
Improved Cooperative Multi-agent Reinforcement Learning
Algorithm Augmented by Mixing Demonstrations from

Centralized Policy
Hyun-Rok Lee

KAIST
Yuseong-gu, Daejeon, Korea

hyunrok@kaist.ac.kr

Taesik Lee
KAIST

Yuseong-gu, Daejeon, Korea
taesik.lee@kaist.edu

ABSTRACT
Many decision problems for complex systems that involve multiple
decision makers can be formulated as a decentralized partially ob-
servable markov decision process (dec-POMDP) problem. Due to
the computational difficulty with obtaining optimal policies, recent
approaches to dec-POMDP often use a multi-agent reinforcement
learning (MARL) algorithm. We propose a method to improve the
existing cooperative MARL algorithms by adopting an imitation
learning technique. For a reference policy in the imitation learn-
ing part, we use a centralized policy from a multi-agent MDP or a
multi-agent POMDP model reduced from the original dec-POMDP
model. In the proposed method, during the training process, we mix
demonstrations from the reference policy by using a demonstra-
tion buffer. Demonstration samples from the buffer are used in the
augmented policy gradient function for policy updates. We assess
the performance of the proposed method for three well-known
dec-POMDP benchmark problems – Mars rover, co-operative box
pushing, and dec-tiger. Experimental results indicate that augment-
ing the baseline MARL algorithm by mixing the demonstrations
significantly improves the quality of policy solutions. With these
results, we conclude that the imitation learning can enhance MARL
algorithms and that policy solutions from MMDP and MPOMDP
models are a reasonable reference policy to use in the proposed
algorithm.

KEYWORDS
Multi-agent reinforcement learning; Cooperative decision making
problem; dec-POMDP; Imitation learning
ACM Reference Format:
Hyun-Rok Lee and Taesik Lee. 2019. Improved Cooperative Multi-agent
Reinforcement Learning Algorithm Augmented by Mixing Demonstrations
from Centralized Policy. In Proc. of the 18th International Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS 2019), Montreal, Canada,
May 13–17, 2019, IFAAMAS, 10 pages.

1 INTRODUCTION
Cooperative multi-agent decision making problems are important
to designing and operating complex systems, for example, smart
factory [27, 49, 50] and disaster response system [1, 39]. Complex
systems are characterized by a large number of interrelated ele-
ments to achieve predefined objectives [17], and many decision

Proc. of the 18th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2019), N. Agmon, M. E. Taylor, E. Elkind, M. Veloso (eds.), May 13–17, 2019,
Montreal, Canada. © 2019 International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

makers including humans and autonomous agents are involved in
their operation. Decisionmakers make their decisions based on indi-
vidual observations about the system, and often these observations
available to the decision makers do not contain complete informa-
tion. In order to make the best decision to achieve the system’s
overall objectives, decision makers must overcome the limitation
of insufficient information to make coherent, well-aligned deci-
sions. This is the goal of a cooperative multi-agent decision making
problem.

Decentralized-Partially Observable Markov Decision Process
(dec-POMDP) is a suitable choice to model a cooperative multi-
agent sequential decision making problem. The objective of a dec-
POMDP model is to find the best policy for each agent when
multiple agents use partial observations on the system state to
decide individual actions to achieve a common goal. In a dec-
POMDP environment, individual agents do not know the true
state of the system and other agents’ actions, and must determine
their action only based on their individual observation sequences.
This makes a dec-POMDP model much harder to solve than a sin-
gle agent decision model such as multi-agent MDP (MMDP) and
multi-agent POMDP (MPOMDP) [4]. Various solution methods
to find an optimal policy have been developed for finite horizon
dec-POMDP problems, including dynamic programming, heuristic
search, mixed integer programming or techniques based on suf-
ficient statistics [3, 9, 15, 32, 46]. However, these exact solution
methods face a scalability problem when applying to large-scale
problems.

In recent years, deep Reinforcement Learning (deep-RL) has be-
come a popular solution technique for dec-POMDP [10–12, 14, 28,
37, 47]. Although deep-RL algorithms do not guarantee an optimal
policy solution for dec-POMDP problems in general, these algo-
rithms are known to yield decent policy solutions by efficiently
updating the policies. This makes a deep-RL approach particularly
useful when a target problem is too complex to solve with optimal
solution algorithms. Building upon its success in solving single
agent problems, there are many recent studies to develop deep-RL
algorithms for multi-agent problems.

In this paper, we propose a method to improve the performance
of a deep-RL approach to solving dec-POMDP problems. In particu-
lar, we augment a cooperative multi-agent RL (MARL) algorithm by
incorporating an imitation learning technique. In the RL process,
we use a mix of two streams of sample paths: ones that are gener-
ated from a current policy and demonstration sample paths from
a reference policy. Some precautions are implemented to reduce
drawbacks of using demonstrations from a potentially sub-optimal

Session 4C: Deep Learning AAMAS 2019, May 13-17, 2019, Montréal, Canada

1089

reference policy. During training, we gradually reduce the degree
of mixing demonstration sample paths to avoid the learned policy
from being overly influenced by the demonstrations. Also when
evaluating state value functions, we only use the experiences by
the current policy and exclude those from the reference policy.

Using demonstrations to find a better solution of sequential deci-
sion making problem is not a new concept. Imitation learning has
been studied extensively for single agent problems [25, 30, 38, 53].
Imitation learning requires a good reference policy or demonstra-
tions. In the previous studies on single-agent problems, demon-
strations for imitation learning are obtained typically from human
experts behaving in simulated or physical environment. For MARL,
we suggest that solutions from MMDP or MPOMDP problems can
be an attractive alternative as a source of demonstrations.

Using MMDP or MPOMDP solutions for imitation learning is
motivated by a few reasons. First, since a dec-POMDP model is the
most general formulation for cooperative sequential decision mak-
ing problems, theoretically it can always be reduced to an MMDP
or MPOMDP model by assuming full state observability (MMDP)
or joint observation (MPOMDP). Obtaining policy solutions for the
reduced MMDP or MPOMDP can be quite difficult, but if a policy
solution for these models is available, we can use the solution to
construct reasonable demonstrations for our algorithm. This can
be particularly useful when obtaining demonstrations from human
experiments or heuristics is infeasible or costly.

Second, MMDP or MPOMDP solutions act as a good reference
policy. MMDP and MPOMDP models assume all available informa-
tion is shared by the participating agents, making it a centralized
decision problem. Since agents can use more information for deci-
sion making in the MMDP and MPOMDP environment, quality of
the obtained policy is higher than a dec-POMDP policy obtained
for the same system. Of course, we cannot directly use a MMDP or
MPOMDP solution as a policy for the dec-POMDP problem because
it requires information that is not available in the dec-POMDP en-
vironment. In this sense, MMDP and MPOMDP solutions can be
considered as a oracle solution to the dec-POMDP problem. Being
an oracle solution, we expect the MMDP and MPOMDP solutions
to contain good traits for a dec-POMDP policy to learn.

In this paper, by assuming a reasonable centralized policy is
available, we investigate whether demonstrations from a centralized
policy improve a deep-MARL algorithm for a decentralized problem.
In particular, we focus on a few benchmark problems for which we
can compute a centralized policy either from MMDP or MPOMDP.

2 RELATEDWORK
Imitation learning is a method to find a policy using demonstrations.
For example, behavioral cloning is a supervised learning which aims
to develop a policy that clones the demonstrations so that the result-
ing policy outputs the same actions chosen in the demonstrations.
One possible limitation of learning from demonstrations is that they
may not provide sufficient information; when agents experience
trajectories other than those in the demonstrations, the learned
policy may fail to provide appropriate action. Some studies have
attempted to solve this problem by repeatedly using expert demon-
strations or cost-to-go functions during training [40, 41, 45]. These
algorithms construct a training set for the states visited under the

current policy and learn a policy to imitate expert policy at these
states.

