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ABSTRACT
Extensive literature exists studying decentralized coordination and
consensus, with considerable attention devoted to ensuring robust-
ness to faults and attacks. However, most of the latter literature
assumes that non-malicious agents follow simple stylized rules.
In reality, decentralized protocols often involve humans, and un-
derstanding how people coordinate in adversarial settings is an
open problem. We initiate a study of this problem, starting with a
human subjects investigation of human coordination on networks
in the presence of adversarial agents, and subsequently using the
resulting data to bootstrap the development of a credible agent-
based model of adversarial decentralized coordination. In human
subjects experiments, we observe that while adversarial nodes can
successfully prevent consensus, the ability to communicate can
significantly improve robustness, with the impact particularly sig-
nificant in scale-free networks. On the other hand, and contrary to
typical stylized models of behavior, we show that the existence of
trusted nodes has limited utility. Next, we use the data collected in
human subject experiments to develop a data-driven agent-based
model of adversarial coordination. We show that this model suc-
cessfully reproduces observed behavior in experiments, is robust
to small errors in individual agent models, and illustrate its utility
by using it to explore the impact of optimizing network location of
trusted and adversarial nodes.
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1 INTRODUCTION
Coordination is one of the fundamental problems faced by teams,
organizations, and societies. Such coordination problems are often
decentralized and involve limited local information and interaction,
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with locality naturally captured by a network structure. A promi-
nent example for the special case of consensus is blockchain, which
enables verifiable decentralized transactions [30].

Considerable prior research has been devoted to understanding
and modeling human behavior in networked coordination settings,
such as networked consensus [19–21, 40], coloring [19, 28], bargain-
ing [7], and social dilemma games [15, 26], among others. However,
decentralized coordination problems often take place in adversarial
predicaments. For example, organizations attempting to coordinate
on a strategy may also compete with other organizations (legal and
illegal), and coordination in combat mission planning and execution
inherently faces adversarial entities in the form of enemy combat-
ants. Moreover, adversaries often attempt to exert their influence
covertly, such as by bribing insiders, taking control of network
nodes through cyber attacks, and spreading malicious influence
tacitly through social networks, for example, by means of fake
news [4]. Consequently, an important consideration in decentral-
ized coordination is resilience to adversarial tampering with the
process. While much prior research has been devoted to the study of
robust coordination protocols, these rely on simple stylized models
of individual behavior [2, 6, 24, 25]. However, many settings feature
humans in the loop who play an important role in reaching con-
sensus. Surprisingly, the question of human behavior in adversarial
coordination settings has received little prior attention.

We investigate the problem of decentralized consensus on net-
works in the presence of adversarial nodes, first using human sub-
ject experiments with 556 participants, and subsequently through
the data-driven agent-based modeling (DDABM) methodology [44].
Our experiments focus on two design factors: allowing neighboring
nodes to communicate, and embedding a small set of trusted nodes
in the network. While communication has been a major subject of
inquiry in prior research [8, 10, 11, 29], recent research suggests
that communicating solely among network neighbors has limited
value in facilitating consensus [40]. On the other hand, much prior
research, using stylized models of individual behavior, has argued
that the presence of trusted nodes can significantly facilitate de-
centralized coordination [1, 2, 39]. Our results run counter to both
of these observations. First, we demonstrate that communication
helps a great deal, especially as we increase the number of adver-
sarial nodes. Second, we show that the presence of trusted nodes
does not, in the aggregate, help, reinforcing the need to develop
better models of individual and collective behavior in such settings.
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Next, we develop a data-driven agent-based model of adversar-
ial decentralized consensus on networks, following the DDABM
methodology [44]. In DDABM, individual agent models are derived
from data, and are then instantiated in an agent-based framework
via features that capture behavioral interdependencies among net-
work neighbors. For us, these serve three purposes. First, they
provide further insight into individual behavior. For example, we
observe that adversarial nodes clearly engage in deliberate attempts
tomanipulate outcomes. Second, the resulting agent-basedmodel ef-
fectively captures our experimental observations at the macro level,
and is quite robust to small errors in the individual agent models.
Third, we demonstrate the usefulness of the derived computational
platform as a means for further simulation-based investigation of
the adversarial consensus problem by studying the impact of opti-
mized network location of both trusted and adversarial nodes. We
find that optimizing location is particularly beneficial for adversar-
ial nodes, even when the placement of trusted players is similarly
optimized before we choose where to place adversaries (i.e., in a
Stackelberg fashion). Consequently, and counter to prior observa-
tions with stylized behavioral models, trusted nodes appear to have
only a limited value in facilitating decentralized human consensus
in adversarial settings.

