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ABSTRACT
In this paper, we propose an argument-centric persuasion frame-

work. We first introduce a decision problem, called persuasion sat-

isfiability, which is defined as the problem of determining whether

there exists a sequence of arguments that starts from a given initial

state, such as beliefs or wishes of the persuadee, and allows for

achieving a given purpose of the persuader. This sequence should

satisfy different constraints, including particularly upper bound

constraints on the weight as well as on the length. We show that

this decision problem is NP-complete and propose an encoding

in partial weighted MaxSAT framework for solving it. Then, we

show that the proposed encoding offers flexibility for dealing with

different variants of the persuasion satisfiability problem. Finally, to

avoid the explicit use of upper bound constraints on the weight and

the length, we consider the notion of Pareto optimality by propos-

ing an approach based on the use of partial weighted MaxSAT,

which allows for finding non dominated (optimal) solutions.
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1 INTRODUCTION
Persuasion technologies aim at influencing users to make psycho-

logical and/or physical changes (thoughts, feelings, behaviors, mo-

tivation, etc) in several domains, such as healthcare, education,

politics, marketing, etc (for interesting more complete definitions,

see e.g. [12, 18]). One of the key approaches in the persuasion ac-

tivity is the explicit use of convincing arguments [17, 18]. In this

context, it is worth mentioning that in [15] the author has proposed

interesting and reasonable key requirements for argument-centric

persuasion in the particular case of behavior change. These require-

ments include those essential in this work, which are minimizing

the effort involved on the part of the user and maintaining engage-

ment by, for instance, avoiding long sequences of arguments.

In the literature, there are number of works which focus on the

use of arguments in the persuasion activity. One can first mention

the dialogical approach, where persuasion is defined as a dialogue

between two agents trying to convince each other about an issue
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by exchanging arguments, that is, each agent plays both the role

of persuader as well as that of persuadee (e.g. [2–4, 8, 21, 22]). In

addition, in [16], the authors have proposed an asymmetric ap-

proach, where the word "asymmetric" refers to the fact that the

persuadee agent is unable to posit arguments, but can accept and

reject the arguments of the persuader agent. The main advantage

of an asymmetric persuasion system is that it allows for avoiding

natural language processing. As shown in this paper, this approach

can be used in our argument-centric persuasion framework. Fur-

thermore, there are works where the persuader system uses models

and strategies for selecting the right sequence of arguments to con-

vince the persuadee. To illustrate this point, in [13], the authors

have proposed a decision-tree based framework for representing

persuasion dialogues. In this general framework, the notion of de-

cision tree is adapted to persuasion for selecting the argument to

posit in the current state of dialogue. In the same vein, we propose

in this work approaches that are based on the use of encodings in

partial weighted MaxSAT framework for selecting the sequences

of arguments that the persuader agent has to use. Let us note that

other recent interesting studies on argument-centric persuasion

have been proposed in [9, 14, 19, 20].

In this paper, we introduce an argument-centric persuasion

framework. To do this, we consider the case where the persua-

sion activity consists in using a sequence of arguments following

different approaches, in particular, that where the persuader agent

shows that the target objective is a consequence of knowledge,

beliefs and wishes of the persuadee agent. An argument in our

framework is defined as an ordered pair of sets of literals, which

can be seen as a simple intermediate approach between the logic-

based one where the arguments are defined using logical formulas

(e.g. see [1, 7]) and Dung’s abstract one [10] where the internal

structure is not considered at all. In this context, our main motiva-

tion is enhancing the expressivity of the abstract framework and

avoiding at the same time important computational complexity

issues, such as the fact that entailment in classical logic is coNP-

complete. Moreover, to take into account particular requirements

for argument-centric persuasion introduced in [15], we associate

a weight to every argument to represent the effort needed on the

part of the persuadee to integrate this argument, and we reason on

the lengths of the argument sequences in order to prioritize shorter

ones.

To formally define our framework, we introduce a decision prob-

lem, called persuasion satisfiability, which is defined as the problem

of determining whether there exists a sequence of arguments that

starts by a given set of literals, called the initial state, and allows

for obtaining another given set of literals, called the objective state.

This sequence should satisfy different constraints, in particular, up-

per bound constraints on the weight as well as on the length. The
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initial state can be seen as the set of knowledge, beliefs and wishes

of the persuadee agent, while the objective state as the purpose of

the persuader agent. From the computational complexity point of

view, we show that this decision problem is NP-complete. Note that

we propose a simple approach for using the proposed framework in

the context of a bidirectional persuasion by allowing the persuadee

agent to accept and reject the arguments.

Then, we propose an encoding in partial weighted MaxSAT

framework for solving the persuasion satisfiability problem. Using

the fact that partial weighted MaxSAT is an optimization problem,

our encoding allows for finding a solution of the smallest weight.

Next, we show that the proposed partial weighted MaxSAT en-

coding offers flexibility for dealing with different variants of the

persuasion satisfiability problem, such as allowing the persuader

to hide parts of conclusions of the used arguments to avoid incon-

sistency, or considering a conflict graph between arguments.

As said before, we use in the persuasion satisfiability problem

upper bound constraints on the length and on the weight. The

choice of the bounds may be arbitrary without specific knowledge

about the considered case, which can be seen as a drawback of

our approach. Thus, to avoid the use of upper bounds constraints,

we consider the notion of Pareto optimality. Indeed, we propose a

method based on the use of partial weighted MaxSAT encodings

that allows for finding solutions that are not dominated (optimal in

Pareto sense). More precisely, a sequence of arguments is optimal

if there is no sequence that has a smaller length without a greater

weight, or a smaller weight without a greater length.