Moreover, if the demonstrations are from a sub-optimal policy,
which is often the case, the best policy obtained by imitation learn-
ing is also sub-optimal. To overcome this problem, many recent
studies propose to combine imitation learning and RL [16, 20, 25,
30, 38, 53]. A general approach in these studies is to update a neural
network by simultaneously considering the objective functions of
an RL algorithm and behavioral cloning during the training phase.
For example, [25] updates a value network for Deep Q-Network
(DQN) [29] by using the weighted sum of two objective functions:
temporal difference (TD) error for Q-learning and cross-entropy
error for behavioral cloning. DQfD algorithm also uses demon-
stration data in the DQN algorithm by augmenting the objective
function with a large margin supervised loss [16]. It pretrains the
value network using demonstrations and uses prioritized-replay
buffer to sample more demonstration transitions when updating the
value network. [20, 30, 38, 53] incorporate the loss function from
behavioral cloning when calculating policy gradient. These studies
adopt mechanisms to avoid harmful learning from the sub-optimal
demonstrations, such as adjusting theweights for adding loss values.
In [30], instances of demonstrations are filtered out in gradient cal-
culation if their selected actions are judged worse than the actions
from the current policy. [20] introduced a demonstration-guided ex-
ploration term, based on the divergence between the expert policy
and the current policy. It aims to guide better exploration through
demonstration data. Note that the above references discuss imi-
tation learning - RL approaches in a single-agent setting. While
there exist a few studies that apply imitation learning to multi-
agent problems [8, 26, 52], the imitation learning - RL approach in
a multi-agent setting has not been well reported; to our knowledge,
our work is the first study to adopt the imitation learning - RL
approach to a dec-POMDP.

Many MARL algorithms have been developed by modifying
well-known single agent RL algorithms to fit a multi-agent envi-
ronment. One of the early approaches is an independent learn-
ing algorithm where an agent treats the other agents as its en-
vironment [37, 47]. This algorithm has a limitation that it does
not stably find a joint policy solution because the environment
is non-stationary as other agents learn a different policy during
the training process. This limitation has been addressed in several
studies on deep-MARL algorithms by sharing the parameters of
network between agents [10, 14]. More recently, some researchers
propose to modify the actor-critic (AC) algorithm by updating a
value network with full state information [11, 28]. They use indi-
vidual observations and actions to train a policy network which
represent a decentralized policy. In these algorithms, agents learn
their individual policy while indirectly considering other agents
through the guidance of the critic which know full state informa-
tion. In this paper, we also use the AC algorithm with a centralized
critic as a baseline MARL algorithm.

The last piece of related literature is RL as a Rehearsal (RLaR) [24].
RLaR is a model-based MARL algorithm with two stages. In the
first stage, it uses full state information to learn a value function;
it approximately solves an MMDP problem by Q-learning. Then,
it transforms the value function learned during the first stage to
establish the initial value function for the second stage. With the

Session 4C: Deep Learning AAMAS 2019, May 13-17, 2019, Montréal, Canada

1090

inital value functions, the algorithm finds a dec-POMDP policy by a
Q-learning-based MARL. This algorithm is similar to our proposed
algorithm in that it uses MMDP to establish a starting point to solve
a dec-POMDP problem. However, our study differs from RLaR in its
algorithm aspect. RLaR can be understood as RL with pre-training;
it pre-trains the model and value function by approximately solving
a relevant MMDP. On the other hand, we use demonstrations to aug-
ment a MARL algorithm. Combining MARL and imitation learning
using demonstrations has not been proposed in the literature.

3 BACKGROUND
3.1 Dec-POMDP
Dec-POMDP is defined as a tuple < I , S, {Ai }, P , r , {Ωi },O,h > [33].
I is a finite set of agents, S is a finite set of states and {Ai } is a
finite set of actions for each agent i . At every decision epoch t ,
each agent obtains individual observation oi,t , and chooses an in-
dividual action ai,t to maximize a common goal. When a joint
action at = {a1,t ,a2,t , . . . ,aN ,t } is selected, the system state tran-
sitions from st to st+1, following a transition probability function
P(st+1 |st ,at). {Ωi } is a finite set of observations for each agent i .
Observation function O defines the probability of observing joint
observation ot = {o1,t ,o2,t , . . . ,oN ,t } when the next state is st+1
by joint action at : O(ot |at , st+1). Because agents seek to maximize
common reward, they share the same reward defined by reward
function r which defines the reward earned when joint action at is
taken at st : r (st ,at). We use h to indicate a decision horizon.

The objective of a dec-POMDPmodel is to find a jointly separable
policy π that maximizes discounted expected reward:

π∗ = arдmaxπ Eπ [Σ
h
t=1γ

t r (st ,at)] (1)

γ is a discount factor. We simply express the expectation over
random variables such as visited states and chosen actions under
policy π by Eq. (1) and this convention will be used throughout
the paper. Because an agent does not know the exact state of the
system and other agents’ action at each decision epoch, it chooses
its action based on its own previous actions and observations. A
policy for individual agent, πi , is a function which stochastically
maps the agent’s action-observation history (AOH) to its individ-
ual action. We denote AOH by θ̄i,t = (ai,1,oi,2, . . . ,ai,t−1,oi,t).
πi (ai,t |θ̄i,t) is the probability of choosing ai,t given θ̄i,t . Then, the
jointly separable policy is the product of the individual policies:
π (at |θ̄t) = Πiπi (ai,t |θ̄i,t).

Recurrent Neural Network (RNN) is a general structure to repre-
sent a dec-POMDP policy when using deep-RL [10, 11, 28, 37]. RNN
is an effective architecture to consider temporal dependency be-
tween input and output, and as such it is more suitable for a POMDP
environment where an observation sequence is used as an input. A
hidden state of an RNN can be interpreted as an approximation of
a full-length individual AOH during execution.

3.2 Policy Gradient Algorithm
RL algorithms can be classified into valued-based algorithms and
policy-based algorithms depending on which function is approxi-
mated. Value-based algorithms approximate a state-value function,
V π (st) = Eπ [Σ

h−t
l=0 γ

l r (st+l ,at+l)|st], or q-function, Qπ (st ,at) =

Eπ [Σ
h−t
l=0 γ

l r (st+l ,at+l)|st ,at], which are used to find an action that

maximizes the value of each state. Policy-based algorithms learn a
policy function which defines the probability of choosing an action
given recognized information.

Policy gradient algorithms aim to maximize J (w) = Eπw [r1 +

γ 1r2 + · · · + γh−1rh], by updating policy parameterw in the direc-
tion of policy gradient. Policy gradient for MDP problem can be
expressed as follows:

∇w J (w) = Eπw [Q
πw (st ,at)∇w loдπw (at |st)] (2)

Because the exact Q-value for πw is not easy to obtain, we sub-
stitutes Qπw (st ,at) with other values that we can easily estimate.
REINFORCE algorithm is the most basic policy gradient algorithm.
It uses a sample return to substitute Q-value; that is, we replace
Qπw (st ,at) by дt = rt + γ

1rt+1 + · · · + γh−t rh [51]. This sample
return is an unbiased estimator of Qπw (st ,at), but the variance is
too large to stably find a policy solution.