Related Work. Our study of networked coordination follows our
study follows the recent increasing interest in the adversarial side
of artificial intelligence [18, 37, 38, 41], and a number of prior efforts
that investigate a variety of decentralized coordination problems on
networks using human subjects methodology [7, 19–21, 23, 28, 40].
The impact of communication on human coordination and coop-
eration has extensive, parallel literature, using both human sub-
jects [31, 35, 36] and theoretical methods [10, 11, 13, 14, 29]. How-
ever, in most of this literature, communication is grafted on as a
distinct pre-play stage; moreover, much of this literature studies
simple, two-player games. A recent exception, is the work of Vorob-
eychik et al. [40], combining both threads, but investigating only
non-adversarial settings. Regarding human behavior, Coviello et
al. [9] took a more algorithmic approach to look at the matching
behavior of a human in social networks. While using the same
experimental design as ours, the authors focus on the case where
players have to divide into pairs, when the structure of the network
is unknown, with a collective goal of maximizing the number of
teams. Still, similar to our work, the authors use the experimental
data to produce an algorithmic model and analyze its properties by
simulations.

Robust coordination has been analyzed by several efforts, but
theoretically and in simulations, using highly stylized behavior
models [24, 25, 43]. Specifically, [24, 25] focus on design of a con-
sensus protocol that is resilient to worst-case security breaches
assuming the compromised nodes have full knowledge of the net-
work and the intentions of the other nodes. In this work, we provide
a behavioral analysis using extensive human subject experiments
using a well-known crowdsourcing platform. Furthermore, we relax
the assumption of full knowledge and the knowledge about the
intentions of different nodes in the network. Several prior efforts
study the importance of trusted nodes in such settings [1, 2, 39].
Our results suggest that stylized models used in these efforts may
be limited in evaluating the efficacy of trusted nodes.

Finally, data-driven or empirical agent-based modeling has been
proposed as a means of performing simulations that reliably reflect
actual behavior data [42, 44]. Our simulation-based analysis follows
in the spirit of these efforts.

2 EXPERIMENTAL METHODOLOGY
2.1 General Setup
We designed a human subject experiment to study adversarial co-
ordination on social networks. Specifically, the experiment builds
on networked consensus games [19, 22], in which a collection of
players (human subjects) act as nodes on an exogenously specified
graph, choosing between two colors: RED and GREEN. These games
proceed for 60 seconds, with individuals able to make changes to
their color choice in essentially real time. Each player has an ego-
centric view of the game illustrated in Figure 1, where their node
is displayed at the center, and their network neighbors are shown
surrounding the “Me” node, along with their color choices, as well
network connections among them. Any node is displayed as white
prior to actively choosing a color. The display screen also shows
time remaining in the game. Each player receives a base payment
for each game played ($0.15), as well as a bonus of $0.20 if a global
consensus on either color is reached. The game ends as soon as
consensus is reached.

ER-Sparse ER-Dense BA

Figure 1: Top: an example graphical interface from the point of view
of an experimental subject, who is represented by a node in the net-
work. Bottom: example instances of networks, where darker colors
indicate higher node degrees.

The game description so far replicates features from all prior
experiments in networked consensus. A new feature, introduced by
[40], allows network neighbors to communicate through an instant
message-style interface, shown on the right in Figure 1. To facilitate
such communication, when allowed, each player is assigned a 3-
letter name at the beginning of each game, and this name serves as
their unique identifier in communicating with others. Specifically,
when a player sends a message through this interface, all their
immediate network neighbors receive the message (this mode of
communication was termed local communication by [40]).

We made one change to this general setup, which turns out
to be quite consequential. In all prior experiments, the interface
featured a progress bar, which shows how close the overall state is
to global consensus (measured by the number of nodes disagreeing
with majority color). In our setting, however, such a progress bar
communicates toomuch information, particularly when adversaries
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are present, and we consequently removed it (particularly since it
doesn’t have a clear motivation and was just a design artifact of
prior experiments). As we observe below, removing the progress
bar increases the importance of communication, relative to findings
reported by Vorobeychik et al. [40].

2.2 Design of Adversarial Consensus Games
Starting with the basic experimental framework described above,
we augment the experimental platform with several features in
order to study how adversarial nodes impact the ability of the rest
(i.e., the non-adversarial sub-network) to reach global consensus.
For this purpose, we divide players into two teams: a consensus
team and a no-consensus team (in our parlance, these are adver-
saries). The goal of the consensus team is to reach global consensus
among members of this team only, captured by the bonus payment
structure described above. The goal of the no-consensus team is to
prevent consensus among members of the consensus team, which
we incentivize by paying a $0.40 bonus to members of this team
if and only if consensus fails. At the beginning of the game, each
player is assigned to one of these teams, and this assignment is
indicated in their view of the game (see left part of Figure 1).