2 A PERSUASION FRAMEWORK
In this section, we introduce a simple argument-centric persuasion

framework. We first describe the approches that we consider in the

persuasion activity. Then, we formally introduce our framework

and, in particular, the persuasion satisfiability problem. After that,

we provide some computational complexity results. Finally, we

describe a basic bidirectional approach within our framework.

2.1 Persuasion Approaches
In this work, we consider that the persuasion activity consists in

using a sequence of arguments that allows the persuader agent

to achieve a target objective by using one of the following three

approaches:

• Strong approach: the persuader agent shows that the target
objective is a consequence of knowledge, beliefs and wishes

of the persuadee agent.

• Weak approach: the persuader agent shows that the target
objective has as a consequence wishes of the persuadee agent.

In other words, the persuadee may satisfy her/his purpose

by accepting/doing the purpose of the persuader, but the

latter is not a requirement to satisfy the persuadee purpose.

• Mixed approach: the persuader agent uses both the strong

and the weak approaches for convincing the persuadee agent.

For instance, the persuader can use the strong approach to

achieve a part of the purpose and the weak approach to

achieve the remaining part.

For instance, using the strong approach, the persuader agent can

use the argument stating that the fact that the persuadee knows

that a given product is efficient and not expensive has as a conse-

quence that this product should be purchased: the purchase of the

considered product by the persuadee agent is the purpose of the

persuader agent and the fact that the considered product is efficient

and not expensive are beliefs of the persuadee agent. In addition,

using the weak approach, the persuader agent can use the argument

stating that playing sports has as a consequence that the persuadee

agent may develop friendships: playing sports is the purpose of

the persuader agent and developing friendships is a wish of the

persuadee agent. It is worth noting that the previous argument does

not mean that playing sports is the unique way to develop friend-

ships. In summary, in the strong approach the persuader starts with

knowledge, beliefs and wishes of the persuadee, while in the weak

approach the persuader starts with the target objective. Regarding

the mixed approach, the persuader agent can first use the weak

approach with the argument that stop smoking allows for avoiding

dangerous carcinogens, and then the strong approach with the ar-

gument that avoiding dangerous carcinogens allows for avoiding

dangerous diseases: the purpose of the persuader is convincing

the persuadee to stop smoking, and the persuadee wishes to avoid

any dangerous disease. As a side note, the mixed approach can be

used by combining in different other manners the strong and weak

approaches.

In this paper, we define the notion of argument as an ordered pair

of sets of literals. In a sense, this can be seen as an abstraction of

the standard logic-based argument structure (e.g. see [1, 7]). Indeed,

a logic-based argument is defined as an ordered pair of a set of

formulas representing the support and a formula representing the

conclusion. Thus, instead of using logical formulas, we use here

literals. Our aim in this context is to use a simple intermediate ap-

proach between the logic-based one and Dung’s abstract one [10]

where the internal structure is not considered at all.

It is noteworthy that our framework is inspired, in part, from the

requirements for argument-centric persuasion introduced in [15], in

particular, the requirements 3 and 6. Indeed, we associate a weight

to each argument in order to represent the effort needed on the

part of the persuadee to integrate this argument, and we reason

on the lengths of the arguments sequences in order to prioritize

shorter ones.

2.2 Framework Definition
We here define the notion of persuasion frame and some related

notions. Then, we introduce a decision problem, called persua-

sion satisfiability, which is defined as the problem of determining

whether there exists a sequence of arguments that starts by a given

set of literals, called the initial state, and allows for obtaining an-

other given set of literals, called the objective state.

First, let us recall that a propositional variable is a variable that
can either be true or false. A literal is either a propositional variable
or a negated propositional variable. As usual, we use the unary

logical connective ¬ to denote the negation. Moreover, given a set

of propositional variables V , we use Lit (V ) to denote the set of all

the possible literals that are defined using the variables in V , i.e.,
Lit (V ) = V ∪ {¬p | p ∈ V }.
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Definition 2.1 (Persuasion Frame). A persuasion frame is a tu-

ple (S,A,W ) where S is a non empty finite set of propositional

variables representing abstract statements, A is a finite set of argu-

ments built over S andW a mapping that associates a weight (an

integer) to each argument inA. An argument a overS is an ordered

pair ⟨X ,C⟩ where X ,C ⊆ Lit (S), X ∪ C is consistent, X ∩ C = ∅
and C , ∅, X is called the support of a and C the conclusion of the

latter.

Given an argument a, we use Supp (a) and Conc (a) to denote its

support and its conclusion respectively.

The weight of an argument is used to represent the cost of the

latter. In particular, the weight mapping can be used as a weakness

measure of the arguments regarding the impact on the persuadee

agent.

Example 2.2. Let us first consider the following set of statements

S:

• adi : the advertisement number i convinces the considered
agent.

• h: the considered agent thinks that the product p is healthy.

• e f f : the considered agent thinks that the product p is effec-

tive.

• exp: the considered agent thinks that the product p is expen-

sive.

• pack : the considered agent likes the packaging of p.
• buy: the considered agent is convinced that the product p
has to be purchased.

In this example, we consider the following set of argumentsA: a1 =
⟨{ad1}, {h, e f f }⟩, a2 = ⟨{ad2}, {¬exp}⟩, a3 = ⟨{ad3}, {pack }⟩, a4 =
⟨{h, e f f ,¬exp,pack }, {buy}⟩,a5 = ⟨{h, e f f ,pack }, {buy}⟩ anda6 =
⟨{pack }, {buy}⟩, where ⟨X ,C⟩ means that the truth of the elements

of X has as a consequence the truth of the elements of C . For
instance, the argument a6 means that if the persuadee agent likes

the packaging of the productp, then she/he is convinced that she/he
has to buy it. Clearly, the argument a4 is stronger than a5 which
is stronger than a6. To represent this fact, one can use the weight

mapping by setting for instanceW (a4) = 0,W (a5) = 1 andW (a6) =
2.