AC algorithms learn both value function and policy function [23].
Actors update parameter w for a policy function by interacting
with the environment according to the actions chosen under πw .
Critic updates parameter v for a value function to guide the actors
by evaluating the value of an action. To do this, critic estimates
Qπw (st ,at) by computing Qπw

v (st ,at) or r (st ,at) +V
πw
v (st), both

of which are biased estimators of Qπw (st ,at) but have a smaller
variance than sample returns. We can further reduce the variance
of these estimators by a control variates method, subtracting a
baseline value. The most common choice for the baseline value is
a state-value function because it is highly correlated with the Q-
function. As a result, we have an advantage function, Aπ (st ,at) =
Qπ (st ,at) −V

π (st), which is a relative value of the selected action.

4 METHOD
Our goal is to improve the performance of a baseline MARL algo-
rithm by effectively using demonstrations from a reference policy.
In this paper, we use a multi-agent AC with a centralized critic
as our baseline MARL algorithm. Our algorithm is conceptually
identical to central-V [11] and PS-A3C [14] but with some differ-
ences in its implementation details. For simplicity’s sake, we focus
on an undiscounted, finite horizon dec-POMDP problem with dis-
crete actions. Nevertheless, we believe the proposed idea of mixing
demonstrations from a centralized policy is still applicable to in-
finite horizon and discounted problems with continuous action
space.

We describe the baseline MARL algorithm in section 4.1 and
explain how to mix demonstrations in the baseline algorithm in
section 4.2.

4.1 Multi-agent Actor Critic with Centralized
Critic

[11, 28] recently show that a centralized critic, that uses global
information, improves the performance of RL in a decentralized
environment. It gives the full information on the current state to
the critic – hence termed as a centralized critic –, with which the
critic learns a value network to estimate state-value Vv (s). Since
the critic plays a role only during the training phase, we can allow
a critic to use the full state information even in the decentralized
environment.

Session 4C: Deep Learning AAMAS 2019, May 13-17, 2019, Montréal, Canada

1091

Our algorithm adopts this approach, multi-agent AC with a cen-
tralized critic. We model the critic by using a feed-forward network
which takes the current state, s , as its input and predicts state-value
Vv (s). A feed-forward network is a sufficient architecture for a cen-
tralized critic since the state transition is conditionally independent
of the previous state if the most recent state is given. We train our
value network based on a TD(λ) method, which aims to minimize
the following loss function:

L(v) = Σht=0(G
λ
t −V

πw
v (st))

2 (3)

where Gλ
t = (1 − λ)Σh−tn=1λ

n−1G(n)t and G
(n)
t = Σnl=1γ

(l−1)rt+l +

γnV πw
v (st+n) which is the n-step return. The estimated value func-

tion is then used to calculate a policy gradient.
For the actor, we design a policy network to take current ob-

servations and the agents’ indices as its inputs and to output the
probability of selecting individual actions. An RNN is used to con-
struct the policy network. Input to the RNN consists only of current
observations rather than the entire observation history and also
it does not include previous actions. Although we feed the RNN
only with the current observation at each time step, a hidden state
in the RNN contains approximate memory of the individual ob-
servation history. Hidden states of the RNN are updated at every
time step as a function of the previous hidden states and current
inputs: hi,t = f (hi,t−1,oi,t , i). Using only the observations in train-
ing RNN is sufficient for our model; [35] shows that there exists at
least one optimal policy which maps observation history into an
action for finite horizon dec-POMDP problems.

Instead of training an individual RNN for each agent, we build
a single RNN by parameter sharing and use it for all the agents. It
has been known that training a single RNN by parameter sharing is
better than training multiple networks independently for individual
agents [14]. To allow different agents to learn different policies
from the single RNN, we use an agent index as an identifier. Finally,
an individual policy function, πi,w (ai,t), is obtained after output
values of the RNN pass through an additional fully connected layer.

A policy gradient for a dec-POMDPmodel is similar to the policy
gradient for MDP in Eq. (2). In a dec-POMDP, policy πw is a jointly
separable policy, which is a product of individual policies, πi,w :
πw (at |θ̄t) = Πiπi,w (ai,t |θ̄i,t). We calculate the policy gradient
based on the generalized advantage estimator (GAE) [42]:

∇w Jdec (w) = Eπw [A
GAE
t ∇w loдπw (at |θ̄t)] (4)

where AGAEt = Σh−tl=0 λ
l
GAE {rt+l + V πw

v (st+l+1) − V πw
v (st+l)}.

GAE attempts to compromise between the variance and bias of the
estimator by using λGAE .

4.2 Mixing Demonstrations from Centralized
Policy

The main idea of our proposed approach is to augment the baseline
MARL algorithm, described in the previous section, by mixing
demonstrations from a reference policy. As explained in §1, we use a
centralized policy – a policy solution of MMDP or MPOMDP model
– to establish a reference policy to use in the baseline algorithm. A
centralized policy acts as a reference policy for all agents. In this
section, we describe how we mix the demonstration samples into

the algorithm. Our method is summarized in Algorithm 1 and is
explained in detail below.

Algorithm 1 Multi-agent AC with Centralized Critic using
Demonstration Buffer
1: Input:(s̄h , θ̄h , r̄h) ∈ BD
2: Initializew , v and set ρD = 1
3: for k ← 0, 1, . . . do
4: nD ∼ Binomial(N , ρD)
5: Sample (N − nD) episodes from current policy, πw

τn ∼ πw for n = 1, . . . , (N − nD)
6: Update v using Eq. (3) with learning rate αv

v ← v − αv∇vΣ
N−nD
n=1 Σ(st ,rt)∈τ n (G

λ
t −Vv (st))

2

7: Draw nD episodes from BD
τn ∼ BD for n = (N − nD + 1), . . . ,N

8: Updatew using Eq. (5) with learning rate αw
w ← w + αwΣNn=1Σ(st , θ̄t ,rt)∈τ nA

GAE
t ∇w loдπw

9: Decay mixing probability
ρD ← ρD × η

10: end for

A demonstration used in our algorithm is a trajectory, τ , that
consists of state sequence, action-observation history (AOH) and
reward sequence: τ = (s̄h , θ̄h , r̄h) where s̄h = (s1, s2, . . . , sh) and
r̄h = (r1, r2, . . . , rh). Each trajectory is a record of the action-
observation history, the sequence of states visited and the obtained
rewards, when the centralized policy is followed. Note that we have
in our demonstration a reward sequence. Typical applications of
imitation learning assume the true reward function is unknown
or reward sequence data is not given [25, 26, 30, 38, 52]. In our
case, on the other hand, immediate rewards can be recorded when
collecting demonstrations from following a centralized policy in
the simulation environment. We also want to emphasize that, be-
cause the demonstrations have the same format, trajectory τ , as
the sampled episodes from a current policy in the baseline MARL
algorithm, it is possible to directly use the demonstrations when
mixing them in the baseline algorithm.

We collect demonstrations from the centralized policy in advance
and store them in a demonstration buffer, BD : τ ∈ BD . A demon-
stration buffer is often used in imitation learning on single agent
problems [25, 30]. At each training step, we sample episodes from a
current policy and also draw demonstrations from the demonstra-
tion buffer. The number of demonstrations used in each training
step follows a binomial distribution (N , ρD) where N is the mini-
batch size and ρD is the probability of mixing.