We fixed the number of consensus players in each game to 20, to
control the baseline difficulty of the task (the underlying consensus
problem on networks becomes more difficult as the network size
grows, other things being equal). In addition, we introduced in
each game a no-consensus players, where a ∈ {0, 2, 5}. The value
of a was not disclosed to the players at the beginning of a game;
although an omniscient observer can infer it from the size of the
network (which is 20 + a), no player could, in fact, do this, since
players could only observe their direct neighbors, and we limited
the maximum degree to 15 to facilitate effective visualization.

A crucial part of our design was the invisibility of adversaries (no-
consensus nodes) to others, including other adversaries, and vice
versa. On the other hand, it is often possible to have a small number
of known reliable or trusted nodes on the network, for example,
nodes which are particularly difficult to compromise due to a high
amount of investment in their security, and conventional wisdom
is that such nodes can greatly facilitate consensus [2]. To allow for
this, we vary the number of visible members of the consensus team
(henceforth, visible nodes), v ∈ {0, 1, 2, 5}.1 However, these nodes
are visible only to their immediate network neighbors, highlighted
by an orange circle around the corresponding nodes, as in Figure 1
for the player with an assigned name “Moe”.

2.3 Network Topologies
For each game, we exogenously specify a network topology, stochas-
tically generated from one of three random graph models: two
variations of Erdos-Renyi (ER) graphs [12], and a Barabasi-Albert
(BA, also known as preferential attachment) model [5]. The two
variations of the ER model differ in network density: one we term
ER-dense, and the other ER-sparse. The 20-node version of the ER-
dense model has average degree 5.1, while the ER-sparse networks
have an average degree of 2.6. BA networks have an average degree
of 5.1 (same as ER-dense). Average degrees increase slightly when

1Recall that there are always 20 nodes in the consensus team. Thus, when 2 members
are visible, there are 18 regular nodes in this team.

we add adversarial nodes. Figure 1 shows example networks for
each of the three network generative models.

2.4 Recruiting and Scheduling
We recruited subjects for the experiment using the Amazon Me-
chanical Turk (AMT) platform [27, 32], now in common use for
economic experiments with human subjects [16, 17, 27, 33, 34].
Recruited subjects were directed to read detailed experiment in-
structions and consent to participate in the experiment (which was
collected online). Once we had a large enough pool of consented
subjects, we scheduled experiment sessions. For each experiment
session, we recruited 30-35 subjects, to ensure that we have a suffi-
cient number even when there are no-shows. Upon arrival, subjects
were placed in a waiting room, and if there were more subjects than
nodes in a graph, they were randomly rotated each game. Each
session began with a series of 5 practice games, followed by 50-65
actual games in which we systematically varied 4 experimental
variables:

(1) Number of adversaries (no-consensus players): a ∈ {0, 2, 5}.
(2) number of visible nodes (within the consensus team): v ∈

{0, 1, 2, 5}.
(3) network topology: ER-dense, ER-sparse, and BA.
(4) communication: allowed or not allowed.

The full study protocol was approved by Vanderbilt University IRB.
We recruited a total of 556 participants who jointly played 1080
games.

3 EXPERIMENTAL RESULTS
We now analyze the results of the experiments. Throughout, we
focus on consensus rate, or proportion of games reaching global
consensus on a single color among the consensus players, as a
measure of coordination success.2

3.1 The Impact of Adversarial Players on
Consensus Rate

One would naturally expect that having adversarial players partic-
ipate in the game would have a deleterious impact on consensus
rate. This intuition is readily confirmed in Figure 2 (left), with all

Figure 2: Impact of adversaries on the consensus rate. Left: overall
consensus rate, as function of the number of adversaries. Right: For
each network distance, proportion of pairs of nodes with this dis-
tance between them who agree on a color at the end of the game.

differences statistically significant (p < 0.01). However, this obser-
vation obscures a crucial distinction between two kinds of impact
adversaries can have in our setting:

2We note that a t-test was used to extract the statistical significance of our results.
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(1) Structural impact: the adversarial nodes change network
structure—in the extreme case, disconnecting the network
among the consensus team members, and

(2) Behavioral impact: behavior of adversarial nodes impacts the
ability of the good nodes to reach consensus.