A persuasion frame can be developed by using a crowdsourcing-

based collaborative approach. For instance, an interesting approach

may consist in allowing crowd members to propose arguments and

also to vote on arguments as describe in Figure 1. The votes are

then exploited for defining the weights of the arguments. For the

sake of illustration, one can use the following simple vote-based

mapping:

W (a) = #NeдVotes (a)−#PosVotes (a)

where #NeдVotes (a) and #PosVotes (a) corresponds respectively to
the number of votes against and for the argument a. This function
means that more votes for a and less votes against it reduce the

weight.

Definition 2.3 (Argument Path). Given a persuasion frame F =

(S,A,W ) and a set I ⊆ Lit (S), an I -path in F is a sequence

s = a1, . . . ,ak of distinct arguments in A where, for all i ∈ 1..k ,
Supp (ai ) ⊆ I ∪

⋃
1≤j<i Conc (aj ).

Persuasion Frame

Figure 1: Building a persuasion frame

The condition on a sequence of arguments to be an I -path means

only that we have to obtain the support of an argument before

using it.

Given an I -path s = a1, . . . ,ak , we use Arд(s ), L (s ),W (s ) and
C (s ) to denote respectively the set {a1, . . . ,ak }, the length of the

sequence k ,
∑k
i=1W (ai ) and I ∪

⋃k
i=1Conc (ai ).

Definition 2.4 (Consistency). An I -path a1, . . . ,ak is said to be

consistent if the set of literals I ∪
⋃k
i=1Conc (ai ) is consistent.

Roughly speaking, a consistent I -path is a sequence of argu-

ments that can be used together starting from I and do not produce
contradictory pieces of information. Consider again Example 2.2.

The sequence a1,a2,a3,a4 is a consistent {ad1,ad2,ad3}-path, but it
is not a consistent {ad1,ad2,ad3, exp}-path since a2 produce ¬exp
which is in contradiction with exp in the initial state.

Now, we introduce the central decision problem studied in this

work.

Definition 2.5 (Persuasion Satisfiability Problem). Given a persua-

sion frame F = (S,A,W ), a consistent set of literals I ⊆ Lit (S),
called the initial state, a non empty consistent set of literals O ⊆
Lit (S), called the objective state, a length bound k ∈ N ∪ {∞} and a

weight bound v ∈ Z ∪ {∞}, the persuasion satisfiability problem is

to check whether there exists a consistent I -path s in F such that

O ⊆ C (s ), L (s ) ≤ k andW (s ) ≤ b.

We denote every instance of the persuasion satisfiability problem

as a tuple of the form (F , I ,O,k,b). Further, note that ∞ is only

used to formally represent the absence of a bound.

For example, if we only consider the strong approach, the initial

state corresponds to knowledge, beliefs and wishes of the persudee

agent and objective state to the purpose of the persuader agent.

Conversely, if we only consider the weak approach, the initial state

corresponds to the purpose of the persuader and the objective state

to wishes of the persuadee.
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Example 2.6. We here provide an example inspired from [9]. Let

us consider the following statements: s1 =being healthy, s2 =stop
smoking, s3 =a long life, s4 =good looking, s5 =supporting fam-

ily. Let F = (S,A,W ) be a persuasion frame such that S =

{s1, s2, s3, s4, s5}, A = {a1 = ⟨{s1}, {s2}⟩, a2 = ⟨{s3}, {s1}⟩,a3 =
⟨{s4}, {s1}⟩,a4 = ⟨{s5}, {s3}⟩,a5 = ⟨{s4}, {s2}⟩}, and W (a1) = 3,

W (a2) = 2,W (a3) = 2,W (a4) = 1 andW (a5) = 6. In this context,

we consider the instance of the persuasion satisfiability problem

P = (F , {s5}, {s2}, 3, 6). Thus, using the strong approach, the aim

in P is to convince the persuadee to stop smoking by using the fact

that it is important for her/him to support her/his family. The {s5}-
path a4,a2,a1 is a solution of P which corresponds to the sequence:

supporting family→ a long life→ being healthy→ stop smoking.

It is worth noticing that the support and the conclusion of an ar-

gument are not treated in our framework as an implication in classi-

cal logic. Consider for instance the two arguments a = ⟨{p,¬q}, {r }⟩
and a′ = ⟨{q}, {r }⟩. Clearly, a,a′ and a′,a are both not {p}-paths
since the supports of a and a′ are both not included in {p} (see
Definition 2.3). However, we have in classical logic {p} ∪ {p ∧¬q →
r ,q → r } ⊢ r . In fact, r is obtained from {p} ∪ {p ∧ ¬q → r ,q → r }
using the law of excluded middle q ∨ ¬q that is valid in classical

logic. But in our framework, we need to know the disjunct in q∨¬q
that we have to take into account for choosing the appropriate argu-

ment to produce r : in the case where q is true, we use the argument

a′, otherwise, we use a. For example, consider that p = havinд time ,
q = there is an exam and r = review lessons . In this case, the argu-

ment a can be used when the persuadee agent prefers reviewing her
lessons if she has time to do it without the constraint of an exam,

while a′ can be used when she can be convinced by the constraint

of an exam. In a sense, this example shows that the support and

the conclusion of an argument are treated in our framework as a

constructive implication. The word “constructive” is used to refer

to the constructivism principles in mathematics (see e.g. [6, 24]).

