comparison:
∙ Effectiveness: If a mechanism allows agents to converge

into a lexicon convention within an acceptable amount
of time, then we say it is effective.
∙ Efficiency: It measures how fast agents converge into

a dominant convention. It is defined as the number of
interaction episodes required before converging into a
dominant lexicon.
∙ Average Communicative Efficacy(ACE): It is defined

as the proportion of successful communications in total.
It reflects the coordination level of the overall system.
∙ Dominant Lexicon Specificity(DLS): It is defined as the

specificity of the dominant lexicon, which is the sum
of the reciprocal of the number of words mapping to
each concept. Any lexicon with a one-to-one mapping
has a specificity of 100%.

5.1 Simulation Setup
We use Watts and Strogatz small-world [21] and Barabasi-
Albert model [2] to create small-world and scale-free network
respectively. Each network consists of 1000 agents and the
average node degree is set to 20. Following the settings in
previous work TA, each lexicon contains 10 concepts and
10 words and thus the total convention space is 1010. We
adopt the random frequency distribution as the concepts
usage frequencies, while other types of distributions can be
used as well. For the teacher-student mechanism, budgets
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Figure 1: Comparison over small-world networks.

𝑏𝑎𝑠𝑘 and 𝑏𝑔𝑖𝑣𝑒 for each agent are set to 4000. We set the
closeness between teachers and students to be 3. For the
FGJ mechanism, 50 influencer agents are randomly deployed
into the network initially following the setting in FGJ. Those
influencer agents start with a lexicon with 100% specificity.
Each simulation executes 60000 time steps where a time step
refers to a single run of the program and all the results are
averages over 50 realizations for each network.

5.2 Simulation Results
5.2.1 Comparison among our RL-based strategies. Figure 1

(a) shows the dynamics of the percentage of agents converged
into a convention (ACC) over time for MQ, MQ+TS, MR,
and MR+TS in small-world networks. First, we observe that
MR strategy converges faster than MQ strategy. Second, the
TS mechanism can improve the convergence speed for both
MR and MQ strategies. Figure 1 (b) shows how average
communicative efficacy (ACE) evolves over time for MQ,
MQ+TS, MR, and MR+TS. We can also observe the similar
phenomenon of ACC and ACE in random and scale-free
networks, which are omitted here due to the limited space.

Table 2 summarizes the simulation results in terms of
the convergence speed and the dominant lexicon specificity
when 80% and 90% of agents converged into a convention
respectively for all three networks. For all these networks,
MR outperforms MQ: MR strategy improves the convergence
rate by 20% comparing with MQ strategy in random and
small-world networks and MR performs slightly better than
MQ in scale-free networks. The reason is that MQ focuses
on the optimization of Q-value estimation by leveraging the
Q-value information from neighbors while MR optimizes the
immediate reward estimation which is the root cause of over-
estimating Q-values. We observe that TS mechanism boosts
the performance for both learning strategies for all three
networks. There is an increase of approximately 15% in con-
vergence speed using TS mechanism for each network. This is
due to the advising procedure in TS. It enables experienced
agents to guide the action exploration of student agents to
reduce the interaction times between agents. This explains
the accelerated convergence rates of MQ and MR. We also
investigate the influence of the budgets in TS on the learning
performance and find that the convergence is accelerated as
the budgets increase until 3000. After that, budgets have
negligible effect on the performance. On the other hand, all
our approaches achieve the highest DLS value of 1.0.
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Figure 2: Comparison over small-world networks.
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Figure 3: Comparison of scalability as the convention
space increases over random networks.

5.2.2 Comparison with the state-of-the-art approaches. Based
on the above simulation results, in the following, we choose
MR+TS in random and small-world networks and MQ+TS
in scale-free networks to compare with the state-of-the-art
approaches respectively. Figure 2 (a) shows that how the per-
centage of agents converged into a convention (ACC) evolves
over time for MR+TS, TA, FGJ and SRA in small-world
networks. We observe that MR+TS clearly outperforms the
other approaches. Agents through reinforcement social learn-
ing with decoupled convention space converge into a dominant
lexicon much faster than the existing spreading-based ap-
proaches. Figure 2 (b) shows how average communicative
efficacy (ACE) evolves over time for MR+TS, TA, FGJ and
SRA. The performance of MR+TS is better than the state-
of-the-art approaches. By comparing the results in Figure
2 (a) and (b), we observe that the average communication
efficacy is high even if there exists no dominant lexicon. We
hypothesize that it is because the lexicons agents adopt share
a large percentage of common concept-word mappings. Thus,
the communication efficiency can still be quite high even if
no consistent lexicon emerges. The similar results of ACC
and ACE can be observed in random and scale-free networks
and we omit them here due to the limited space.