We set the mixing probability ρD as an exponential function
of the training steps. At each training step k , the mixing probabil-
ity is decreased by multiplying common ratio, η ∈ [0, 1]; that is,
ρD (k) = η

k . By using an exponentially decaying function for ρD ,
we let the centralized policy drive the learning at the beginning
and, as the training progresses, put higher weights on the experi-
ence gained from the current policy. The gradual reduction of the
demonstrations’ influence is desirable because the actions taken
by the centralized policy is sub-optimal in the decentralized envi-
ronment. As a sanity check, we have empirically tested alternative
mixing probabilities, a step function and a constant function for the

Session 4C: Deep Learning AAMAS 2019, May 13-17, 2019, Montréal, Canada

1092

benchmark problems used in this paper. The experimental results
indicate the exponentially decaying function works the best.

The baseline MARL algorithm – multi-agent actor critic with
centralized critic – updates a policy and value network based on
sampled episodes. In the algorithm, we mix in the demonstrations
only for updating the policy network. Reason for not using the
demonstrations when updating the value network is to prevent
overestimation of the value functions. The role of the value net-
work is to accurately predict the expected return from a current
state when agents choose actions according to πw . Recall that a
demonstration is obtained from a centralized policy, and a sample
return calculated from it is an upper bound rather than a realistic
value achievable by a dec-POMDP policy. Thus, if we update the
value network using the reward sequence of a demonstration as a
target, it can result in an overestimate of the value function. It is
known that overestimation of a state-value in Deep-RL algorithms
can degrade the performance of the algorithm [48], and therefore,
we do not use demonstrations when updating the value network.

In updating the policy network, we use the reward sequence from
demonstrations to compute GAE in the policy gradient. Specifically,
the policy gradient is the sum of the gradient value obtained from
the sampled episode (∇w Jdec) and the gradient value obtained from
the demonstrations:

∇w Jmix (w) = ∇w Jdec (w) + Eτ∼BD [A
GAE
t ∇w loдπw] (5)

Expectation of Eq. (5) is computed using minibatch.

5 EXPERIMENTS
5.1 Experimental Setup
We assess the performance of our algorithm on three benchmark
problems commonly tested in dec-POMDP research: Mars rover [2],
cooperative box pushing [43] and dec-tiger [31]. Optimal solutions
are known for these benchmark problems [9].

In the Mars rover problem, two rovers perform their mission
tasks while exploring Mars. Two rovers can move in four directions
to visit four sites on a two-by-two grid. The mission consists of vis-
iting two sites to take samples from and two other sites to perform
drilling operations. The drilling operation requires two rovers to
work together. Maximum reward is earned when the two rovers
drill together the right sites. If they drill the wrong sites, they get
negative reward. The goal of the cooperative box pushing problem
is to control two agents when there are two small boxes that can be
pushed by individual agent and a big box that can only be moved
with two agents pushing in the same direction. At each decision
epoch, agents can move forward, turn left, turn right or stay. They
get a high reward (100) for pushing the big box over the goal line
where as they earn a small reward (10) for the small boxes. In these
two problems, agents earn a smaller reward (or penalty) if they act
without cooperation. In the dec-tiger problem, a tiger and a treasure
are located behind of each door, and two agents work together to
figure out the correct door to open (the one behind which is the
treasure). In this problem, estimating true state through observa-
tions (hearing the sound from each door) is more important than
the other two problems. For problem formulation, we refer to the
dec-POMDP models provided in the Multiagent Decision Process
(MADP) toolbox [34].

By reducing the dec-POMDP models, we construct an MMDP
and MPOMDP model for the three problems. Then we find a ref-
erence policy solution for these problems which we later use to
generate demonstrations for the MARL algorithm. It is known that
solution methods to solve MDP models can be used to solve MMDP
models [5], and we use a value iteration method to obtain an opti-
mal MMDP solution. For MPOMDP models,we use the incremental
pruning method [6] implemented in the ’pomdp-solve’ software [7].

It turns out that the pomdp-solve cannot solve the Mars rover
problem and box pushing problem. As such, we obtain the MMDP
solutions for these problems and use them as a reference policy.
With the solutions, we examine whether demonstrations from the
MMDP solution enhance learning of a decentralized policy. For
the dec-tiger problem, both MMDP and MPOMDP solutions are
obtained. These solutions allow us to compare which of the two
reference policies work better as a source of demonstration in the
proposed MARL algorithm.

In all experiments, a value network is modeled by two ReLU
layers with 64 units per layer, and we use a fully connected layer as
the final layer.We construct a policy network by using an LSTM [18]
layer with 64 memory cells and a fully connected layer is used
as well as a final layer. Actions are selected based on Gumbel-
Softmax estimator [19]. We set λ and λGAE to 0.95 for TD(λ) and
GAE respectively. Both value and policy networks are trained with
Adam optimizer [22] with the base learning rate at 0.001. The size of
minibatch is 32, and we train for 10,000 steps per experiment. Under
these settings, we obtain five policy solutions using our algorithm
for each benchmark problem. The interim policy networks are
saved every 100 training steps. Finally, we test each of the five
policy solutions for 1,000 episodes while controlling their random
seeds to ensure the five policy solutions are tested under the same
condition.

5.2 Effectiveness of Demonstrations from
MMDP Policy

As mentioned earlier, we use an MMDP solution as a reference pol-
icy to generate demonstrations for the Mars rover and box pushing
problem. Figure 1 show the return values from the baseline algo-
rithm (without mixing) and the proposed, demonstration-MARL
algorithm with various values of η for the Mars rover and box
pushing problem at horizon h = 10. For each curve, shaded area
represents the standard deviation of the average return values from
five policy solutions. dec-POMDP* is the known optimal value. In
both Figure 1(a) and (b), we see that mixing the demonstrations from
the MMDP policy solution during the training process improve the
baseline MARL algorithm. For both problems, the baseline MARL
algorithm converges to a return value far below the optimal value.
Our demonstration-MARL algorithm, in all η settings, converges
to a return value higher than the baseline algorithm. This suggests
that mixing the demonstrations from MMDP reference policy does
improve the performance of baseline algorithm.

While mixing the demonstrations delivers better policy solutions
than the baseline MMDP, the experimental results indicate more
mixing is not necessarily better. Recall that a high (low) value of
η means more (less) mixing for a longer (shorter) training steps.
In both cases, we see that the best result is obtained when η is

Session 4C: Deep Learning AAMAS 2019, May 13-17, 2019, Montréal, Canada

1093

Figure 1: Improvement of baseline algorithm through MMDP demonstrations using different η

0.999; mixing too much (η=0.9999) or too little (η=0.9) does not
help improving the quality of the solution. This is particularly
evident in Figure 1(a). The plot for η = 0.9, which means we mix
a small number of demonstrations and reduce the mixing quickly,
coincides with the baseline algorithm curve. Our interpretation is
that the algorithm fails to take advantage of the useful information
contained in the demonstrations. Quality of the solution improves
as η increases to 0.99 and 0.999, but then it drops down when
η = 0.9999. It seems that mixing too many demonstrations for
too long causes negative effects, hence not a good strategy either.
One possible explanation is that the reference policy, which is a
centralized policy, is not a true optimal target and thus it is not
desirable to overly pursue to imitate the demonstrations; it can
hamper learning from its own experiences and lead to insufficient
exploration of other possible decentralized policies.

In Table 1, we have the results at different lengths of decision
horizon for the box pushing problem. Table 1 shows the return val-
ues from the best policy solution among the five solutions obtained
by the baseline algorithm and the demonstration-MARL algorithm
(Full results from all five policy solutions for both Mars rover and
box pushing problems are presented in a table in the Appendix).
Again, we see that the baseline algorithm ends up with a signifi-
cantly sub-optimal policy solution; their return values are far lower
than the known optimal values (dec-POMDP*). We believe that
the better results from the demonstration-MARL are due to better
explorations, which resonates with the previous studies on single-
agent RL algorithms [20, 44]; they cite more efficient exploration
as a main motivation for using demonstration data.