One of the main constructivism principles is the rejection of the

law of excluded middle.

2.3 Computational Complexity
We here show that the persuasion satisfiability problem is NP-

complete, even when we do not consider one of the bounds on the

length and the weight. In order to show NP-hardness, we use the

well-known NP-complete problem of Hamiltonian cycle.

Theorem 2.7. The persuasion satisfiability problem is NP-Complete.

Proof. Given an instance P = (F , I ,O,k,b)withF = (S,A,W )
and an I -path s in F , one can check that s is a solution of P in

polynomial time. Indeed, we only have to check the properties

O ⊆ C (s ), L (s ) ≤ k andW (s ) ≤ b. Moreover, one can easily

see that P is satisfiable iff there exists a solution bounded by the

number of abstract statement (|S|). Indeed, this comes from the

fact that one can require w.l.o.g. that each used argument has

to bring at least one additional piece of information in Lit (S).
As a consequence, the persuasion satisfiability problem is in NP.

To show that the latter is NP-hard, we use the well-known NP-

complete problem of Hamiltonian cycle, which consists in deter-

mining if an undirected graph contains a Hamiltonian cycle. Let

us recall that a Hamiltonian path in a graph is a path that visits

each vertex exactly once. A Hamiltonian cycle is a Hamiltonian

path that is a cycle. Let us now define our reduction of the Hamil-

tonian cycle problem into the persuasion satisfiability problem. Let

G = (V ,E) be an undirected graph. Then, we associate to G the

instance PG = (F , {v0},V ∪ {v
′
0
}, |V |,∞) where v0 ∈ V , v ′

0
is a

fresh vertex (v ′
0
< V ) and F = (V ,A = (

⋃
{v,v ′ }∈E {⟨{v}, {v

′}⟩}) ∪
(
⋃
{v,v0 }∈E {⟨{v}, {v

′
0
}⟩}),W ) such thatW (a) = 0 for every a ∈ A.

Assume that G admits as a Hamiltonian cycle the following path

c = {v0,v1}, {v1,v2}, . . . , {vn−1,vn }{vn ,v0}. Then, the sequence

s = ⟨{v0}, {v1}⟩, ⟨{v1}, {v2}⟩, . . . , ⟨{vn−1}, {vn }⟩, ⟨{vn }, {v
′
0
}⟩ is a

{v0}-path of F with C (s ) = V ∪ {v0} since c is a Hamiltonian

cycle. Using again the fact that c is a Hamiltonian cycle, we get

L (s ) ≤ |V |. Then, s is a solution of PG . It is easy to use a similar

approach to show that every solution of PG can be transformed

into a Hamiltonian cycle of G. □

Our proof of Theorem 2.7 shows that the persuasion satisfia-

bility problem is NP-complete, even when we do not consider the

upper bound on the weight. Similarly, by using the weights of the

arguments to represent the path length, we can also show that the

problem remains NP-complete even when we do not consider the

upper bound on the length.

Proposition 2.8. The restriction of the persuasion satisfiability
problem to the instances of the form (F , I ,O,k,∞) is NP-complete.
Further, the restriction of the persuasion satisfiability problem to the
instances of the form (F , I ,O,∞,b) is also NP-complete.

2.4 A Basic Bidirectional Approach
In our framework, we do not explicitly describe how the persuader

agent enters into a dialogue with the persuadee agent. However,

this does not mean that we only consider a unidirectional approach

for persuasion. For instance, in the same way as the asymmetric

persuasion framework introduced in [16], our framework can be

used in the context of a bidirectional asymmetric persuasion ap-

proach by allowing the persuadee to only accept or reject every

argument.

Consider the approach described in Figure 2. First, the persuader

agent uses the solution a1 → · · · → al . The persuadee agent

accepts only the subsequence a1 → · · · → ai−1 and rejects the

argument ai . Then, the persuader agent recomputes a new solu-

tion without taking into account the argument a1, . . . ,ai , since
a1, . . . ,ai−1 are already accepted and ai is rejected. Using the fact

that the persuader agent communicated already i arguments to

the persuadee agent, the length upper bound is set to k − i . Fur-
ther, the weight upper bound has to be reduced by the weights

of the accepted arguments a1, . . . ,ai−1. More precisely, the new

weight upper bound is equal to b −
∑i−1
j=1W (aj ). Note thatW |A′

corresponds to the restriction ofW to A ′

3 AN ENCODING IN PARTIAL WEIGHTED
MAXSAT

In this section, we employ a declarative approach for solving the

persuasion satisfiability problem. Indeed, we propose an encoding

of this problem in partial weighted MaxSAT, which is a well-known

optimization problem within the artificial intelligence community.
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Figure 2: A basic bidirectional approach

In fact, our encoding allows for finding a solution of the smallest

weight, since partial weighted MaxSAT is an optimization problem.

First, let us recall that a CNF formula is a conjunction of clauses

where a clause is a disjunction of literals. It is well-known that

every propositional formula can be translated to CNF w.r.t. the

satisfiability problem using Tseitin’s linear encoding [25]. A Boolean
interpretation of a CNF formula ϕ is an assignment that associates

truth values in {0, 1} to propositional variables in Var (ϕ), where 0
stands for false and 1 stands for true. A Boolean interpretation is

extended to CNF formulas as usual. Amodel of a CNF formula ϕ is a

Boolean interpretation B satisfying this formula, i.e., B (ϕ) = 1. The

problem of determining whether there exists a model that satisfies

a given CNF formula, abbreviated as SAT, is one of the most studied

NP-complete problems.

