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ABSTRACT
We consider the problem of online distributed environmental mod-
eling and adaptive sampling for multi-robot sensor coverage, where
a team of robots spread out over the workspace in order to optimize
the sensing performance over environmental phenomena, whose
distribution is often referred to as a density function. Unlike most
existing works that either assume certain knowledge of the den-
sity function beforehand or centrally learn the density function
assuming global knowledge of collected data from all the robots,
we propose a fully distributed adaptive sampling approach to allow
robots to efficiently learn the unknown density function online. In
particular, we developed adaptive coverage controllers based on
the learned density functions for minimizing the sensing cost. To
capture significantly different components of the environmental
phenomenon with only locally collected data for each robot when
global knowledge is not available, we propose a distributed mixture
of Gaussian Processes algorithm that enables robots to collabora-
tively learn the global density function by exchanging only model-
related parameters. We empirically demonstrate the effectiveness
of our algorithm via evaluation on real-world data gathered from
agricultural field robot and indoor static sensors.
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1 INTRODUCTION
Multi-robot systems are capable of doing complex tasks and have
been widely used in applications such as environmental sampling
[11], coverage [4], and others, in which the robots employ local
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Figure 1: An example scenario of three robots navigat-
ing in field to find best locations that maximize the sens-
ing/coverage performance over environmental phenome-
non such as stalk count of the agricultural crops. The up-
per layer represents the actual distribution of stalk count
from the dataset collected by CMU agricultural robot plat-
form, the Robotanist [17]. The lower layer represents the
2D field with projected heat map of the distribution (density
function of stalk count).

communication or control laws to achieve some collective goals. In
the Multi-Robot Sensor Coverage problem [3, 4, 20, 24], a group of
robots are deployed in an environment from given starting configu-
rations and then seek for the final optimal placements such that the
overall sensing performance over the environmental phenomenon
from those particular locations is maximized, which is also known
as the Locational Optimization problem [18]. In real-world scenario,
we are motivated by the agricultural monitoring task as shown in
Fig. 1 where multiple robots need to persistently monitor the crops
and the preferred deployment locations are those close to high yield
plots. However, the robots have no prior knowledge of the quality
of each plot, namely the density function, and hence have to estab-
lish an estimate model first by taking samples to learn the density
function, such as counting stalks or temperature over the field [17],
which could be time-consuming. To that end, it is desired for the
robots to take as few samples for efficient environmental modeling
while approaching to its estimated optimal sensing locations.
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The Multi-Robot Sensor Coverage problem [4] and its variants
[3, 20] have been extensively studied with the optimal solutions of
Centroidal Voronoi Tessellation (CVT) [5] and its gradient-based
coverage controller, but the results are often based on the assump-
tion that the density function is known beforehand, which may not
be applicable in real-world situations where the robots operate in
unknown environments. To interleave with the two tasks of den-
sity function learning and coverage control, recent works [23, 24]
propose to couple the parameterized unknown density function
with a class of known Gaussian-like basis function and robots can
model the environment and perform sensor coverage by learning
the weights of the basis functions from collected samples in a dis-
tributed manner. However, such parametric inference methods still
1) requires prior knowledge of the basis functions for every robot
and cannot represent complicated distributions, for example the
one in Fig. 1, and 2) assumes perfect observations from collected
samples without noise. In our most recent work [13], we proposed
to model the density function with a mixture of Gaussian Processes
(GPs) from noisy observations that allows more general centralized
distribution learning with non-parametric inference. But since the
GPs is non-parametric, it requires knowledge of samples collected
by all the robots, which may not be scalable and impractical in
bandwidth-constrained environment where the global knowledge
of the samples from all the robots is not available. It is challenging
to 1) efficiently learn the density function on-line while optimizing
the coverage performance, and 2) mix various GPs from all robots
for an input-dependent model while allowing for distributed com-
putation with only local data (samples) when global knowledge of
all the collected data is not accessible.

In this paper, we propose a distributed adaptive coverage control
strategy with online density function modeling through mixture of
GPs and relaxes the assumption of global knowledge for learning
the density function as assumed in our previous work [13]. In par-
ticular, we propose a distributed consensus learning algorithm for
the mixture of GPs with local data only. In this work, at each round
of sampling, each robot first employs the Gaussian Mixture Model
(GMM) to classify its collected samples and extract the local GMM
parameters. With the distributed consensus learning algorithm, the
consensus on global GMM parameters is reached that best classifies
the local data for each robot to locally fit a mixture of GPs and pre-
dict the density function on its own. In this way, only local GMM
parameters are exchanged among robots whose size is independent
from the number of collected samples, and hence we avoid the
transmission of all local data from every robot. Then the locally
learned density function is used to construct the decentralized adap-
tive coverage controller with the information-theoretic criterion
for adaptive sampling that drives each robot towards its updated
estimated optimal location, which could reduce the actual sensing
cost (increase sensing performance) and also the model uncertainty
for the learned density function with new samples collected on the
location.