Table 2 shows the simulation results in terms of the conver-
gence speed and the dominant lexicon specificity when 80%
and 90% of agents converged into a convention respectively
over all three topologies. We can see that agents using our
strategy require shorter convergence time for each network
while TA performs the best among all existing approaches.
As we discussed above, MR+TS is chosen for comparison in
random and small-world networks. It only requires approxi-
mately 33% of TA’s execution time steps to reach a convention
for these two networks. MQ+TS is chosen for comparison
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Table 2: Performance Comparison: %ACC refers to the percentage of agents converging into a convention at
time step t. DLS refers to dominant lexicon specificity at time-step t.

Random SmallWorld ScaleFree
%ACC t DLS %ACC t DLS %ACC t DLS

MQ 80 8993 1.0 80 8224 1.0 80 9159 1.0
90 20542 1.0 90 17564 1.0 90 18624 1.0

MQ+TS 80 7654 1.0 80 8355 1.0 80 8071 1.0
90 18475 1.0 90 16843 1.0 90 15839 1.0

MR 80 7201 1.0 80 5831 1.0 80 8311 1.0
90 14224 1.0 90 13735 1.0 90 18688 1.0

MR+TS 80 5396 1.0 80 4615 1.0 80 7649 1.0
90 12968 1.0 90 12534 1.0 90 16162 1.0

TA 80 27563 0.86 80 11834 0.85 80 25461 0.91
90 48712 0.88 90 31422 0.88 90 X N/A

FGJ 80 45121 1.0 80 X N/A 80 35635 1.0
90 X N/A 90 X N/A 90 X N/A

SRA 80 X N/A 80 X N/A 80 X N/A
90 X N/A 90 X N/A 90 X N/A

in scale-free networks. It only requires around 30% of TA’s
execution time steps before 80% of agents converging into a
dominant lexicon. In the worse case, TA fails to have 90%
of agents to converge into a dominant lexicon in scale-free
networks. Moreover, we observe relatively poor performance
for FGJ mechanism. It requires more than 45000 rounds
for 80% agents to use the dominant lexicon in random and
scale-free networks while it fails to converge in small-world
networks. SRA performs the worst as it fails to converge to a
convention in all three networks. The results confirm our the-
oretical analysis in Section 4: decoupling the convention into
correlated subconventions and concurrent learning over each
subconventions can significantly improve the convergence
efficiency than the state-of-the-art approaches.

On the other hand, we observe the dominant lexicon speci-
ficities of our approaches are better than those of TA and
SRA for all three networks. The reason is that we assume
each agent only selects from words that have not been se-
lected by other concepts, which reduces synonym to improve
the lexicon quality. FGJ approach achieves the same perfor-
mance as ours in terms of DLS. We hypothesize that this
is because FGJ has the advantage of initializing a fraction
of the agents with the high-quality lexicons. Next we exten-
sively evaluate the coordination level of different strategies
under each network and and the results are summarized in
Table 3. The differences of the average communicative efficacy
between our strategies and TA are statistically significant.
It indicates that our strategies are robust and can achieve
higher coordination level than the state-of-the-art approaches
across different networks. Finally we evaluate the scalability
of different approaches shown in Figure 3. We can see that
though convergence episodes of all approaches increase nearly
in an exponential way as the convention space increases, the
increases of convergence episodes of our approaches are slower
than that of TA. Thus the scalabilities of our approaches are
a little better than the state-of-art approaches.

Table 3: ACE Performance Comparison: ACE refers
to average communicative efficacy after convergence.

ACE
Random Small-World Scale-Free

MQ 0.956 0.963 0.971
MQ+TS 0.969 0.952 0.983

MR 0.975 0.981 0.977
MR+TS 0.980 0.994 0.982

TA 0.924 0.935 0.951
FGJ N/A N/A N/A
SRA N/A N/A N/A

6 CONCLUSION AND FUTURE WORK
In this paper, our goal is to design RL-based strategies to
evolve a consistent convention among a large convention space.
We model the dynamics of lexicon evolutions during an inter-
action episode as a Markov game. Under this formalization,
we propose multiple-Q and multiple-R with teacher-student
mechanism. Extensive experiments show that our approaches
outperform the state-of-the-art approaches in terms of con-
vention emergence efficiency and quality. As future work, one
worthwhile direction is to investigate how to incorporate our
decoupled RL-based strategies into a hierarchical learning
framework to further accelerate the convergence speed. We
also intend to evaluate the efficacy on dynamic topologies
and investigate how to use rewiring strategy to accelerate
learning in dynamic MASs.
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