Recall that the reward for successfully moving the small boxes is
10. We see in Table 1, the return values from the baseline algorithm
are close to the reward when the two small boxes are successfully
pushed behind the goal line. We suspect that in the baseline al-
gorithm, both agents easily fall into a local optimal policy where
they move small boxes to small rewards. Such behavior is indeed
observed in the simulation results. We believe there is a sound
explanation for this local optimal solution. Since there is no prior
knowledge or experience about the system, it is difficult for the
baseline MARL algorithm to discover that they can earn a larger

Table 1: Performance of learned policy by using MMDP
demonstrations for various horizon length of box pushing
problem. η = 0.999 and parentheses indicates 95% confidence
interval

Horizon dec-POMDP* w/o demo. with demo.

4 98.59 18.32 (0.28) 99.86 (3.14)
6 120.67 36.78 (0.38) 123.58 (3.56)
8 191.22 52.98 (0.44) 191.86 (4.35)
10 223.74 54.79 (0.49) 226.40 (4.74)

reward when pushing the large box together to the goal line; an
experience of successfully moving the large box over the goal line
rarely occurs by chance. On the other hand, moving small boxes
and getting a reward, albeit small, is more frequently experienced
during exploration. If either agent continues to make actions to
push the small box (because it does not know it can earn a large
reward by pushing the large box together with the other agent),
the other agent would receive a negative reward when it takes ex-
ploratory actions to push the large box. This is a typical challenge
in MARL algorithms.

When we mix demonstrations from the centralized policy, the
algorithm finds a better policy with a guidance from the episodes
where the agents have gotten a high reward by moving the large
box together. The MMDP policy solution generates demonstrations
where the agents receive higher reward by moving the large box
in collaboration. These demonstrations contain the information on
how they should behave to push the large box even if these actions
cannot be completely imitated in the decentralized environment.
This gives an opportunity to overcome the hurdle of falling into a
local optimal policy in the absence of demonstrations.

5.3 Demonstrations from MPOMDP Policy
Previous section demonstrates that using an MMDP solution as
a reference policy can improve the performance of the baseline
MARL. In this section, we discuss a case, dec-tiger problem in
particular, where an MMDP solution is not a suitable reference

Session 4C: Deep Learning AAMAS 2019, May 13-17, 2019, Montréal, Canada

1094

Table 2: Comparison between the results of using MPOMDP and MMDP solution for dec-tiger problem. η = 0.999 and paren-
theses indicates 95% confidence interval

Horizon dec-POMDP* w/o demo. with MMDP demo. with MPOMDP demo.

4 4.80 -8.00 (0.00) -58.63 (4.24) 4.31 (0.86)
6 10.38 -12.00 (0.00) 4.94 (0.91) 5.63 (0.65)
8 12.22 -16.00 (0.00) -115.35 (6.34) 9.24 (1.13)
10 15.18 -20.00 (0.00) -145.18 (7.04) 10.62 (0.97)

policy. For a dec-tiger problem, using an MMDP solution to gener-
ate demonstrations leads to a poor decentralized policy solution.
Table 2 shows that augmenting the baseline MARL by mixing the
demonstrations from an MMDP solution, in fact, results in a worse
policy solution than the baseline MARL solution. Considering the
nature of the dec-tiger problem and the way an MMDP model is
concocted, this result is rather expected. In the dec-tiger setting,
the decision problem becomes trivial if we know the true state of
the system; if we know behind which door a treasure sits, then
all we need to know is to open that door and there is no need to
pursue additional observation by listening to the sound. This is the
case with the MMDP model where we assume the full knowledge
about the system state. But then, the listen action to gather more
information carries a critical importance in the dec-POMDP en-
vironment. Thus, demonstrations from the MMDP solution does
not help the agents. Worse yet, mixing the demonstrations causes
the algorithm to search the wrong solution space by feeding the
episodes irrelevant to learning a good decentralized policy.

As a remedy to this problem, we adopt an MPOMDP solution
as a reference policy for our algorithm. Table 2 shows that using
the demonstrations from the MPOMDP solution does significantly
improve the policy solution compared with the baseline algorithm.
When augmented by the MPOMDP demonstrations, the return
values from the policy solution get much closer to the optimal
value. A possible reason for this improvement is that the MPOMDP
model assume the same amount of information about the system
state as the original dec-POMDP environment, except that the
information is shared by the agents. In the MPOMDP solution
policy, the two agents choose the listen action to estimate the true
state and opens the door that is most likely to have a treasure.
The degree to which the agents would choose the listen action
will be less than the dec-POMDP policy because, in the MPOMDP
model, the two agents share the information after the listen action.
Nevertheless, demonstrations from the MPOMDP solution contain
valuable information for the decentralized agents and provide some
opportunity for them to learn about the value of the listen actions

While learning about the value of the listen action is an important
reason behind the performance of MPOMDP demonstrations, there
is another reason. This is related to the poor performance of the
solution from the baseline MARL algorithm, shown in the third
column of Table 2. When we solve the problem without using
demonstration, the policy solution converges to a local optimal.
Because opening a door behind which sits a tiger incurs a high
penalty, much greater than the reward of opening the treasure-door,
the baseline MARL algorithm produces an extremely conservative
policy; the return values from the baseline algorithm policy, shown

in Table 2, indicate that the agents always choose to listen and do
not take the risk of opening any door. Demonstrations from the
MPOMDP policy solution, on the other hand, reveals the knowledge
that opening a door, if the correct door, returns a reward for the
action. Thus, by introducing demonstrations from the MPOMDP
solution, the agents learns that they can earn positive reward once
they attain some confidence by several listen actions.

Finally, we provide our conjecture as to why the dec-tiger prob-
lem requires the MPOMDP solution as its reference policy when
MMDP solutions work just fine for the Mars rover and box push-
ing problems. While, as mentioned in §1, MMDP or MPOMDP
solutions are expected to act as a reasonable reference policy, we
anticipate that a solution from MPOMDP is a better choice to con-
struct demonstrations from. A key difference between the original
dec-POMDP problem and the reducedMMDP orMPOMDP problem
is the amount of information available to the agents. In MMDP, all
agents have an access to full state information whereas the agents
in the MPOMDP setting are given partial observation shared among
the agents. This makes the MPOMDP setting closer to the original
dec-POMDP setting than MMDP is to the dec-POMDP. As a result,
we believe that demonstrations from the MPOMDP policy will pro-
vide more relevant decision experiences for a dec-POMDP policy
to learn from. For the dec-tiger problem, the amount of informa-
tion made artificially available to the agents in MMDP setting is
possibly too large for the demonstrations to be useful for learning
a dec-POMDP policy; the dec-tiger problem in the reduced MMDP
setting is to decide which door to open when the doors are trans-
parent, hence the demonstrations will involve no listen action at
all. Exactly characterizing this information gap and the quality of
MMDP or MPOMDP solution as a reference policy requires further
research.

6 CONCLUSION
In this study, we demonstrate that the imitation learning technique
can be incorporated to reinforcement learning to solve amulti-agent
problems. While combining the imitation learning and reinforce-
ment learning has been demonstrated in a single agent setting, it
has not been discussed in the multi-agent setting in the literature.
In particular we examine dec-POMDP problems to show how imi-
tation learning can be implemented in a multi-agent reinforcement
learning. Our proposedmethod augments a cooperativemulti-agent
reinforcement learning algorithm (MARL), actor-critic with a cen-
tralized critic, by mixing demonstrations from a reference policy.
We show that a reasonable reference policy for a dec-POMDP prob-
lem can be obtained from an MMDP or MPOMDP model reduced
form the original dec-POMDP model, which can be particularly

Session 4C: Deep Learning AAMAS 2019, May 13-17, 2019, Montréal, Canada

1095

useful when obtaining demonstrations from human experiments
or other means is infeasible or costly. Experiment results on three
well-known dec-POMDP benchmark problems demonstrate that
the proposed method improves the performance of the baseline
algorithm without demonstrations.