The main contribution of our novel approach is three-fold. First,
we couple the adaptive sampling with information-theoretic crite-
rion into the multi-robot coverage control framework for efficient
distributed model learning and simultaneous locational optimiza-
tion with a reduced number of samples in an initially unknown
environment. Second, we present a fully distributed algorithm that

allows for collaboratively learning the generalized non-parametric
mixture of GPs model of density function with local data only. This
could also be very useful for other decentralized data-driven multi-
robot adaptive sampling and informative sampling tasks as most
literature still assume the transmission of global data from all the
robots for learning and evaluating the environment phenomenon,
which is not scalable and may not be practical. Third, extensive
empirical results are provided using real-world dataset including
the agricultural field data collected by agricultural robot [17] and a
public dataset [1] from Intel Berkeley Research Lab to demonstrate
the superior performance of our approach.

2 RELATEDWORK
In the multi-robot sensor coverage problem [3, 4], the sensing per-
formance to optimize is determined by the distance between each
robot and its assigned point to sense assuming negative correlation
as well as the density function of the points. Solutions of such a
locational optimization problem are known as the centroid of the
Voronoi tessellation [5] and the algorithm is often referred to as
the move-to-centroids controller navigating the robots towards the
centroids of their Voronoi cells. However, most of them assume the
prior knowledge of either the environmental phenomenon distribu-
tion (often modelled as density function) [4, 20], or basis functions
consisting of density function [23], which could be impractical in
real-world application. To allow for online density function learn-
ing and adaptive coverage control, recent works [24] proposed to
use two-stage decoupled processes that embed an on-line sampling
process to first obtain an estimate of the density function and then
follow the move-to-centroid control law in performing the multi-
robot coverage. As mentioned in [8], this approach could demand
unnecessarily larger number of samples to take before reaching the
optimal locations.

To improve sampling efficiency, GP-based adaptive sampling
methods [7, 8, 19] with Bayesian optimization framework [9] have
been studied for information gathering to maximize the total value
(e.g. utility or informativeness) of sequentially collected samples.
[10, 25] extends adaptive sampling in multi-robot systems where
the robots make sequential decisions regarding the next best way-
point to sample and then perform the path planning. The sampling
criterion is often determined by predicted utility using GP model
or information-theoretic criterion such as mutual information gain
[2, 14] to maximize the sampled utility or model uncertainty reduc-
tion respectively. Besides GP-based adaptive sampling approaches,
ergodic control methods have been proposed in [15, 16] to track
the unknown spatial distribution by using ergodicity metrics to
optimize time averaged trajectory in accordance with the expected
spatial distribution, with the final trajectory statistics matching to
the initially unknown distribution. As in our problem the goal com-
bines the environmental distribution modeling and sensor coverage
control, we propose to use adaptive sampling to augment the multi-
robot adaptive coverage controller. A recent work [8] proposed an
efficient voronoi-based multi-robot informative adaptive sampling,
where each robot only takes the best samples within its assigned
partitioned region. [19] developed input-dependent model using
the general approach of mixture of GPs [28] to accurately represent
complex distributions with the linear combination of different GP
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models learned on-line. Our recent work [13] proposed to extend
mixture of GPs in adaptive multi-robot coverage control. However,
these approaches still require global information of the collected
samples by all the robots. [6] proposed a distributed EM algorithm
for classification tasks with Gaussian mixture model. Inspired by
this work, we propose to employ the distributed EM algorithm with
consensus learning as a heuristic method to classify each robot’s
local data and embed it into our distributed computation of mixture
of GPs to improve the local prediction accuracy, which leads to
better multi-robot coverage performance.

3 PROBLEM STATEMENT
Consider a set of n robots moving in a bounded environment Q ⊂

R2 and assume the environment can be discretized into a set of point
q ∈ Q , with the position of each robot i ∈ {1, 2, . . . ,n} denoted by
xi ∈ Q . We assume the environment is free of obstacles and can be
partitioned into n Voronoi cells, as done in most multi-robot sensor
coverage algorithm [3, 4, 20].

Vi = {q ∈ Q |∥q − xi ∥ ≤ ∥q − x j ∥,∀j , i} (1)

where ∥·∥ is the l2-norm. Each Voronoi cell Vi corresponds to its
generator robot xi who is the closest robot to the points inside Vi ,
and hence each robot xi will be responsible for sensing the assigned
points q ∈ Vi .