In partial weighted MAX-SAT, each clause is either relaxable

(soft) with an associate cost or non-relaxable (hard). The objective

is to find a Boolean interpretation that satisfies all the hard clauses

and minimize the cost of the falsified soft clauses. Given a satisfiable

partial weighted MAX-SAT instance ϕ and a solution B of ϕ, we
use cost (B) to denote the cost of B.

Consider for instance the partial weighted MAX-SAT instance

ϕ = ϕh ∧ ϕs where ϕh = (p ∨ q) ∧ (p ∨ r ) is the hard part and

ϕs = (3 : ¬p) ∧ (1 : ¬q) ∧ (1 : ¬r ) is the soft part. Clearly, it is not
possible to satisfy at the same time all the hard and soft clauses. The

Boolean interpretationB defined byB (p) = 0 andB (q) = B (r ) = 1

is a solution of the instance ϕ. Indeed, the cost of B is equal to 2

and the costs of all the other models of the hard part ϕh are greater

than or equal to 3.

Let P = (F , I ,O,k,b) be an instance of the persuasion satis-

fiability problem, where F = (S,A,W ). In order to define our

encoding for the instance P , we need some syntactic elements. We

first associate to each literal l ∈ Lit (S) a set of k + 1 distinct propo-

sitional variables denoted p0l , . . . ,p
k
l . The propositional variable p

i
l

is used to express whether or not the literal l is produced at the

step number i . In particular, p0l is true if and only if l occurs in the

initial state I . Moreover, given a subset of literals X ⊆ Lit (S) and
0 ≤ i ≤ k , we use R (X , i ) to denote the set of variables {pil | l ∈ X }.
We also associate to each argument a ∈ A a distinct propositional

variable denoted qa and a set of k distinct propositional variables

denoted r1a , . . . , r
k
a . The propositional variable qa is used to ex-

press whether or not the argument a is used in the solution, and

similarly r ia is used to express whether or not the argument a is

used in the solution at the step number i . Further, given a literal

l ∈ Lit (S), we use Arд(l ,A) to denote the set of the arguments

{⟨X ,C⟩ ∈ A | l ∈ C}. We generalize this notation to the sets of

literals as follows: Arд(X ,A) = {⟨X ,C⟩ ∈ A | X ∩C , ∅}.

In the following, we describe our partial weighted MaxSAT en-

coding.We first define the hard part of this encoding. In this context,

the following formula expresses that I corresponds to the initial

state: ∧
l ∈I

p0l ∧
∧

l ′∈Lit (S)\I

¬p0l ′ (1)

Then, we introduce a formula that allows us to require a consistent

I -path: ∧
e ∈S

k∧
i=0

k∧
j=0

(¬pie ∨ ¬p
j
¬e ) (2)

The following formula is used to relate the truth of every variable

of the form pil to the use of at least one argument containing l in
its conclusion at the step i:∧

l ∈Lit (S)

k∧
i=1

(pil →
∨

a∈Arд (l,A)

r ia ) (3)

The next formula expresses that the use of an argument at the step

i requires the truth of its support before this step:∧
a=⟨X ,C⟩∈A

k∧
i=1

(r ia → (
∧
l ∈X

(
i−1∨
j=0

pil ))) (4)

Then, we propose a formula that states that if an argument is used

at the step i , then the literals of its conclusion are true at this step:∧
a=⟨X ,C⟩∈A

k∧
i=1

(r ia → (
∧

R (C, i ))) (5)

where

∧
R (C, i ) represents the conjunction of the literals occurring

in R (C, i ).
We now introduce the formula expressing the fact that each argu-

ment is used at most once:∧
a∈A

k∑
i=1

r ia ≤ 1 (6)

Similarly, the following formula expresses the fact that in each step

we use at most one argument:

k∧
i=1

∑
a∈A

r ia ≤ 1 (7)
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Essentially, the next conjunction of clauses states that we have to

obtain the objective state:

(
∧

l ∈O\I

(
k∨
i=1

pil )) (8)

The following formula is only used to associate the truth of qa to

the use of the argument a:∧
a∈A

((
k∨
i=1

r ia ) ↔ qa ) (9)

The relaxable part contains only the following soft clauses:

W (a) : ¬qa f or every a ∈ A (10)

Every soft clause allows for associating each argument to its weight.

The formulas (6) and (7) involve the well-known at-most-one

constraint. There are several linear encodings of this constraint

as CNF formulas w.r.t. the propositional satisfiability problem (e.g.

see [23]). Furthermore, for the sake of clarity, we do not use the

conjunctive normal form for describing the hard part of our encod-

ing. However, it is easy to transform the hard part into an equi-

satisfiable CNF formula by using Tseitin’s linear encoding [25]. The

main idea of this encoding consists in using De Morgan’s laws with

other valid equivalence rules, and associating fresh propositional

variables to subformulas. Consider for instance the formula (4).

We first associate a fresh variable sil for every subformula of the

form

∨i−1
j=0 p

i
l . Then, we replace (4) with the conjunction of clauses∧

a=⟨X ,C⟩∈A
∧k
i=1
∧
l ∈X (¬r ia ∨ sil ) and conjunctively add impli-

cations of the form siX →
∨i−1
j=0 p

i
l , which can be easily replaced

by simple clauses. It is worth mentioning that we do not need to

use the equivalence connective for relating the fresh variables to

their associated subformulas, since the implication connective is

sufficient to preserve satisfiability.

From now on, we use E (P ) to denote the encoding that corre-

sponds to the partial weighted MaxSAT instance (1)∧ · · · ∧(10).