Recent approaches to MARL shifts from extending proven single-
agent RL algorithms to multi-agent environment to developing
MARL by using the characteristics of the multi-agent environ-
ment [13, 36]. We believe that our idea of combining imitation
learning with MARL belongs to these recent research efforts. Areas
of future research in this direction include simultaneous learning
of a centralized policy (as a reference policy) and a decentralized
policy. For example, [21] constructs and trains a demonstrator as
well as a policy to improve the training efficiency in a single-agent
RL algorithm. Similarly, training a demonstrator with centralized
information can be a possible approach to substitute the need for
preparing a centralized policy. Simultaneous learning will possi-
bly improve off-policy learning through an importance sampling
technique by using the policy function of a centralized policy.

A FULL RESULTS FROM ALL FIVE POLICY
SOLUTIONS

In our experiment, we obtained five policy solutions for each ex-
periment setting. Table 1 and Table 2 show the results from the
best policy solution among the five solutions. We provide the entire
test results of all five policy solutions for each setting. The results
demonstrate that our analysis is also valid for other policy solu-
tions. Table 3, Table 4 and Table 5 show the results for the Mars
rover, box pushing and dec-tiger problem, respectively. In most
cases, there were no significant differences between the five policy
solutions. MMDP solutions can improve baseline MARL algorithm
and MPOMDP solutions work better in dec-tiger problem as we
discussed in §5.2 and §5.3

ACKNOWLEDGMENTS
The authors would also like to thank the anonymous referees for
their valuable comments and helpful suggestions. This work was
supported by the National Research Foundation of Korea (NRF)
grant funded by the Korea government (MSIP) (No.2016R1A2B4014323)

REFERENCES
[1] Nezih Altay and Walter G Green III. 2006. OR/MS research in disaster operations

management. European journal of operational research 175, 1 (2006), 475–493.
[2] Christopher Amato and Shlomo Zilberstein. 2009. Achieving goals in decentral-

ized POMDPs. In Proceedings of The 8th International Conference on Autonomous
Agents and Multiagent Systems. International Foundation for Autonomous Agents
and Multiagent Systems, Budapest, Hungary, 593–600.

[3] Raghav Aras, Alain Dutech, and François Charpillet. 2007. Mixed Integer Linear
Programming for Exact Finite-Horizon Planning in Decentralized POMDPs. In
Proceedings of the Seventeenth International Conference on International Conference
on Automated Planning and Scheduling. AAAI Press, Providence, Rhode Island,
USA, 18–25.

[4] Daniel S Bernstein, Robert Givan, Neil Immerman, and Shlomo Zilberstein. 2002.
The complexity of decentralized control of Markov decision processes. Mathe-
matics of operations research 27, 4 (2002), 819–840.

[5] Craig Boutilier. 1999. Sequential optimality and coordination in multiagent
systems. In Proceedings of the 16th international joint conference on Artifical
intelligence, Vol. 99. Morgan Kaufmann Publishers Inc., Stockholm, Sweden, 478–
485.

[6] Anthony Cassandra, Michael L. Littman, and Nevin L. Zhang. 1997. Incremental
pruning: A simple, fast, exact method for partially observable Markov decision

processes. In Proceedings of the Thirteenth conference on Uncertainty in artificial
intelligence. Morgan Kaufmann Publishers Inc., Providence, Rhode Island, USA,
54–61.

[7] Anthony R. Cassandra. 2015. pomdp-solve. http://www.pomdp.org/. (May 2015).
[8] Sonia Chernova and Manuela Veloso. 2007. Multiagent collaborative task learn-

ing through imitation. In Proceedings of the fourth International Symposium on
Imitation in Animals and Artifacts. Newcastle upon Tyne, UK, 74–79.

[9] Jilles Steeve Dibangoye, Christopher Amato, Olivier Buffet, and François Charpil-
let. 2016. Optimally solving Dec-POMDPs as continuous-state MDPs. Journal of
Artificial Intelligence Research 55 (2016), 443–497.

[10] Jakob N. Foerster, Yannis M. Assael, Nando de Freitas, and Shimon Whiteson.
2016. Learning to Communicate to Solve Riddles with Deep Distributed Recurrent
Q-Networks. CoRR abs/1602.02672 (2016).

[11] Jakob N. Foerster, Gregory Farquhar, Triantafyllos Afouras, Nantas Nardelli, and
Shimon Whiteson. 2018. Counterfactual Multi-Agent Policy Gradients. In AAAI
Conference on Artificial Intelligence. AAAI Press, New Orleans, Louisiana, USA,
2974–2982.

[12] Jakob N. Foerster, Nantas Nardelli, Gregory Farquhar, Triantafyllos Afouras,
Philip H. S. Torr, Pushmeet Kohli, and Shimon Whiteson. 2017. Stabilising
Experience Replay for Deep Multi-Agent Reinforcement Learning. In Proceedings
of the 34th International Conference on Machine Learning, Vol. 70. PMLR, Sydney,
Australia, 1146–1155.

[13] J. N. Foerster, C. A. Schroeder deWitt, G. Farquhar, P. H. S. Torr, W. Boehmer, and
S. Whiteson. 2018. Multi-Agent Common Knowledge Reinforcement Learning.
ArXiv e-prints (Oct. 2018). arXiv:cs.MA/1810.11702

[14] Jayesh K. Gupta, Maxim Egorov, and Mykel Kochenderfer. 2017. Cooperative
multi-agent control using deep reinforcement learning. In International Confer-
ence on Autonomous Agents and Multiagent Systems. Springer, Sao Paulo, Brazil,
66–83.

[15] Eric A Hansen, Daniel S Bernstein, and Shlomo Zilberstein. 2004. Dynamic
programming for partially observable stochastic games. In Proceedings of the 19th
national conference on Artificial intelligence. AAAI Press, San Jose, California,
USA, 709–715.

[16] Todd Hester, Matej Vecerik, Olivier Pietquin, Marc Lanctot, Tom Schaul, Bilal
Piot, Dan Horgan, John Quan, Andrew Sendonaris, Ian Osband, et al. 2018. Deep
q-learning from demonstrations. In Thirty-Second AAAI Conference on Artificial
Intelligence.

[17] Steven R. Hirshorn, Linda D. Voss, and Linda K. Bromley. 2017. NASA Systems
Engineering Handbook. MIT Research Lab Technical Report NASA/SP-2016-6105
Rev 2. National Aeronautics and Systems Administration.

[18] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-termmemory. Neural
computation 9, 8 (1997), 1735–1780.

[19] E. Jang, S. Gu, and B. Poole. 2016. Categorical Reparameterization with Gumbel-
Softmax. ArXiv e-prints (Nov. 2016). arXiv:stat.ML/1611.01144

[20] Bingyi Kang, Zequn Jie, and Jiashi Feng. 2018. Policy optimization with demon-
strations. In International Conference on Machine Learning. 2474–2483.