Regarding the distribution of environmental phenomenon on
each point of interest q, there exists an unknown density func-
tion ϕ(·) : Q → R+ that maps the location information q to the
scalar value of the phenomenon ϕ(q). Intuitively, in environmental
monitoring task we want each robot to stay close to the area with
higher phenomenon value ϕ(·) since the sensing performance usu-
ally degrades as the distance between the robot and the point to
sense increases. As (see (1)) each point is assigned to one robot, the
sensing cost function of static multi-robot coverage can be formally
defined as follows [3, 4].

H(x1, . . . ,xn ) =
n∑
i=1

∫
q∈Vi

∥q − xi ∥
2ϕ(q)dq (2)

Hence the lower H(x1, . . . ,xn ) the better. Then by taking the gra-
dient of (2), we have the local optimal solutions for minimizing
H(·) for all i ∈ {1, . . . ,n} as follows.

x∗i = argminH(x1, . . . ,xn ) =

∫
Vi

qϕ(q)dq∫
Vi

ϕ(q)dq
= CVi (3)

where CVi ∈ R
2 is also referred to as the centroid of each Voronoi

cellVi . Although this critical point ofH is a local minimum, due to
the intractable solution (NP-hard) to the global optimumH the local
optimal solution x∗i is often considered optimal (see [3, 20]). The
decentralized gradient-based move-to-centroid controller [4] has
been proven to navigate the robots to the local optimal locations.

Ûxi = kp (CVi − xi ) (4)

where kp is a user-defined control gain. Note that the realization of
ϕ(q) will not be available to the robots unless q = xi and without
loss of generality we ignore the intermediate visited points between
consecutive waypoints by the robots. To that end, the objective is
to drive the robot towards the locations with high predicted value

of the phenomenon and informativeness so as to efficiently learn
the distribution ϕ(·) while simultaneously optimizingH(·) with (4).
In other words, we will use the optimal controller with the same
form as in (4), but with a different specification of CVi by using the
predicted value of ϕ(q). Also note that in the distributed settings,
each robot i is tasked to learn ϕ(q) over the points q ∈ Vi that are
inside the robot’s current assigned Voronoi cell Vi defined in (1)
with its own collected local data only.

4 MIXTURE OF GAUSSIAN PROCESSES IN
ENVIRONMENT MODELING AND
ADAPTIVE COVERAGE CONTROL LAW

In this section, we introduce the model of mixture of GPs used on
each robot for predicting the density function ϕ(·) with its locally
sampled training data set and the resulting decentralized coverage
law. The distributed algorithm to compute the mixture of GPs will
be introduced in Section 5.

4.1 Gaussian Process Regression (GP)
A common approach for modeling spatial phenomena is GP regres-
sion. Such a natural non-parametric generalization of linear regres-
sion allows for modeling the hidden mapping from training data
to the target phenomenon with consideration of uncertainty [22].
Assume the target phenomenon satisfies a multivariate joint Gauss-
ian distribution [9, 12], the learned GP model from training data
outputs the Gaussian probability distribution of the phenomenon
ϕ(q) specified by mean function µ(q) = E[ϕ(q)] and covariance
function k(q,q′) = E[(ϕ(q) − µ(q))T (ϕ(q′) − µ(q′))] for any query
data q.

Formally, let Ṽi = [qi1, . . . ,q
i
Ni
]T be the set of Ni collected sam-

ples associated with observed noisy values yi = [yi1, . . . ,y
i
Ni
]T by

robot i . Each observation is noisy y = ϕ(q) + ϵ with ϵ ∼ N (0,σ 2
n )

assuming the mean function to be zero without loss of general-
ity. To that end, given a testing location qtest ∈ Q , we have the
conditional posterior mean µqtest |Ṽi ,yi

and variance σ 2
qtest |Ṽi ,yi

as
follows from the learned GP model describing the Gaussian distri-
bution of ϕ(qtest ) ∼ N(µqtest |Ṽi ,yi

,σ 2
qtest |Ṽi ,yi

).