There is a clear structural impact: 16% of games with 2 adversaries,
and 34% of games with 5 adversaries become disconnected if we
were to remove adversarial nodes. In the cases in which adversarial
nodes disconnect the graph 3, as depicted in Figure 2, consensus
rate drops to 14-15%, roughly what one would expect by random
chance (if we only have two connected components, and use the
consensus rate of 58% which obtains with no adversaries for each
component, the expected consensus rate is 17%). Of course, it is
worth remembering that the network is not, in fact, disconnected,
and adversarial nodes need to deliberately prevent the information
about network state from spreading through them. Indeed, not
only do adversaries do so, the resulting consensus rates are slightly
below expected, suggesting that adversarial behavior itself has an
additional deleterious impact on the ability of nodes to coordinate.

To isolate the behavioral impact, in Figure 2 (right) we plot the
proportion of times a pair which is k network hops apart agrees on
a color at the end of the game, as a function of network distance
k (we only include k with at least 100 instances), where network
distance is defined as the number of nodes between a pair. Here,
we can still see a systematic decrease in coordination success, as
a function of the number of adversaries, no matter how far apart
nodes are. For example, even network neighbors (i.e., k = 1) are
finding it increasingly more difficult to agree on a color, on average,
as we increase the number of adversaries.

3.2 Communication Improves Resilience
Next, we consider the impact that allowing players to communicate
with their network neighbors has on their ability to coordinate suc-
cessfully. Figure 3 shows that communication makes a clear impact

(a) Disconnected networks (b) Connected networks

Figure 3: The impact of communication on consensus rate.

(pooling broken and unbroken networks, all results are significant
with p < 0.01). In the aggregate, the value of communication in-
creases with the number of adversaries: when no adversaries are
present, communication increases consensus rate by 23.5%, with
2 adversaries improvement rises to 35.1%, and with 5 adversaries
games that feature communication are 54.5% more likely to reach
consensus than those that don’t. Moreover, Figure 3 breaks these
results into two plots: one when networks are disconnected if we
were to remove adversarial nodes (3a), and one for the remain-
ing connected networks (3b). One would have expected that with

3A graph is disconnected if it is composed of more than a single connected component
after removing the adversarial nodes.

disconnected networks consensus occurs largely by chance, and
consequently, communication should have no impact. We can ob-
serve that this is not so: even when networks are disconnected
by adversaries, communication increases consensus rate, nearly
doubling it when there are 5 adversaries. To understand this result,
observe that with no communication, consensus rates in discon-
nected networks are well belowwhat it should be by random chance,
whereas communication raises them to approximate parity with
random chance. In other words, in this setting communication
successfully parries the behavioral impact of adversaries.

It is noteworthy that communication helps even when there
are no adversaries, in contrast with prior results [40]. The key
distinction in our setting is the absence of the progress bar: now
that this source of global information is missing, communication
becomes considerably more informative.

(a) 0 adversaries (b) 2 adversaries

(c) 5 adversaries

Figure 4: The impact of communication on pairs of nodes agreeing
in color choice, by node distance.

Figure 4 unpacks the analysis of the impact of communication
further by isolating, again, the behavioral impact of the adversaries,
and the result is generally consistent, with communication increas-
ing the likelihood of a given pair of nodes agrees on a color at the
end of the game, particularly when they are relatively close to each
other in the network.

3.3 The Impact of Network Structure
Next, we consider what impact the network structure has on the
ability of players to reach consensus with and without adversaries
aiming to sabotage coordination. Figure 5 shows the results, broken
up by network (BA, ER-dense, and ER-sparse), number of adver-
saries, and whether or not communication was allowed. Perhaps
the most dramatic impact that communication has is on BA net-
works: when communication is enabled, 2 adversaries are unable
to significantly impact consensus rate, in contrast with games with
no communication, where consensus rates of BA networks drop by
over 30%. This suggests that with few adversarial nodes, the ability
to communicate endows scale-free networks with resilience even
in the face of behavioral manipulation by adversaries (which we
observe to have a significant overall effect otherwise). This finding
complements the already well-known resilience of BA networks to
random node removal [3].
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(a) No communication. (b) Communication allowed.

Figure 5: The effect of adversary players and network type on the
consensus rate.

3.4 The Value of “Trusted” Nodes
Lastly, we look at the value of “trusted” or visible nodes, that is,
nodes whose intention of achieving coordination is visible. Prior

Figure 6: The effect of visible players on the consensus rate.

research using stylized models of node behavior demonstrated that
the presence of trusted nodes in a network can significantly improve
resilience to attacks [1, 2, 39]. It is thus natural to hypothesize
that nodes which are visibly on the consensus team (we can view
these as trusted nodes, in the sense that they are known not to be
adversarial) would significantly facilitate consensus. Remarkably,
Figure 6 shows that this is not the case: as we increase the number of
visible nodes, the impact on consensus rates is almost undetectable.
The reason for the difference is that typical models assume that
trusted nodes cannot be attacked. In our case, trusted nodes (as any
other node) have no information about who the adversaries are,
and, consequently, can also be influenced by the attackers, albeit
indirectly.