[21] Bilal Kartal, Pablo Hernandez-Leal, and Matthew E. Taylor. 2018. Using Monte
Carlo Tree Search as a Demonstrator within Asynchronous Deep RL. CoRR
abs/1812.00045 (2018). arXiv:1812.00045 http://arxiv.org/abs/1812.00045

[22] Diederik P Kingma and Jimmy Ba. 2015. Adam: A method for stochastic opti-
mization. In International Conference on Learning Representations. Ithaca, San
Diego, USA.

[23] Vijay R. Konda and John N. Tsitsiklis. 2000. Actor-critic algorithms. In Advances
in Neural Information Processing Systems 12. MIT Press, denver, Colorado, 1008–
1014.

[24] Landon Kraemer and Bikramjit Banerjee. 2016. Multi-agent reinforcement learn-
ing as a rehearsal for decentralized planning. Neurocomputing 190 (2016), 82–94.

[25] Aravind S Lakshminarayanan, Sherjil Ozair, and Yoshua Bengio. 2016. Rein-
forcement learning with few expert demonstrations. In NIPS Workshop on Deep
Learning for Action and Interaction. Barcelona, Spain.

[26] Hoang M Le, Yisong Yue, Peter Carr, and Patrick Lucey. 2017. Coordinated Multi-
Agent Imitation Learning. In Proceedings of the 34th International Conference on
Machine Learning, Vol. 70. PMLR, Sydney, Australia, 1995–2003.

[27] J-H Lee and C-O Kim. 2008. Multi-agent systems applications in manufacturing
systems and supply chain management: a review paper. International Journal of
Production Research 46, 1 (2008), 233–265.

[28] Ryan Lowe, Yi Wu, Aviv Tamar, Jean Harb, Pieter Abbeel, and Igor Mordatch.
2017. Multi-agent actor-critic for mixed cooperative-competitive environments.
In Advances in Neural Information Processing Systems 30. Curran Associates, Inc.,
Long beach, California, USA, 6379–6390.

[29] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,
Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg
Ostrovski, et al. 2015. Human-level control through deep reinforcement learning.
Nature 518, 7540 (2015), 529.

[30] Ashvin Nair, Bob McGrew, Marcin Andrychowicz, Wojciech Zaremba, and Pieter
Abbeel. 2018. Overcoming exploration in reinforcement learning with demonstra-
tions. In 2018 IEEE International Conference on Robotics and Automation (ICRA).
IEEE, Brisbane, QLD, Australia, 6292–6299.

Session 4C: Deep Learning AAMAS 2019, May 13-17, 2019, Montréal, Canada

1096

http://www.pomdp.org/
http://arxiv.org/abs/cs.MA/1810.11702
http://arxiv.org/abs/stat.ML/1611.01144
http://arxiv.org/abs/1812.00045
http://arxiv.org/abs/1812.00045

Table 3: Experiment results of five policy solutions for the Mars rover problem

Horizon 4 6 8 10

dec-POMDP* 10.18 18.62 22.47 26.31
Baseline: run 1 7.138 (0.06) 10.82 (0.07) 14.29 (0.08) 17.87 (0.10)
Baseline: run 2 7.138 (0.06) 10.68 (0.07) 14.28 (0.09) 17.80 (0.10)
Baseline: run 3 7.138 (0.06) 10.68 (0.07) 14.30 (0.08) 17.87 (0.10)
Baseline: run 4 7.126 (0.06) 10.69 (0.07) 14.29 (0.08) 17.87 (0.10)
Baseline: run 5 7.138 (0.06) 10.68 (0.07) 14.29 (0.08) 17.86 (0.10)
with MMDP demo.: run 1 10.24 (0.16) 18.42 (0.33) 22.15 (0.31) 25.67 (0.42)
with MMDP demo.: run 2 10.24 (0.16) 18.42 (0.33) 22.16 (0.31) 25.89 (0.42)
with MMDP demo.: run 3 10.24 (0.16) 18.42 (0.32) 22.15 (0.31) 25.71 (0.42)
with MMDP demo.: run 4 10.25 (0.15) 18.42 (0.32) 22.16 (0.31) 25.87 (0.42)
with MMDP demo.: run 5 10.25 (0.15) 18.42 (0.32) 22.15 (0.31) 25.67 (0.42)

Table 4: Experiment results of five policy solutions for the box pushing problem

Horizon 4 6 8 10

dec-POMDP* 98.59 120.67 191.22 223.74
Baseline: run 1 18.28 (0.27) 36.71 (0.38) 52.97 (0.44) 54.78 (0.48)
Baseline: run 2 18.28 (0.27) 36.78 (0.38) 52.98 (0.44) 54.79 (0.49)
Baseline: run 3 18.32 (0.28) 36.78 (0.38) 52.97 (0.44) 54.79 (0.49)
Baseline: run 4 18.28 (0.27) 36.78 (0.38) 52.98 (0.44) 54.79 (0.49)
Baseline: run 5 18.28 (0.27) 36.78 (0.38) 52.98 (0.44) 54.79 (0.49)
with MMDP demo.: run 1 99.76 (3.14) 121.26 (3.61) 191.60 (4.34) 226.40 (4.74)
with MMDP demo.: run 2 99.36 (3.18) 121.60 (3.60) 191.86 (4.35) 224.10 (4.86)
with MMDP demo.: run 3 99.86 (3.14) 123.58 (3.56) 190.76 (4.37) 223.98 (4.78)
with MMDP demo.: run 4 99.85 (3.15) 123.48 (3.56) 191.27 (4.34) 225.27 (4.78)
with MMDP demo.: run 5 99.86 (3.14) 122.56 (3.60) 191.59 (4.35) 223.72 (4.80)

Table 5: Experiment results of five policy solutions for the dec-tiger problem

Horizon 4 6 8 10

dec-POMDP* 4.80 10.38 12.22 15.18
Baseline: run 1 -8 (0.00) -12 (0.00) -16 (0.00) -20 (0.00)
Baseline: run 2 -8 (0.00) -12 (0.00) -16 (0.00) -20 (0.00)
Baseline: run 3 -8 (0.00) -12 (0.00) -16 (0.00) -20 (0.00)
Baseline: run 4 -8 (0.00) -12 (0.00) -16 (0.00) -20 (0.00)
Baseline: run 5 -8 (0.00) -12 (0.00) -16 (0.00) -20 (0.00)
with MMDP demo.: run 1 -64.47 (4.32) -92.53 (5.38) -117.70 (6.13) -156.23 (7.06)
with MMDP demo.: run 2 -64.25 (4.30) 4.94 (0.91) -118.26 (6.32) -145.18 (7.04)
with MMDP demo.: run 3 -58.63 (4.24) -94.72 (5.34) -115.35 (6.34) -155.55 (7.05)
with MMDP demo.: run 4 -64.25 (4.30) -94.82 (5.34) -120.01 (6.28) -145.18 (7.04)
with MMDP demo.: run 5 -64.42 (4.32) -86.1 (5.35) -125.40 (6.31) -145.18 (7.04)
with MPOMDP demo.: run 1 4.28 (0.86) 5.43 (0.69) 9.10 (1.13) 9.54 (1.28)
with MPOMDP demo.: run 2 4.30 (0.86) 4.94 (0.91) 9.13 (1.15) 10.62 (0.98)
with MPOMDP demo.: run 3 4.31 (0.86) 5.50 (0.69) 9.24 (1.13) 9.94 (1.18)
with MPOMDP demo.: run 4 4.28 (0.86) 5.63 (0.65) 6.31 (1.13) 10.61 (1.00)
with MPOMDP demo.: run 5 -1.80 (0.80) 5.47 (0.69) 6.38 (0.86) 10.46 (1.01)

Session 4C: Deep Learning AAMAS 2019, May 13-17, 2019, Montréal, Canada

1097

[31] Ranjit Nair, Milind Tambe, Makoto Yokoo, David Pynadath, and Stacy Marsella.
2003. Taming decentralized POMDPs: Towards efficient policy computation
for multiagent settings. In Proceedings of the 18th international joint conference
on Artificial intelligence. Morgan Kaufmann Publishers Inc., Acapulco, Mexico,
705–711.