Proposition 3.1 (Soundness). Let P = (F , I ,O,k,b) be an in-
stance of the persuasion satisfiability problem. Then, P admits a
solution iff E (P ) admits a solution B s.t. cost (B) ≤ b.

Proof.

Part⇒.Assume that P admits as a solution the I -path s = a1, . . . ,am .

Then, we associate to s a Boolean interpretation B as follows. First,

for all 1 ≤ i ≤ m, B (qai ) = 1, and for all a < {a1, . . . ,am },
B (qa ) = 0. Then, for all 1 ≤ i ≤ m, B (r iai ) = 1, and for all

r
j
a < {r

i
ai | 1 ≤ i ≤ m}, B (r

j
a ) = 0. Clearly, the previous definitions

implies that B satisfies the formulas (6), (7) and (9). The following

property on B shows that the latter satisfies (1): for all l ∈ Lit (S),
if l ∈ I then B (p0l ) = 1, otherwise B (p0l ) = 0. Further, we define

the truth values of the variables of the form pil for i ∈ 1..k by us-

ing the following property: B (pil ) = 1 iff l ∈ Conc (ai ). Using the

previous property and the fact that s is an I -path, we know that

B satisfies the formulas (3), (4) and (5). Moreover, using the fact

that s is consistent, B satisfies also the formula (2). Then, using the

propertyO ⊆ C (s ), B satisfies (8). Finally, using the factW (s ) ≤ b,

cost (B) ≤ b holds. As a consequence, the partial MaxSAT instance

E (P ) admits a solution B′ s.t. cost (B′) ≤ b.
Part ⇐. Assume that E (P ) admits a solution B s.t. cost (B) ≤ b.
Using the formula (7), we know that there is at most one true

variable of the form r ia for every 1 ≤ i ≤ k . Then, there is a

unique sequence of argument s = ai1 , . . . ,aim s.t. in < in′ for ev-

ery n < n′, B (r
j
aij

) = 1 for every 1 ≤ j ≤ m, and B (r
j′
a ) = 0 for

every r
j′
a < {r

j
aij
| 1 ≤ j ≤ m}. Further, using the formula (6), we

know that the arguments in s are pairwise distinct. Then, using
the formulas (1), (3), (4) and (5), Supp (ai j ) ⊆ I ∪

⋃
1≤j′<j Conc (ai j′ )

holds for every 1 ≤ j ≤ m. As a consequence, s is an I -path. Further,
using the formula (2), we know that s is consistent. The formula

(8) allows us to obtain O ⊆ C (s ). Using the formula (9) and the soft

part (10), cost (B) =W (s ) holds. Thus, knowing that cost (B) ≤ b,
we obtainW (s ) ≤ b. Therefore, s is a solution of P . □

An improvement of our encoding can be accomplished by re-

moving the formula (6). Indeed, this formula is used to express that

each argument is applied at most once, but one can easily see that

it is not problematic to have arguments that occur more than once

in a solution respecting the considered upper-bounds. In fact, we

only need to keep the first application of each argument to obtain

a solution where every argument occurs at most once.

4 WEAK CONSISTENCY AND FLEXIBILITY
In this section, we introduce a property on paths, called weak

consistency, that formalizes the fact that the persuder agent may

hide parts of conclusions of used arguments in order to present a

consistent path.

To illustrate our motivation, consider a persuadee agent that has

the following set of wishes I = {beinд healthy,¬ playinд sports},
which means that this agent wants to be healthy without playing

sports. Moreover, consider a persuader agent that has only the argu-

ment a = ⟨{beinд healthy}, {stop smokinд, playinд sports}⟩, that is,
being healthy requires to stop smoking and to play sports. Clearly,

the I -path a is not consistent. However, in certain cases, it would

be interesting to hide literals in the conclusions of the considered

arguments, as for instance, hiding the literal playinд sports in the

case of the previous argument. To this end, we introduce here the

notion of weak inconsistency, which states that we only have to

inspect the consistency of the supports of the considered arguments

in a path.

Definition 4.1 (Weak Consistency). An I -path a1, . . . ,ak is said to

beweak consistent if the set of literals I∪
⋃k
i=1 Supp (ai ) is consistent.

In the following proposition, we formally show that weak con-

sistency is a weaker version of consistency.

Proposition 4.2. Given a set of literals I , if an I -path is consistent,
then it is also weak consistent.

Proof. Let s = a1, . . . ,ak be an I -path. Assume that s is not

weak consistent. Then, the set of literals I ∪
⋃k
i=1 Supp (ai ) is not

consistent. Further, using the definition of an I -path, we know

that Supp (ai ) ⊆ I ∪
⋃

1≤j<i Conc (aj ) for every i ∈ 1..k . Thus,

I ∪
⋃k
i=1 Supp (ai ) ⊆ I ∪

⋃k
i=1Conc (ai ) holds. As a consequence,
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I ∪
⋃k
i=1Conc (ai ) is not consistent and we deduce that s is not

consistent. □

Consider for instance the persuasion frame F = ({a,b, c,d },
{a1 = ⟨{a}, {b, c}}⟩, a2 = ⟨{d }, {¬c}}⟩},W ) whereW (a1) = 1 and

W (a2) = 1, and the instance of the persuasion satisfiability problem

P = (F , {a,d }, {b,¬c}, 2, 2). Clearly, there is no consistent {a,d }-
path that satisfies P . However, a1,a2 is a weak consistent {a,d }-path
that allows for obtaining {b,¬c} from {a,b}.

