
Learning Simulation-Based Games from Data
Extended Abstract

Enrique Areyan Viqueira

Brown University

Providence, Rhode Island, USA

NEC-AIST AI Cooperative Research Laboratory

Tokyo, Japan

eareyan@brown.edu

Amy Greenwald

Brown University

Providence, Rhode Island, USA

NEC-AIST AI Cooperative Research Laboratory

Tokyo, Japan

amy_greenwald@brown.edu

Cyrus Cousins

Brown University

Providence, Rhode Island, USA

cyrus_cousins@brown.edu

Eli Upfal

Brown University

Providence, Rhode Island, USA

eli_upfal@brown.edu

ABSTRACT
We tackle a fundamental problem in empirical game-theoretic anal-

ysis (EGTA), that of learning equilibria of simulation-based games.

Such games cannot be described in analytical form; instead, a black-

box simulator can be queried to obtain noisy samples of utilities. Our

approach to EGTA is in the spirit of probably approximately correct

learning. We design algorithms that learn empirical games, which

uniformly approximate the utilities of simulation-based games from

finitely many samples. Our methodology learns all the equilibria
of simulation-based games, as opposed to a single one.
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1 OVERVIEW
This paper is concerned with analyzing games for which a complete

and accurate description is not available. While knowledge of the

number of agents and their strategy sets is available, we do not

assume a priori access to the game’s utility functions. Instead, we as-

sume access to a simulator fromwhich we can sample noisy utilities

associated with any strategy profile. Such games have been called

simulation-based games [14] and black-box games [6], and their anal-
ysis is called empirical game theoretic analysis (EGTA) [2, 15]. EGTA
methodology has been applied in various practical settings, includ-

ing trading agent analyses in supply chain management [2, 13], ad

auctions [4], and energy markets [5]; designing network routing

protocols [16]; strategy selection in real-time games [9]; and the

dynamics of reinforcement learning algorithms, like AlphaGo [10].

The aim of this work is to design learning algorithms that can

accurately estimate all the equilibria of simulation-based games.
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We tackle this problem using the probably approximately correct

(PAC) learning framework [11]. Our algorithms learn so-called em-
pirical games [15], which are estimates of simulation-based games

constructed via sampling. We prove that empirical games so con-

structed are uniform approximations of simulation-based games,

meaning all utilities in the empirical game tend toward their ex-

pected counterparts in the simulation-based game, simultaneously.
This notion of uniform approximation is central to our work. Our

main theorem states: when one game Γ is a uniform approximation

of another Γ′, all equilibria in Γ are approximate equilibria in Γ′.
Intuitively, this theorem establishes perfect recall by the approx-

imate game, in the sense that the approximate game contains all

true positives: i.e., all (exact) equilibria of the original game. It also

establishes approximately perfect precision, in the sense that all

false positives in the approximate game are approximate equilibria

in the original game. Our learning algorithms, which learn empir-

ical games that are uniform approximations of simulation-based

games, thus well estimate the equilibria of simulation-based games.

RelatedWork. One distinguishing feature of our work vis à vis the
literature is that we aim to estimate all the equilibria of simulation-

based games, rather than just a single one (e.g., [3]). Two notable

exceptions are in the work by Vorobeychik [12] and Tuyls et al. [10].

The former includes asymptotic results about the equilibria of em-

pirical games; we improve their analysis, showing finite-sample

bounds. The latter derives guarantees on the quality of all equilibria

learned from finite samples; beyond likewise establishing perfect

recall, we further establish approximately perfect precision.

2 APPROXIMATING GAMES
We begin by presenting standard game-theoretic notions. We then

define uniform approximation, and show that finding the approxi-

mate equilibria of a uniform approximation of a game is sufficient

for finding all the (exact) equilibria of the game itself.

Definition 2.1 (Pure Normal-Form Game). A pure normal-form
game (NFG) Γ � ⟨P , {Sp }p∈P ,u(·)⟩ consists of a set of agents

P , with pure strategy set Sp for agent p ∈ P . We define S �
S1 × · · · × S |P | to be the pure strategy profile space of Γ, and then

u : S → R |P |
is a vector-valued utility function (equivalently, a

vector of |P | scalar utility functions up ).
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Given a pure NFG Γ, we denote by S⋄p the set of distributions

over Sp ; this set is called agent p’s mixed strategy set. We define

S⋄ = S⋄
1
× · · · × S⋄

|P |
, and then, overloading notation, we write u(s)

to denote the expected utility of a mixed strategy profile s ∈ S⋄.

Definition 2.2 (ϵ-Nash Equilibrium). A pure (or mixed) strategy

profile s in game Γ with utility function u is an ϵ-Nash equilib-
rium (NE) if supp∈P sups ′:s ′j=sj∀j,p up (s

′) −up (s) ≤ ϵ .

Given a game Γ, we denote by Eϵ (Γ) the set of pure ϵ-NE, and
by E

⋄
ϵ (Γ), the set of mixed ϵ-NE. Note that Eϵ (Γ) ⊆ E

⋄
ϵ (Γ).