To understand the impact of visible (trusted) nodes in greater
depth, we unpack the results in Figure 7 by the number of visible
nodes, the number of adversaries, and whether or not communi-
cation is allowed. With 0 or 2 adversaries, it is difficult to see any
systematic improvement in performance as we increase the number
of trusted nodes. However, with 5 adversaries and communication,
having visible nodes constitutes a clear improvement over having
none (p < 0.05). Thus, merely having trusted nodes is of dubious
value, but allowing players (as well as the trusted node) to com-
municate can improve resilience when there are many adversarial
nodes.

4 DATA-DRIVEN AGENT-BASED MODELING
AND ANALYSIS

Our observations of collective behavior in adversarial consensus
games provides a starting point for the next step: the development
of a data-driven agent-based model (DDABM) of this scenario. The

(a) 0 adversaries (b) 2 adversaries

(c) 5 adversaries

Figure 7: The effect of visible and adversarial players given the type
of communication on the consensus rate.

DDABMmethodology builds agent-based models from data ground
up: first, data of individual human behavior is used to learn compu-
tational models of this behavior, and second, such models are tied
together in an agent-based simulation through variables that take
as input observed behavior by other agents (in our case, network
neighbors and visible nodes) [44]. Crucially, model validation must
be performed at both the individual and aggregate levels.

4.1 Modeling and Analysis of Individual
Behavior

We start by using the data generated in our experiments to de-
velop computational individual agent models that will give rise
to a credible agent-based simulation model with more predictive
power than the conventional stylized models. An additional benefit
of these models is that they will provide qualitative insight into
human behavior in adversarial networked consensus. While we
found communication as an important factor in our analysis of the
experiments, it is not clear how to model it in simulation, and we
therefore focus on the setting with no communication and defer
the issue of modeling communication to future work.

Given that the players in our game only choose between two
colors, the modeling task before us may seem simple at first glance.
This simplicity, however, is quite misleading. In particular, there are
several complications in modeling human behavior in our settings.
The first is the fact that individuals may have three distinct roles:

(1) Adversarial node: a member of the no-consensus team, whose
goal is to prevent consensus among the “good” nodes (i.e.,
nodes on the consensus team),

(2) Visible (“trusted”) node: a member of the consensus team
who is visibly a member of this team (that is, all neighbors
can see that this node is on the consensus team), and

(3) Regular node: all other members of the consensus team.
It is intuitive that adversarial nodes behave differently from others.
For example, adversarial nodes change color more often than others:
2.9 times per game, in comparison with visible consensus team
players, who make only 2.1 changes in a game, and non-visible
nodes, who change their color only twice a game, on average. Below,
we observe that visible nodes also behave differently from regular
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nodes. The second challenge is that nodes in any of these roles may
behave differently depending on whether they see visible nodes
among their neighbors. The third is the fundamental challenge of
how we should model real-time color choices by the players.

We address the third challenge by discretize time into 1 second
intervals, so that there are (up to) 60 decision points in any game
(as a game lasts 60 seconds).

To address the first two challenges, we created distinct behavioral
models for the three roles, and distinct models for the situations
when they have a visible node as a neighbor, and when they don’t
(thus, 6 individual agent models altogether).

Each of these cases raises an additional complication: agents
make two kinds of decisions during the span of a game: first, as
they start as “white” (non-commited), they must choose an initial
color, and subsequently, they choose whether to switch their color.
Consequently, we split the decision model into two parts: 1) choos-
ing the initial color, and 2) switch the color. The rationale is that
the initial decision is a deliberate choice of a particular color, and
includes both the timing of changing from the initial default “white”
color to either red or green, as well as the particular choice between
these two. In contrast, once a color is chosen, players exhibit a con-
siderable amount of inertia: they change color less frequently than
once every 20 seconds on average. Thus, modeling the decision
to switch (or, effectively, the timing of a color switch) naturally
captures such inertia, and also cleanly captures the inherent sym-
metry of their decision at this point, since players do not have a
preference for one color over the other beyond reaching consensus.

Finally, the initial decision was itself split into two models: the
first modeling the timing of the initial color choice, and the second
modeling which color is actually chosen. Consequently, altogether
we learned 18 different behavior models, or 3 models for each of
the 6 roles and neighborhood assignments. Next, we describe these
3 models (which are qualitatively the same for each of the role x
neighborhood predicaments): timing of initial color choice, choosing
the initial color, and timing of color change. We briefly note that all
models below are highly effective: either they exhibit high accuracy
( 90−95%), or large likelihood improvement over a frequency-based
baseline (50%-100% improvement).