In order to use a partial weighted MaxSAT encoding for solving

the persuasion satisfiability problem where we use weak consis-

tency instead of consistency, we just need to remove the formula

(5) from the encoding described in Section 3. Indeed, the formula

(5) is used to impose the satisfaction of the propositional variables

representing the conclusion of the applied arguments. It is notewor-

thy that the satisfaction of the variables representing the supports

of the applied arguments comes particularly from the formulas (2)

and (4).

In general, it would be interesting to allow the persuader agent

to select the literals that can be hided to avoid inconsistency. For

instance, the persuader agent may decide to hide only the negations

of the literals that occur in the objective state and/or the initial

state. To adapt our partial weighted MaxSAT encoding, we only

have to use the following formula instead of (5):

∧
a=⟨X ,C⟩∈A

k∧
i=1

(r ia → (
∧

R (C \T , i ))) (11)

where T is the set containing the literals that can be hided. This

formula states that if an argument is used at the step i , then the

literals of its conclusion are true at this step except the literals that

can be hided.

The previous variant show the flexibility of the proposed frame-

work and our solution based on the use of encodings in partial

weighted MaxSAT. In this context, one can easily define other vari-

ants to take into account other aspects. In order to better illustrate

this point, we introduce a variant where the persuader agent consid-

ers conflicts between the available arguments. More precisely, given

a persuasion frame F = (S,A,W ), we assume that the persuader

agent has a conflict graph G = (A,E), which is an undirected

graph where the set of vertices is A, and having an edge {a,a′}
in E means that the arguments a and a′ cannot be used together

in any solution. For this variant, our encoding can be adapted by

adding the following formula to the hard part:

∧
{a,a′ }∈E

(
k∑
i=1

r ia ) + (
k∑
j=1

r
j
a′ ) ≤ 1 (12)

Indeed, assume w.l.o.g. that there exists i ∈ 1..k such that r ia is

assigned to 1. Then,

∑k
i=1 r

i
a = 1 holds, and consequently, we obtain∑k

j=1 r
j
a′ = 0, which means that a′ is not used in the found solution.

Several other variants can be defined by reasoning on different

other aspects, such as the opening argument, the last argument,

etc.

5 PARETO OPTIMALITY
In the persuasion satisfiability problem, there are explicite upper

bounds on the length and on the weight of the solution. The choice

of these bounds may be arbitrary without specific knowledge about

the considered case, which can be seen as a real drawback of our

approach. Thus, to avoid the use of bounds, we here consider the

notion of Pareto optimality.

We define a PO-instance as a triple of the form P = (F , I ,O )
where F = (S,A,W ) is a persuasion frame, I ⊆ Lit (S) a consis-
tent set of literals, called the initial state, and O ⊆ Lit (S) a non

empty consistent set of literals, called the objective state. Clearly,
a PO-instance can be seen as an instance of the persuasion satis-

fiability problem without the upper bounds on the length and on

the weight of the solution. From this angle, we say that a sequence

of arguments s is a solution of PO-instance P = (F , I ,O ) if it is
a solution of the instance of the persuasion satisfiability problem

P = (F , I ,O,∞,∞).

Definition 5.1 (Pareto-Optimal Solution). A Pareto-optimal solu-
tion of a PO-instance P is a solution s of P where, for all solu-

tion s ′ of P , (i) if L (s ′) < L (s ) thenW (s ) < W (s ′), and (ii) if
W (s ′) <W (s ) then L (s ) < L (s ′).

Given two solutions s and s ′ of a PO-instance, we say that s
dominates s ′ if at least one the following properties is satisfied:

• L (s ) < L (s ′) andW (s ) ≤ W (s ′);
• W (s ) <W (s ′) and L (s ) ≤ L (s ′).

In other words, s dominates s ′ if s is better than s ′ on one criterion

(length or weight) and s is not worse than s ′ on the other crite-

rion. Note that a solution is Pareto-optimal if and only if it is not

dominated by any other solution.

6

14

30 70

12

Figure 3: Pareto Front

For instance, in Figure 3, we show all the solutions of a given PO-

instance. The x-axis and y-axis represent respectively the weights

and the lengths of these solutions. It is important to note that a point

can represent more than one solution (e.g. the point that represents

the solutions s1 and s
′
1
), since there may exist several solutions with
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both the same length and the same weight. The solutions s1, s
′
1
and

s3 are Pareto-optimal, but s7 is not because it is dominated by s3
(L (s3) = 6 < L (s7) = 12 andW (s3) =W (s7) = 70). Moreover, s1
does not dominate s3 because of L (s3) = 6 < L (s1) = 14, and s3
does not dominate s1 because ofW (s1) = 30 <W (s3) = 70.

We call Pareto frontier of a given PO-instance the set of all its

optimal solutions. For instance, the Pareto frontier in the example

described in Figure 3 is the set {s1, s1
′, s2, s3, s4, s5, s6}.

Our partial weighted MaxSAT encoding for solving the per-

suasion satisfiability problem described in Section 3 allows for

computing a solution that satisfies the length bound constraint

and has the smallest weight. More precisely, given an instance

P = (F , I ,O,k,b) of the persuasion satisfiability problem, every so-

lution of the encoding E (P ) corresponds to a solution s of P where

L (s ) ≤ k andW (s ) ≤ W (s ′) for every solution s ′ of P of length

smaller than or equal to k . Thus, given a solution s of P which is

obtained using E (P ), we know that there exists a Pareto-optimal s ′

of the PO-instance (F , I ,O ) such thatW (s ′) =W (s ).

Proposition 5.2. Given a PO-instance P = (F , I ,O ) with F =
(S,A,W ), the length of every Pareto-optimal solution is smaller than
or equal tomin( |S| − |I |, |A|), wheremin stands for the minimum.