µqtest |Ṽi ,yi
= k(qtest )T (KṼi + σ

2
n I)

−1yi

σ 2
qtest |Ṽi ,yi

= k(qtest ,qtest ) − k(qtest )T (KṼi + σ
2
n I)

−1 · k(qtest )

(5)

where k(qtest ) = [k(qi1,qtest ), . . . ,k(q
i
Ni
,qtest )]

T with the covari-
ance (kernel) function k(q,q′) that captures the correlation be-
tween q and q′. KṼi is the positive definite symmetric kernel matrix
[k(q,q′)]q,q′∈Ṽi∪qtest

. In particular, we use the following squared-
exponential kernel function to specify the inter-sample correlation.

k(q,q′) = σ 2
f e

−
(q−q′)T (q−q′)

2l2 (6)

where the hyper-parameters l and σf are length-scale and scale
factor, respectively. Hence, each robot i maintains its own GPmodel
learned from local samples {Ṽi , yi} and the hyper-parameters of
(σn ,σf , l) are optimized from the local training data {Ṽi , yi}, which
will be introduced in Section 4.2.
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4.2 Estimation of Hyper-Parameters
The GPmodel of each robot i is determined by its local training data
set {Ṽi , yi} and local hyper-parameters denoted by θi = {σn ,σf , l}.
In particular, the hyper-parameters are desired to be the optimizer
such that the kernel function can accurately describe the underlying
phenomena. In order to improve computation efficiency, we assume
the hyper-parameters for each robot are optimized using the local
training data of the robot itself. One common approach for learning
the hyper-parameters in a Bayesian framework is to maximize the
log of the marginal likelihood as follows.

θ∗i = argmax
θi

logp(yi |Ṽi ,θi )

= −
1
2
yiT K̃−1

Ṽi
yi −

1
2
log |K̃Ṽi | −

Ni
2

log 2π
(7)

where K̃Ṽi = KṼi + σ
2
n I. The maximizer of (7) can be computed by

taking the partial derivatives of the marginal likelihood p(yi |Ṽi ,θi )
w.r.t. the hyper-parameters θi as described in [21].

4.3 Mixture of Gaussian Process Models and
Adaptive Sampling Strategy

Although the uni-model GP introduced above provides good gen-
eralization of the density function to learn, it could fail to capture
significantly different components of the function distribution as
described in [13, 19, 27]. This necessities the use of mixture of GP
models that better generalize the function as the one in Fig. 1. The
mixture of GP models proposed in [28] is a linear combination of
multiple GP models. Assuming the environmental phenomenon
can be described by a set of GP models {GP1, . . . ,GPm } withm
as the number of Gaussian components, and denote P(z(q) = iд)
as the probability of any random point q ∈ Q being best described
by the iдth GP model. Then for any robot i we have the mixture
of GPs defined by the local conditional posterior mean µ∗

qtest |Ṽi ,yi
and variance σ ∗2

qtest |Ṽi ,yi
for any query/testing location qtest ∈ Q

as follows.

µ∗
qtest |Ṽi ,yi

=

m∑
iд=1

P(z(qtest ) = iд) · µqtest |Ṽ
iд
i ,y

iд
i

σ ∗2
qtest |Ṽi ,yi

=

m∑
iд=1

P(z(qtest ) = iд) ·
(
σ 2
qtest |Ṽ

iд
i ,yiiд

+

(µ
qtest |Ṽ

iд
i ,y

iд
i

− µ∗
qtest |Ṽi ,yi

)2
)

(8)

where Ṽ
iд
i ⊂ Ṽi is the subset of collected data by robot i that

can be best described by the iдth GP model. We will discuss how
to compute the weight distribution P(z(qtest ) = iд) and mem-
bership set Ṽ iд

i in Section 5. For any point q, its actual value of
phenomenon ϕ(q) is assumed to be sampled from the Gaussian
distribution N(µ∗

q |Ṽi ,yi
,σ ∗2

q |Ṽi ,yi
). And the common approach for

efficient sampling and modeling is to navigate the robots to the
point q∗ = argmax µ∗

q∗ |Ṽi ,yi
or q∗ = argmaxσ ∗2

q |Ṽi ,yi
to maxi-

mize the sampled value of phenomenon or minimize the prediction
uncertainty.

In our problem, we want to simultaneously sample the area with
a high value of phenomenon to get closer towards the Voronoi
centroid CVi while reducing the uncertainty for the learned model
of the density function ϕ(·) to approximate to the actual CVi . Here
we use the Gaussian Process Upper Confidence Bound (GP-UCB)
[26], a sequential stochastic optimization strategy that trades off
between exploration (reduce prediction uncertainty) and exploita-
tion (maximize sampled value). Each location q is evaluated with
the information-theoretic criterion defined as follows.