Timing of Initial Color Choice. Our first set ofmodels predicts
the timing of the initial choice of color, or, more precisely, the
probability that the initial color is chosen in a discrete time unit.
For these models, the features are: Dinv , the absolute difference
between the fraction of a player’s non-visible neighbors that picked
red and the fraction that picked дreen;Dvis , the absolute difference
between the fraction of a player’s visible neighbors that picked red
and the fraction of those who picked дreen (if the player has visible
neighbors);Nvis , the number of a player’s neighbors that are visible,
andNinv , the number of a player’s neighbors whose are non-visible
(note that Nvis + Ninv is the total number of neighbors the player
has). The decision model is represented by a logistic regression with
these features, the parameters (coefficients) of which we learned
from experimental data. We added l1 (sparse) regularization to
control for overfitting, with regularization parameter tuned using
cross-validation. In all models, VN is a boolean feature indicating
if a node has a visible neighbor. All feature were normalized.

Table 1: Color-picking model, P(pick a color).

Type VN Intercept Dinv Dvis Ninv Nvis

Reg No −1.952 1.29
Yes −2.21 0.548 0.933 0.002 0.016

Vis No −2.045 1.742 0.04
Yes −1.734 0.579 0.84 -0.061 0.048

Adv No −2.284 1.25 0.011
Yes −2.744 0.802 0.662 0.025 0.155

The learned model coefficients for both the model with and with-
out visible neighbors are given in Table 1. The results offer several
interesting insights. First, we can see that disagreement among
neighbors stimulates a player to make an initial color choice earlier.
This is somewhat surprising, as we may expect players to wait until
their neighbors had come to a near-consensus before making an
initial move. Second, disagreement among visible nodes has a more
significant, positive impact on the likelihood of choosing a color
at a particular time point. Third, the behavior of adversarial nodes
is broadly consistent with the first observation, but not with the
second: such players appear to be more stimulated by disagreement
among non-visible than among visible (trusted) neighbors.

Choosing the Initial Color. Conditional on deciding to choose
the initial color in a particular discrete time unit (per our previous
models), the next decision we model is which of the two colors
the player chooses. We again use l1-regularized logistic regression,
where we predict the probability that a player chooses “red” as their
initial color (conditional on choosing some initial color). As before,
we use cross-validation to tune the regularization coefficient. For
these models, the features are:Ginv

local , the fraction of a player’s non-
visible neighbors choosing дreen;Gvis

local , the fraction of a player’s
visible neighbors choosing дreen; Rinvlocal , the fraction of a player’s
non-visible neighbors choosing red ; and Rvislocal , the fraction of a
player’s visible neighbors choosing red . Note that Ginv

local + R
inv
local

and Gvis
local + R

vis
local are not necessarily 1, since some of the neigh-

bors may not have yet chosen a color. As before, all of the features
were normalized.

Table 2: Red picking model, P(red | pick a color).

Type VN Intercept G inv
local Gvis

local Rinvlocal Rvislocal

Reg No 0 -4.863 5.032
Yes -0.066 -2.855 -2.022 3.453 1.733

Vis No 0.109 -4.411 4.202
Yes 0.188 -3.215 -1.599 2.395 1.996

Adv No -0.023 0.817 -0.649
Yes -0.286 0.172 0.732 -0.204

The coefficients of the learned models are presented in Table 2.
The results closely follow expectations here: the more neighbors
(visible and not) are choosing red as opposed to green, the more
likely the consensus team player to choose red as the initial color.
On the other hand, adversarial players tend to act in opposition to
their neighbors, with red prevalence in their local neighborhood
generally leading them to choose green.

However, with regard to the adversarial players, we make a few
noteworthy observations. First, note that adversaries are much
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more influenced by visible nodes than non-visible neighbors (act-
ing more strongly in opposition to these), whereas regular players
tend to be less swayed by the behavior of visible neighbors as com-
pared to others in their neighborhood. Presumably, the adversaries
are deliberately trying to counter the presumed influence of the
visible nodes, which they appear to over-estimate. Second, adver-
sarial nodes act relatively unaggressively: the negative relationship
between neighbor choices and their own initial color choice is rel-
atively slight, in comparison with the magnitude of the positive
relationships for the regular nodes (remember that features are
normalized, so this comparison is meaningful). This observation
that adversarial nodes are less aggressive in their activities aimed
at thwarting consensus is surprising. We will return to it below, as
we make a similar observation in the case of player decisions about
when to change their previously chosen color.