Proof. Let s = a1, . . . ,an be a Pareto-optimal solution of P . It
is trivial that n ≤ |A| since the arguments used in s are pairwise

distinct and belong toA. Furthermore, we have I∪
⋃j
i=1Conc (ai ) ⊂

I ∪
⋃j+1
i=1 Conc (ai ) for every j ∈ 1..(n − 1). Indeed, if there exists

j ∈ 1..(n−1), I∪
⋃j
i=1Conc (ai ) = I∪

⋃j+1
i=1 Conc (ai ), then the use of

aj+1 is useless and we get a contradiction since s is Pareto-optimal.

Thus, using the fact that |I ∪
⋃n
i=1Conc (ai ) | ≤ |S|, n ≤ |S| − |I |

holds. □

Given a PO-instance P = (F , I ,O ) with F = (S,A,W ), we
use LB (P ) to denote the value min( |S| − |I |, |A|). Furthermore,

using Proposition 5.2, one can easily obtain a weight upper bound.

Indeed, this bound can be defined as the sum of the weights of

the arguments occurring in a set of LB (P ) greatest weights. More

precisely, the weight of every Pareto-optimal solution of P is smaller

than or equal to

∑
a∈A′W (a), where A ′ ⊆ A, |A ′ | = LB (P ) and,

for all a′ ∈ A \ A ′,W (a′) ≤ min{W (a) | a ∈ A ′}. We useWB (P )
to denote the bound

∑
a∈A′W (a).

In order to introduce our approach for computing certain Pareto-

optimal solutions, we propose a partial weighted MaxSAT encoding

that allows for computing a solution of a Given PO-instance with

the smallest length. Let P = (F , I ,O ) be a PO-instance with F =
(S,A,W ). We use Elenдth (P ) to denote the encoding that allows

for computing a solution of smallest length. The hard part of this

encoding is exactly the same as the hard part of E (P ′) with P ′ =
(F , I ,O,LB (P ),∞). The relaxable part is defined as follows:

1 : ¬qa f or every a ∈ A (13)

The soundness of Elenдth (P ) can be obtained in the same way

as the soundness of the encoding of the persuasion satisfiability

problem. Indeed, knowing that the hard part is the same as that

of E (P ′), we know that every solution of Elenдth (P ) corresponds
to a solution of P . Moreover, using Proposition 5.2, the hard part

of Elenдth (P ) is satisfiable if and only if P admits a solution. In

addition, one can easily see that the relaxable part allows clearly

for reducing the number of used arguments.

A simple approach for finding a Pareto-optimal solution of a

given PO-instance P can be defined by solving two partial weighted

MaxSAT encodings. Indeed, we first compute a solution s0 us-

ing the encoding Elenдth (P ). Then, every solution of E (P ′) with

P ′ = (F , I ,O,L (s0),∞) is a Pareto-optimal solution of P . Indeed,
let s be a solution of P obtained from E (P ′). Then, for every solu-

tion s ′ with L (s ′) ≤ L (s0),W (s ′) ≤ W (s ) holds. Moreover, we

know that L (s0) is the smallest length of the solutions of P . As a
consequence, s is not dominated by any other solution of P .

A similar approach for finding a Pareto-optimal solution can be

defined by computing first the smallest weight that can be obtained

from our encoding E (P ), and then, we use an encoding that allows

for finding one of the shortest paths with respect to the previous

weight. Indeed, let P = (F , I ,O ) be a PO-instance. First, a solution
s0 for E (P ′) is computed where P ′ = (F , I ,O,LB (P ),∞). Using
Proposition 5.2, we know thatW (s0) is the smallest weight of the

solutions of P . Then, we use a partial weighted MaxSAT encoding

Eweiдht (P ,W (s0)) to find a Pareto-optimal solution. The encoding

Eweiдht (P ,W (s0)) is obtained by only adding the following hard

pseudo-Boolean constraint to Elenдth (P ):∑
a∈A

W (a) ∗ qa ≤ W (s0) (14)

Clearly, this constraint allows for guaranteeing that every solution

of Eweiдht (P ,W (s0)) has the smallest weight, i.e., it is also a solu-

tion of E (P ′). Moreover, for every solution s of Eweiдht (P ,W (s0)),
there is no solution of P that has the weightW (s0) and is also

shorter than s . As a consequence, every solution of the encoding

Eweiдht (P ,W (s0)) is Pareto-optimal.

It is worth mentioning that there are several efficient polynomial

encodings of the pseudo-Boolean constraints as CNF formulas in

the literature (e.g. see [5, 11]).

6 CONCLUSION AND PERSPECTIVES
In this paper, we have presented an argument-centric persuasion

framework. This contribution proposes a decision problem, called

persuasion satisfiability, that allows for dealing with computational

persuasion in a simple and intuitive way. From the computational

complexity point of view, we showed that this decision problem is

NP-complete. We have proposed an encoding in partial weighted

MaxSAT for solving this problem. We also showed the flexibility

of our framework and the approach based on the use of partial

weighted MaxSAT. Finally, in order to avoid the use of explicit

upper bound constraints, which can be seen as a drawback of our

framework in the absence of specific knowledge about the consid-

ered case, we have proposed an approach that allows for finding

optimal solutions in Pareto sense.

In our future work, we intend first to improve the proposed

framework following two directions: (1) allowing the persuadee

to use different kinds of counterarguments; and (2) defining an

updating method for persuasion frames to take into account the

responses of the persuadee.We also plan to implement the proposed

solving methods based on partial weighted MaxSAT to provide an

experimental study on the use of the proposed framework.
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