h(q) = µ∗
q |Ṽi ,yi

+ βσ ∗2
q |Ṽi ,yi

(9)

where β is a parameter relates to the current sampling iteration
number and regret bound [26]. When β is specified by a much
higher value, then our solution becomes similar to the informative
sampling [24] in which we want to reduce the model uncertainty
before switching to the static coverage optimization. The GP-UCB
strategy works by sequentially sampling point q that maximizes (9)
and immediately update the GP model accordingly, such that we
will be able to reach a balance by such an adaptive sampling strategy
between reducing future GP model uncertainty and maximizing
sampled value. However, our primary goal is to minimize the sens-
ing cost function H(·) in (2) by approaching unknown centroid
of Voronoi cell CVi for each robot i . Thus, we modify the optimal
solution in (4) by replacing the unknown density function realiza-
tion with the GP-UCB evaluation (9), which yields our adaptive
sampling strategy for each robot i as follows.

q∗i =

∫
Vi

qh(q)dq∫
Vi

h(q)dq
= C̃Vi (10)

And the local adaptive coverage control law for each robot i be-
comes

Ûxi = kp (C̃Vi − xi ) (11)

In this case, the robots are able to simultaneously consider density
function learning and sensing performance optimization. To solve
for the feedback control law (11), it boils down to optimize the mix-
ture of GP model by 1) finding the appropriate weight distribution
P(z(q) = ·), and 2) modifying local GP model with model-related in-
formation (not training data) from other robots for generalizing the
overall regression model. To simplify our discussion, we assume
the robots are always connected as in [2] and are able to share
their model-related information by communicating with its direct
Voronoi neighbors [24].

5 DISTRIBUTED LEARNING OF MIXTURE OF
GAUSSIAN PROCESSES MODELS

In this section, we introduce the distributed consensus learning
of mixture of GPs for every robot i and the overall learning and
adaptive coverage control algorithm that runs on each robot with
the knowledge of only local data.
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5.1 Local Training Data Classification with
Distributed Expectation-Maximization
(EM)

Recalling the mixture ofm GPs in (8) for each robot i to predict
µ∗
q |Ṽi ,yi

and σ ∗2
q |Ṽi ,yi

at any query point q, it requires the knowl-

edge of 1) classified local data set Ṽi = {Ṽ 1
i , . . . , Ṽ

m
i } and 2) pre-

dicted weight distribution P(z(q) = iд) for iд = 1, . . . ,m where
q < Ṽi , also known as the gating function. Such information can
be computed using the well known EM algorithm [28] with the
assumption that the global knowledge of all data collected from
every robot is available during EM computation. The EM algorithm
consists of two stages such as the estimation (E) stage for comput-
ing the weight distribution P(z(qj ) = iд) where qj ∈ Ṽi and the
maximization (M) stage for updating the GP models, and it keeps
looping until convergence under some threshold [28]. In order
to relax the assumption of global data, we propose to first employ
GaussianMixture Models (GMM) with distributed EM algorithm [6]
via peer-to-peer inter-robot communication for local training data
classification and computation of weight distribution P(z(qj ) = iд)

for collected points qj ∈ Ṽi . Then we use the corresponding labeled
local data Ṽi with weight distribution for training the mixture of
GPs, which will be described in our distributed mixture of GPs
algorithm in Section 5.2.

Although a GP model is an infinite dimension object, the real-
world phenomenon can often be characterized by a finite number of
Gaussian components [24, 27]. Herewe assume the value of environ-
mental phenomenon ϕ(q) is drawn fromm Gaussian components
(corresponding tom GP models) with each component described
by a set of unknown model parameters Θiд = {αiд , µiд , Σiд , iд =
1, . . . ,m} where αiд is the probability of ϕ(q) drawn from the iд th
Gaussian componentNiд (µiд , Σiд ). Then we can rewrite the global
summary quantities for each Gaussian component Niд as follows.

αiд =
1
n

n∑
i=1

|yi |αi,iд , λiд =
1
n

n∑
i=1

|yi |λi,iд

γiд =
1
n

n∑
i=1

|yi |γi,iд , µiд =
λiд

αiд
, Σiд =

γiд

αiд

(12)

where {αi,iд , λi,iд ,γi,iд } are the local summary quantities for each
robot i that can be computed locally as follows, given the infor-
mation of its current estimated global model parameter Θ̃i,iд =

{α̃i,iд , µ̃i,iд , Σ̃i,iд } for iд = 1, . . . ,m (obtained via dynamic consen-
sus in (14)) and the observed value yi = {yj }, j = 1, . . . , |yi | of local
data set Ṽi .

p(z(qj ) = iд |yj , Θ̃i,iд ) =
α̃i,iд · p(yj |µ̃i,iд , Σ̃i,iд )∑m
h=1 α̃i,h · p(yj |µ̃i,h , Σ̃i,h )

αi,iд =
1
|yi |

|yi |∑
j=1

p(z(qj ) = iд |yj , Θ̃i,iд )