Timing of Color Change. Our last set of models determine the
timing of a color change by a player. More precisely, we again
learn l1-regularized logistic regression models which represent the
probability that a player switches to the other color (either from
red to green, or vice versa) at a given discrete time unit. For these
models, the features are: Oi

l , the fraction of a player’s non-visible
neighbors choosing the opposite color from the one chosen by the
player;Ov

l , the fraction of a player’s visible neighbors choosing the
opposite color from the one chosen by the player; Cil , the fraction
of a player’s non-visible neighbors choosing the same color as the
player;Cvl , the fraction of a player’s visible neighbors choosing the
same color as the player; Nv , the number of a player’s neighbors
who are visible; and Ni , the number of a player’s neighbors that
are non-visible players.

Table 3: Color-changing model.

Type VN Intercept O i
l Ov

l C i
l Cvl Ni Nv

Reg No −3.98 2.65 −0.33 -0.01
Yes -3.79 1.1 1.48 -0.87 0.09 0 -0.03

Vis No -4.11 2.7 -0.1 -0.01
Yes -3.53 1.07 1.27 -0.33 -0.29 -0.06 0

Adv No -2.8 -1.13 1.19 0
Yes -2.72 -0.6 -0.37 0.95 0.30 0 -0.2

The model coefficients are presented in Table 3. The broad re-
sults are again intuitive: as we would expect, when the local color
choices oppose that of a player, a regular player tends to switch,
whereas the adversary tends to stay with their current color choice.
However, unlike their choice of the first color, here the adversaries
less aggressively respond to visible node decisions as compared to
those for their remaining neighbors.

Interestingly, as we had observed above, adversarial nodes appear
to be somewhat less aggressive in acting against the neighborhood
trends, as compared to consensus players in their decisions to switch
to be better aligned with these. This is at first glance unexpected:
why would adversaries hold back, rather than aggressively oppos-
ing an emerging consensus in their neighborhood? We conjecture
that the explanation is that they are concerned also about being
covert. If adversarial nodes act in a way that opposes neighborhood
choices too aggressively, they run the risk of being discovered by

their neighbors as such, at which point their behavioral influence
would, presumably, be minimized. Consequently, adversarial nodes
likely attempt to achieve their disruptive goals without being overly
obvious to their non-adversarial neighbors.

4.2 Agent-Based Model
Given the computational models of human behavior described
above, it is direct to construct an agent-basedmodel (ABM): one sim-
ply instantiates each agent as a node on an exogenously specified
network, with roles assigned randomly according to an exogenously
specified model. In our case, we use the same random assignment
model as in the human subjects experiments.

4.2.1 Model Validation. While statistical and face validity are
essential steps in confirming that our individual behavior models
are reasonable, we now add another dimension: validation in terms
of aggregate outcomes of agent-based simulations. Specifically, We
simulate identical environments as in our experiments using our
constructed ABM, but now using artificial agents and in discrete
time, for 60 iterations (since each time step in our models is equiv-
alent to 1 second in the experiments). Finally, we compare both
qualitative trends, and quantitative outcomes, to those reported in
the experimental results section above (Section 3). Quantitatively,
the agreement is reasonable, with the largest deviation between sim-
ulation outcomes and the experimental consensus rates are within
0.14. The qualitative agreement is even stronger, as we illustrate in

Figure 8: Coordination ratios as a function of single variable.

Figure 8, which shows predicted consensus rates (using simulations)
as a function of the number of adversaries (left plot) and network
topology (right plot). Comparing to corresponding results from
the human subject experiments in Section 3, we can observe broad
qualitative agreement. Note that the agreement between simulated
and experimental results we achieve for games at this scale (at
least 20 players, with considerable interdependencies in behavior)
compares quite favorably with similar efforts for devising artificial
agents to model coordination in prior literature [19].4 The degree
of consistency between simulations and experiments is particularly
noteworthy in our case, if one considers that we had to construct
18 distinct behavior models to capture human behavior.