Our main result is that equilibria can be approximated with

bounded error, given only a uniform approximation. To present

this result, we define the ℓ∞-norm between two compatible games,

with the same agents sets P and strategy profile spaces S , and with

utility functions u, u ′
, respectively, as follows:

Γ − Γ′




∞ �



u(·) −u ′(·)



∞ � sup

p∈P ,s∈S
|up (s) −u ′

p (s)| .

While the ℓ∞-norm as defined applies only to pure normal-form

games, it is in fact sufficient to use this metric even to show that

the utilities of mixed strategy profiles approximate one another.

Definition 2.3. Γ′ is said to be a uniform ϵ-approximation of

Γ when ∥Γ − Γ′∥∞ ≤ ϵ .

Uniform approximations are so-called because the bound be-

tween utility deviations holds uniformly over all players and strat-

egy profiles. We now present our main result.

Theorem 2.4 (Approximate Eqilibria). If two NFGs, Γ and Γ′,
are uniform approximations of one another, then:
E(Γ) ⊆ E2ϵ (Γ

′) ⊆ E4ϵ (Γ) and E⋄(Γ) ⊆ E
⋄
2ϵ (Γ

′) ⊆ E
⋄
4ϵ (Γ).

We have thus established perfect recall by an approximate game,

in the sense that the approximate game contains all true positives:

i.e., all (exact) equilibria of the original game; and approximately

perfect precision, in the sense that all false positives in the approxi-

mate game are approximate equilibria in the original game.

3 LEARNING GAMES
Having established perfect recall and approximately perfect pre-

cision of uniform approximations, we now tackle the problem of

constructing empirical games. For this purpose, we introduce two

algorithms. The first, which we call global sampling (GS), learns an

empirical game from a static sample. This learning is conceptually

very simple: simulate the gamem times at all strategy profiles, and

then average the ensuing utilities across simulations. The requi-

site number of samples,m, is a function of a user-specified desired

accuracy ϵ and failure probability δ . Our second algorithm, progres-
sive sampling with pruning (PSP), samples dynamically, saving on

queries to the simulator at strategy profiles where fewer data are

necessary to confidently learn to a desired degree of accuracy.

GS and PSP can both be instantiated with various concentration

inequalities to obtain uniform convergence guarantees. Building on

earlier work [10], we apply Hoeffding’s inequality [1]. While doing

so requires bounded noise, this is not an inherent limitation of our

methodology. We could obtain similar results under varied noise

assumptions; e.g., we could assume subgaussian or subexponential
noise, and substitute the appropriate Chernoff bounds.

4 EXPERIMENTAL EVALUATION
In the full version of this paper, we empirically evaluate our algo-

rithms on randomly generated games and finite congestion games [7].

We show that they make frugal use of data, accurately estimate

games more often than the theory predicts, and are robust to differ-

ent forms of noise. We further show that in practice PSP requires

significantly fewer data than GS, the current state-of-the-art [10],

to produce the same (and often times, better) error rates.

We summarize here one of a suite of experiments we conducted

in our evaluation. The goal of this experiment is to evaluate the

extent to which Theorem 2.4 holds in practice, when learning em-

pirical games via GS. Figure 1 depicts four histograms, each one

plotting the frequencies of strategy profiles deemed pure 2ϵ-Nash
equilibria, using exhaustive search to find these equilibria, for four

different sample sizes. The profiles not shown had zero frequency.

The unique pure Nash equilibrium of the underlying congestion

game is correctly identified in all cases for all 200 trials. Moreover,

as the number of samples increases, the frequency of false positives

(i.e., profiles that are not Nash but are deemed so by GS) decreases.

5 APPLICATIONS
One important application of our methodology is the estimation

of equilibria in so-called meta-games [9, 15], which are simplified

versions of intractably large games. In a meta-game, instead of

modeling every possible strategy an agent might implement, one

analyzes a game with a substantially reduced set of strategies, each

of which is usually given by a complicated algorithmic procedure

(i.e., a heuristic). For example, instead of analyzing a game that

models every possible strategy that could be played in a game of

Go—a computationally intractable task—one might analyze a re-

duced version of the game where agents play strategies given by

reinforcement learning algorithms [8] (e.g., variants of AlphaGo).

Moreover, simulation is in order; and since each run of the game can

result in either agent winning (depending on various stochastic el-

ements, including the agents’ strategies), one can only obtain noisy

utilities. Our techniques are directly applicable to the construction

of empirical meta-games, and provide guarantees on the quality of

the equilibria of the corresponding simulation-based meta-games.

Another important application of our methodology is in the

area of empirical mechanism design [13]. In mechanism design, the

mechanism (game) designer wishes to optimize the rules of a game

so that the ensuing equilibria achieve certain goals. We plan to

extend our methodology to learn empirically optimal mechanisms.
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