λi,iд =

|yi |∑
j=1

yj · p(z(qj ) = iд |yj , Θ̃i,iд )

(13)

γi,iд =

|yi |∑
j=1

p(z(qj ) = iд |yj , Θ̃i,iд ) · (yj − µ̃i,iд )(yj − µ̃i,iд )
T

in which the probability p(yj |µ̃i,iд , Σ̃i,iд ) can be directly computed
from the Gaussian distribution defined by Ñiд (µ̃i,iд , Θ̃i,iд ). Then
for each robot i , we define xi,iд ∈ R3 as its local estimate of the
global summary quantities αiд , λiд ,γiд and define its own statistics
ui,iд = [|yi |αi,iд , λi,iд ,γi,iд ]

T as the local summary quantities. A
consensus filter can be designed with convergence and stability
guarantee [6], so that each robot i will agree on the similar value of
Gaussian componentsΘiд via peer-to-peer communication through
connected network graph.

Ûxi,iд =
∑

j ∈neighbor of i
(xj,iд − xi,iд ) + (ui,iд − xi,iд ) (14)

where the neighbors of robot i are specified by all robots located
spatially within a predefined distance to the robot i . It is noted
that the above computation only relies on the robot’s local data
set yi and their communication packets of model information xi,iд
(related to Θ̃i,iд ) only. With the converged estimated Gaussian
Mixture Model parameters Θiд for all iд = 1, . . . ,m, we are able
to compute the weight distribution P(z(qj ) = iд) = p(z(qj ) =
iд |yj ,Θiд ) w.r.t. each Gaussian component iд for each training data
{qj ;yj } of robot i and obtained the training data classifications as
follows.

Ṽ
iд
i : {qj ∈ R

2 |iд = argmax P(z(qj ) = iд)},∀iд = 1, . . . ,m
(15)

Intuitively, equations (12)-(15) indicate the process that the robots
exchange model-related parameters to dynamically form an esti-
mated and converged global statistics Θiд of GMM, and hence to
gradually readjust the classification of its local data in (15) as more
samples are collected. As noted in [6], the standard EM with cen-
tralized computing has the complexity of communication in bytes
as O(n3/2) and O(n2) for the worst case, while with the distributed
EM in (12)-(15), the complexity is O(n) that is linear to the number
of robots n. In the following Section 5.2, we will provide a complete
distributed algorithm for computing the mixture of GPs with the
classified local data.

5.2 Distributed Mixture of GPs in Adaptive
Coverage Control

With the classified training dataset Ṽ iд
i ,∀iд = 1, . . . ,m from (15)

for each robot i and weight distribution P(z(qj ) = iд) of each
collected data therein, then the robots only need the knowledge of
the predicted weight distribution (gating function) P(z(q) = iд) for
iд = 1, . . . ,m that defines the likelihood each query data q belongs
to the iдth GP, so as to complete the modeling of mixture of GPs
in (8). Such gating function mapping from q to P(z(q) = iд) can be
learned using another GP for each robot i by considering the already
obtained training data {qj ; P(z(qj ) = iд)},∀qj ∈ Ṽi in the similar
form as (5). To that end, for any new data q sensed by robot i (inside
robot i’s Voronoi cell), it can compute the prediction (8) using (15)
and the learned gating function P(z(q) = iд), which further yields
the updated control law (10)-(11) to govern the motion of the robots.
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(a) Agricultural Data: StalkCount (b) Office Data: Temperature

Figure 2: Prediction performance comparison between mix-
ture of GPs and uni-model GP on two real-world dataset.

Finally, our algorithm of distributed mixture of GPs in adaptive
coverage control running on each robot i is summarized as follows.

Step 1: Take one sample from robot’ current location and update
its local data set {Ṽi ; yi}. Recompute its Voronoi region.

Step 2: Compute local GMM parameter ui,iд = [|yi |αi,iд , λi,iд ,
γi,iд ]

T using (13) and current belief of global GMM parameters
Θ̃i,iд on current local data set {Ṽi ; yi}.

Step 3: Exchange local GMM model information of xi,iд with
neighbors and compute the consensus using (14) till convergence
and get updated GMM parameters Θ̃i,iд from converged xi,iд for
all iд = 1, . . . ,m.

Step 4:Classify local data set Ṽ iд
i andweight distribution P(z(qj ) =

iд) of each training data using (15) with Θ̃i,iд for all iд = 1, . . . ,m.
Step 5: Train gating function P(z(q) = iд) with training data

{qj ; P(z(qj ) = iд)} and together with the classified local data set
Ṽ
iд
i ,∀iд = 1, . . . ,m, locally fit mixture of GPs using (8).
Step 6: With the learned mixture of GPs, predict the posterior

mean and variance of density function ϕ(q) over its Voronoi region
and evaluate each h(q) in the region using (9).