Despite strong agreement with experimental findings, it is still
natural to wonder whether our models are robust to small changes
in parameters. Such robustness is crucial if we are to trust the
models to remain predictive as we significantly change the setup
of the experiment, as we do below. We now show that our model
is, indeed, robust to worst-case perturbations in the parameters of
regular players (as these dominate the simulations).
4[42] is noteworthy as well. However, they consider a public goods game, and aim
to predict average contribution. Predicting the probability of consensus using such
data-driven agent-based simulations appears to be a more challenging problem.
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Recall that for each non-adversarial player we have two models:
the first when a player has at least one visible neighbor, and the sec-
ond when they do not. Since we have two types of non-adversarial
actors (visible and non-visible nodes), we optimize coefficients of
the four associated models with the objective of maximizing con-
sensus rate, with the constraint that the l1 norm of the modification
does not exceed an exogenously specified ϵ . We approximately solve
this problem using Coordinate Greedy (CG) local search, which iter-
atively chooses a parameter to optimize, and attempts to find the
best improvement of this parameter. To abide by the l1 norm con-
straint, we subsequently project the result into the feasible space.
Overall, we find that even for relatively large ϵ , the impact is sur-
prisingly small: it appears that incremental changes in behavior of
individuals has little impact on ability to successfully coordinate
(the impact is generally < 5% even for ϵ as large as 0.2).

4.2.2 Optimizing Placement of Trusted and Adversarial Players.
In our experiments, we randomly assigned trusted and adversarial
players to nodeswithin the network.We now explore the alternative
possibility where the assignment of these is more deliberate. To
study the problem systematically, we consider the decision of where
to place trusted (visible) and adversarial nodes as a Stackelberg
game with two players, the coordinator (the Stackelberg leader) and
the adversary (the follower). The coordinator first places the trusted
nodes on the network, and, fixing this placement, the adversary
places adversarial nodes. The goal of the coordinator is to maximize
consensus rate, which the adversary aims to minimize. In order to
avoid time-consuming simulations in the optimization phase for
both the coordinator and the adversary, we use a proxy objective of
choosing a set of nodesmaximizing the number of unique neighbors;
we call this optimal for either player. Since the game in our case is
relatively small, we solve for optimality by exhaustive search. In
addition, we create three baselines for comparison: first, when both
players choose nodes randomly (as in our experiments), whereas in
the second and third baseline, one player chooses nodes randomly,
whereas the other optimizes.

Figure 9: Consensus rate as a function of placement of visible nodes
when no adversaries are present. Left: for different network topolo-
gies. Right: different number of visible nodes.

We first consider settings with no adversaries, and explore the
impact of having an optimal placement of visible nodes, as com-
pared with random placement. The results are presented in Figure 9,
for different network topologies (left), and different numbers of vis-
ible nodes (right). The broad trend is that while optimal placement
of visible nodes is typically helpful, the impact it has on consensus
rate is quite muted, further bolstering our experimental observation
that the value of having trusted nodes in this setting can be limited.

Figure 10 presents the results of considering the two placement
strategies (random and optimal) for visible and adversarial nodes.

Figure 10: Consensus rate for different strategies of placing visible
and adversarial nodes, as a function of: (Left) network topologies;
(Right) the number of adversaries; and (Bottom) the number of vis-
ible nodes.

From this figure we can make several noteworthy observations.
First, adversarial players are highly effective with optimal placement:
consider blue and purple (first and last) bars in the plots, which cor-
respond to adversaries placed optimally. In both cases, consensus
rates are quite small, for all network topologies, and even with only
2 adversaries. This is especially surprising when we also consider
the optimal placement of visible nodes, which are placed before ad-
versaries, and can thereby ensure that networks remain connected
even after adversarial nodes are added. While optimal placement
of visible nodes clearly helps, the impact is smaller than we would
have expected. Second, optimally placing visible nodes helps: con-
sider the red bars (tallest in all plots), which correspond to the
optimal placement of visible nodes, followed by random placement
of adversaries. In this situation, we can observe a clear value of
visible nodes, particularly for the scale-free (BA) topology. On the
other hand, we can see that having 2 visible nodes is actually better
than 5, which we conjecture is due to the increased potential for
miscoordination among visible nodes themselves in the latter case.

5 CONCLUSION
We consider the problem of adversarial consensus on social net-
works both using human subjects and agent-basedmodelingmethod-
ologies. The overall goal of the subjects is to reach global consensus
on a particular color, despite adversarial nodes who attempt to
prevent consensus. We find that while the ability to communicate
can significantly improve coordination success despite adversarial
presence, embedding trusted nodes within the network is of limited
value. We observe several strategies used by adversarial players to
subvert coordination, such as choosing a color which opposes local
majority. However, we also note that these malicious activities are
used in a somewhat subdued manner, suggesting perhaps an at-
tempt of adversarial players to remain covert. We use experimental
data to construct and validate an agent-based model of adversar-
ial consensus. Extensive simulations using an agent-based model
created based on experimental data additionally show that the im-
portance does increase when their network location is optimized,
but this improvement is often small, particularly when adversarial
nodes are also optimizing location, and even though adversaries do
so after we choose where to place trusted nodes.
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