[32] Frans Adriaan Oliehoek. 2013. Sufficient Plan-Time Statistics for Decentralized
POMDPs. In Proceedings of the 23rd international joint conference on Artificial
Intelligence. AAAI Press, Beijing, China, 302–308.

[33] Frans A Oliehoek and Christopher Amato. 2016. A concise introduction to decen-
tralized POMDPs (1st ed.). Springer.

[34] Frans A Oliehoek, Matthijs TJ Spaan, Bas Terwijn, Philipp Robbel, and João V
Messias. 2017. The MADP toolbox: an open source library for planning and
learning in (multi-) agent systems. The Journal of Machine Learning Research 18,
1 (2017), 3112–3116.

[35] Frans A Oliehoek, Matthijs TJ Spaan, and Nikos Vlassis. 2008. Optimal and
approximate Q-value functions for decentralized POMDPs. Journal of Artificial
Intelligence Research 32 (2008), 289–353.

[36] S. Omidshafiei, D.-K. Kim, M. Liu, G. Tesauro, M. Riemer, C. Amato, M. Campbell,
and J. P. How. 2018. Learning to Teach in Cooperative Multiagent Reinforcement
Learning. ArXiv e-prints (May 2018). arXiv:cs.MA/1805.07830

[37] Shayegan Omidshafiei, Jason Pazis, Christopher Amato, Jonathan P How, and
John Vian. 2017. Deep Decentralized Multi-task Multi-Agent Reinforcement
Learning under Partial Observability. In Proceedings of the 34th International
Conference on Machine Learning, Vol. 70. PMLR, Sydney, Australia, 2681–2690.

[38] Aravind Rajeswaran, Vikash Kumar, Abhishek Gupta, Giulia Vezzani, John Schul-
man, Emanuel Todorov, and Sergey Levine. 2018. Learning Complex Dexter-
ous Manipulation with Deep Reinforcement Learning and Demonstrations. In
Proceedings of Robotics: Science and Systems. Pittsburgh, Pennsylvania, USA.
https://doi.org/10.15607/RSS.2018.XIV.049

[39] Sarvapali D Ramchurn, Feng Wu, Wenchao Jiang, Joel E Fischer, Steve Reece,
Stephen Roberts, Tom Rodden, Chris Greenhalgh, and Nicholas R Jennings. 2016.
Human–agent collaboration for disaster response. Autonomous Agents and Multi-
Agent Systems 30, 1 (2016), 82–111.

[40] Stéphane Ross and Drew Bagnell. 2010. Efficient reductions for imitation learning.
In Proceedings of the thirteenth international conference on artificial intelligence
and statistics. 661–668.

[41] Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. 2011. A reduction of imi-
tation learning and structured prediction to no-regret online learning. In Pro-
ceedings of the fourteenth international conference on artificial intelligence and
statistics. 627–635.

[42] John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel.
2016. High-Dimensional Continuous Control Using Generalized Advantage

Estimation. In International Conference on Learning Representations. San Juan,
Puerto Rico.

[43] Sven Seuken and Shlomo Zilberstein. 2007. Improved memory-bounded dynamic
programming for decentralized POMDPs. In Proceedings of the Twenty-Third
Conference on Uncertainty in Artificial Intelligence. AUAI Press, Vancouver, BC,
Cananda, 344–351.

[44] Kaushik Subramanian, Charles L Isbell Jr, and Andrea L Thomaz. 2016. Explo-
ration from demonstration for interactive reinforcement learning. In Proceedings
of the 2016 International Conference on Autonomous Agents & Multiagent Sys-
tems. International Foundation for Autonomous Agents and Multiagent Systems,
447–456.

[45] Wen Sun, Arun Venkatraman, Geoffrey J Gordon, Byron Boots, and J Andrew
Bagnell. 2017. Deeply aggrevated: Differentiable imitation learning for sequen-
tial prediction. In Proceedings of the 34th International Conference on Machine
Learning-Volume 70. JMLR. org, 3309–3318.

[46] Daniel Szer, François Charpillet, and Shlomo Zilberstein. 2005. MAA*: a heuristic
search algorithm for solving decentralized POMDPs. In Proceedings of the Twenty-
First Conference on Uncertainty in Artificial Intelligence. AUAI Press, Edinburgh,
Scotland, 576–583.

[47] Ardi Tampuu, Tambet Matiisen, Dorian Kodelja, Ilya Kuzovkin, Kristjan Kor-
jus, Juhan Aru, Jaan Aru, and Raul Vicente. 2017. Multiagent cooperation and
competition with deep reinforcement learning. PloS one 12, 4 (2017), e0172395.

[48] Hado Van Hasselt, Arthur Guez, and David Silver. 2016. Deep Reinforcement
Learning with Double Q-Learning.. In Proceedings of the Thirtieth AAAI Confer-
ence on Artificial Intelligence. AAAI Press, Phoenix, Arizona, USA, 2094–2100.

[49] Ruben Van Parys, Maarten Verbandt, Marcus Kotzé, Jan Swevers, Herman Bruyn-
inckx, Johan Philips, and Goele Pipeleers. 2018. Flexible Multi-Agent System
for Distributed Coordination, Transportation & Localisation. In Proceedings of
the 17th International Conference on Autonomous Agents and Multiagent Sys-
tems. International Foundation for Autonomous Agents and Multiagent Systems,
Stockholm, Sweden, 1832–1834.

[50] Shiyong Wang, Jiafu Wan, Daqiang Zhang, Di Li, and Chunhua Zhang. 2016.
Towards smart factory for industry 4.0: a self-organized multi-agent system
with big data based feedback and coordination. Computer Networks 101 (2016),
158–168.

[51] Ronald J Williams. 1992. Simple statistical gradient-following algorithms for
connectionist reinforcement learning. Machine learning 8, 3-4 (1992), 229–256.

[52] E. Zhan, S. Zheng, Y. Yue, L. Sha, and P. Lucey. 2018. Generative Multi-Agent
Behavioral Cloning. ArXiv e-prints (March 2018). arXiv:1803.07612

[53] X. Zhang and H. Ma. 2018. Pretraining Deep Actor-Critic Reinforcement
Learning Algorithms With Expert Demonstrations. ArXiv e-prints (Jan. 2018).
arXiv:cs.AI/1801.10459

Session 4C: Deep Learning AAMAS 2019, May 13-17, 2019, Montréal, Canada

1098

http://arxiv.org/abs/cs.MA/1805.07830
https://doi.org/10.15607/RSS.2018.XIV.049
http://arxiv.org/abs/1803.07612
http://arxiv.org/abs/cs.AI/1801.10459

	Abstract
	1 Introduction
	2 Related work
	3 Background
	3.1 Dec-POMDP
	3.2 Policy Gradient Algorithm

	4 Method
	4.1 Multi-agent Actor Critic with Centralized Critic
	4.2 Mixing Demonstrations from Centralized Policy

	5 Experiments
	5.1 Experimental Setup
	5.2 Effectiveness of Demonstrations from MMDP Policy
	5.3 Demonstrations from MPOMDP Policy

	6 Conclusion
	A Full results from all five policy solutions
	Acknowledgments
	References