Step 7: Compute local adaptive coverage control law with (11),
execute, and go back to Step 1.

6 EXPERIMENTAL RESULTS AND ANALYSIS
In this section, we present several empirical results on two real-
world datasets from the agricultural robotic sampling application
[17] and Intel Berkeley Lab [1] with MATLAB toolboxes: the GPML
[21]. The agricultural dataset contains data of the number of stalks
counted per grid over the 21 × 45 = 945 distinct grids collected
in August 2017 over a sorghum field, and the Intel indoor dataset
contains sensory temperature data collected from 54 sensors in an
office area between Feb 28th and Apr 5th, 2004. In our particular
tasks, we use the 2D location information with the stalk count
and temperature readings (degrees in Celsius) respectively as the
ground truth of the environmental phenomenon over map and
compare our algorithm performance to other approaches.

Before implementing our multi-robot sensor coverage task, we
first provide the empirical results for static prediction of the two en-
vironmental phenomenon using centralized mixture of GPs (m = 3)
and centralized uni-model GP respectively. For each dataset, we
randomly select a growing number of data from 10 to 100 to serve
as the training data and use the rest of the unselected data as testing
data. After 10 random trials at each training sample setting, the

prediction performance on the Root Mean Square (RMS) error are
plotted in Fig. 2 with solid lines as the mean RMS error covered
by the maximum-minimum error bar showing the maximum and
minimum predictive RMS error in each 10 trials. The results suggest
as the number of training samples grow, the mixture of GPs out-
performs the uni-model GP in both of the tasks, indicating that for
the considered real-world non-smooth data the mixture of GPs can
better characterize the distribution of environmental phenomenon.

6.1 Simulation Example with Agricultural
Dataset

For multi-robot sensor coverage task, we consider the example
in Fig. 3 where we have 3 robots deployed from random starting
points shown in Fig. 3(a) to find the optimal final configurations for
stationary sensing as shown earlier in Fig. 1, where the distribution
of stalk count has multiple peaks around the top right corners.

As shown in Fig. 3(a), the robots initially have little knowledge
about the true distribution with only 13 randomly chosen prior
training data points over the map. With our distributed mixture
of GPs algorithm in Fig. 3(b), the robots are governed by our pro-
posed adaptive coverage controller (11) with distributed learning
of mixture of GPs (kp = 0.5, β = 1,m = 3) to simultaneously learn
the environmental model and try to approach the actual centroid
of each Voronoi cell based on its own model inference. We assume
any robot pairs sharing the same Voronoi edge could communi-
cate to each other. The converged results of configurations under
adaptive coverage controllers with other modeling approaches are
shown in Fig. 3(c)-(e), where the local GPs (Fig. 3(c)) are trained by
each robot with its own local collected data without communica-
tion and the uni-model GP (Fig. 3(d)) assumes global knowledge
of all robots’ collected data. The known model (Fig. 3(e)) is the
ground truth controller with full knowledge of the density function
as done in [4]. They have different modeling of ϕ(q) but use the
same form of our adaptive coverage control laws (4). Quantitative
prediction and coverage performance on the same map are also
provided in Fig. 4 and evaluated by the metrics of 1) Root Mean
Square (RMS) error between predicted stalk count and ground truth
stalk count on all unvisited locations, and 2) the actual sensing cost
computed by (2). Besides the mentioned comparison algorithms,
in Fig. 4 we also introduce the result from centralized mixture of
GPs modeling algorithm [13] with the same parameter settings
(kp = 0.5, β = 1,m = 3), but use the training data from all robots. It
is noted from Fig. 4 that when assuming global knowledge of all
robot’s data, the centralized mixture of GPs has better prediction
performance over uni-model GP. When the global information is
not available, our proposed distributed mixture of GPs has a better
prediction performance w.r.t. RMS error than local GPs and the best
coverage performance level.

In particular, it is also noted from Fig. 3(b) that the robots with a
distributed GPmixture can successfully identify the top right corner
with 3 distinguished peak areas by exchanging model information,
while in Fig. 3(c) robot 3 falsely predicts a larger peak area due to
no information exchange. With the uni-model GP shown in Fig.
3(d), the robots fail to identify significantly different components
due to its uni-model inference (although it performs better in pre-
diction RMS error compared to the distributed algorithms due to
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(a) Initial (b) Distributed Mixture of GPs (c) Local GPs (d) Uni-model GP

(e) Control with known model
(f) Variance by Distributed Mix-
ture of GPs (g) Variance by local GPs (h) Variance by uni-model GP

Figure 3: An simulation example of 3 robots covering an agricultural field and the modeling results using our distributed
mixture of GP model in comparison to 1) local GPs with local data and 2) uni-model GP with global knowledge of collected
data from all robots. Robots’ current positions are marked by blue circles with dark blue history footprints in (a)-(e). The
background heatmap in (a)-(d) indicates the predicted stalk count distribution based on the collected data and (e) the true
distribution. The background heatmap in (f)-(h) represents the predicted variance over the map. Edge of Voronoi cells and the
ground-truth optimal locations for that particular configurations are represented by red dashed lines and red stars, respec-
tively.

(a) RMS error (b) Sensing cost

Figure 4: Prediction and coverage performance comparison.

its global knowledge of all the collected data). Results of prediction
variance are shown in Fig. 3(f)-(h) and our distributed mixture of
GPs has smoother prediction due to the consensus of environment
model but are still able to capture the prediction uncertainty differ-
ences over the area. Local GP method in Fig. 3(g) has much larger
prediction variance among different robots as they are sampling
in different places with significantly distinct components without

information exchanging. Using uni-model GP in Fig. 3(h) ignores
the local features and hence the prediction variance is almost the
same over any unvisited areas. It is noted that even with only a few
samples collected from the map, the converged configurations are
very close to the optimal ones from the actual temperature distri-
bution due to our adaptive sampling criterion and algorithm that
trades off between uncertainty reduction and centroid approaching.

6.2 Quantitative Results
To further compare our algorithms performance in other environ-
mental phenomenon, we run 40 trials on 5 different sets of data
from Intel Berkeley dataset [1] with 3 to 10 robots respectively
in Fig. 5. Note that as the complexity of communication for our
distributed mixture of GPs is linear to the number of robots and
each robot only computes on the local data only, our algorithm
is also scalable to a larger number of robots. The other modeling
algorithms we are comparing includes the mentioned local GPs,
uni-model GP, known model coverage control, as well as the Expec-
tation maximization (β = 0) and Entropy minimization algorithm
(β > 20) coupled with the same form of coverage controller in (4).
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(a) RMS error (b) Sensing cost (c) Maximum prediction error

Figure 5: Comparisons of RMS error, sensing cost, and maximum prediction error occurred v.s. different number of robots for
different algorithms.

Expectation maximization algorithm seeks to find the area with
highest value of predicted environmental phenomenon while the
Entropy minimization algorithm seeks to find the area with highest
prediction variance to reduce model uncertainty. The centralized
uni-model GP has the best performance w.r.t. RMS error and pre-
diction error due to its global knowledge of data. In particular, the
Entropy minimization has the best prediction performance w.r.t. the
RMS error and maximum prediction error, but the worst coverage
performance since it only prefers high uncertainty area to the place
with higher density value, and thus lead to inferior suboptimal
configurations due to local minima nature of the move-to-centroid
controller (finding global optimal config is NP hard). Our distributed
Mixture of GPs has the best coverage performance even with only
local data (considering the scale of the cost) and in general the
second best performance in prediction (following Entropy mini-
mization) due to the GP-UCB criteria in our algorithm that trades
off between uncertainty reduction and prediction maximization.
As the number of robots increases, our algorithm outperforms the
local GPs w.r.t. RMS error and maximum prediction error as our
distributed Mixture of GPs is able to approximate global statistics
via the consensus algorithm.

7 CONCLUSION
In this paper, we present an adaptive sampling algorithm with dis-
tributed environmental learning in multi-robot sensor coverage
problem using the Mixture of Gaussian Processes models. By using
the information-theoretic sampling criterion, we are able to modify
the traditional coverage control law to consider the uncertainty
as well as the potential environmental phenomenon inferred from
the environmental model learned on-line. Besides, considering sig-
nificantly different components that may exist in the real-world
environmental phenomenon, we propose to employ the mixture of
GP models to capture local features for the global distribution by
optimizing the linear combination of GP models locally learned by
the robots. A distributed consensus learning algorithm is employed
so that no global knowledge of training data is required and only
model-based parameters are exchanged between robots that are
independent from the number of collected data. Simulation results
have shown the effectiveness of our algorithm compared to other
approaches. In the future, we will investigate heuristic algorithms

for choosing the proper number of GP components that are cur-
rently predetermined in our distributed computation of mixture of
GPs models. We will also research on other information gathering
model such as ergodicity metric and to derive theoretical guarantee
on the modeled density function and coverage performance.
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