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ABSTRACT
We initiate the study of indivisible chore allocation for agents with

asymmetric shares. The fairness concepts we focus on are natural

generalizations of maxmin share: WMMS fairness and OWMMS

fairness. We first highlight the fact that commonly-used algorithms

that work well for allocation of goods to asymmetric agents, and

even for chores to symmetric agents do not provide good approxima-

tions for allocation of chores to asymmetric agents under WMMS.

As a consequence, we present a novel polynomial-time constant-

approximation algorithm, via linear program, for OWMMS. For two

special cases: binary valuation case and 2-agent case, we provide

exact or better constant-approximation algorithms.
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1 INTRODUCTION
We consider fair allocation of indivisible chores when agents have

asymmetric shares. In contrast to the case of goods for which agents

have positive value, chores are disliked by agents and they have neg-

ative value for them. The fairness concept we focus on is maxmin

share (MMS) fairness which was designed for allocation of indi-

visible items. MMS is based on the thought experiment that if the

items are partitioned into bundles and an agent would always get

the least preferred bundle of items, what is the best way she can

partition the items. The value of such a bundle is the maxmin share

of the agent. An allocation is deemed MMS fair if each agent gets

her required share.

Maxmin share fairness was proposed by Budish [5] as a fairness

concept for allocation of indivisible items. It is a relaxation of pro-
portionality fairness that requires that each of the n agents should

get value that is at least 1/n of the total value she has for the set of

all items. When items are divisible, maxmin share fairness coincides

with proportionality. Maxmin share fairness is a weaker concept

∗
We refer the readers to the full version of the paper for more detail. This work has

been partially supported by NSF CAREER Award No. 1553385.

Proc. of the 18th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2019), N. Agmon, M. E. Taylor, E. Elkind, M. Veloso (eds.), May 13–17, 2019,
Montreal, Canada. © 2019 International Foundation for Autonomous Agents and

Multiagent Systems (www.ifaamas.org). All rights reserved.

when items are indivisible. Procaccia and Wang [12] identified a

counter-example where maxmin fair allocations do not always exist.

Since then, there has been several works on algorithms that find

an approximate MMS allocation [1, 3, 4, 9]. All these works make

the typical assumption that agents are symmetric and should be

treated in a similar manner.

Farhadi et al. [6] were the first to consider MMS fairness for the

case where indivisible goods are allocated and the agents are not
symmetric because they may have different entitlement share of

the goods. Ideally, an agent would expect to get a share of the total

value that is proportional to her entitlement. However when items

are indivisible, MMS fairness needs to be suitably generalized to the

cater for asymmetric entitlement shares. Farhadi et al. generalized

MMS fairness to that of the more general MMS concept as weighted
MMS (WMMS) that caters for entitlements. Beyond the results for

goods [6, 7], not much is known about chore allocation when the

agents are asymmetric despite the recent active research in fair

allocation of goods and chores. Furthermore, it is not clear whether

the results for goods from one setting could carry over the other [2].

In this paper, we focus on fair allocation of chores for asymmetric

agents. In the case of chores, agents do not have entitlements but

relative shares. If an agent has a higher share, she is expected to take

a higher load of the chores. Treating agents asymmetricallymay be a

requirement for several reasons. For example, countries with larger

population and CO2 emission may be liable to undertake more

responsibility to clean up the environment. The central research

question we examine is: When indivisible chores are to be allocated
among agents with asymmetric shares, for what approximation factor
do approximately WMMS fair allocations exist and how efficiently
can they be computed?

2 SETTING AND FAIRNESS CONCEPTS
2.1 Setting
Let N = {1, 2, · · · ,n} be a set of n agents, andM = {1, 2, · · · ,m} be
a set ofm indivisible items. Each agent has a valuation function

Vi : 2
M → R. Denote by Vi j = Vi ({j}). We assume that items are

chores to every agent, i.e., Vi j ≤ 0 for all j ∈ M and the valuations

are additive, i.e., for any S ⊆ M , Vi (S ) =
∑
j ∈S Vi j . Without loss of

generality and just for ease of presentation, it is assumed that all of

the valuations are normalized, i.e. Vi (∅) = 0 and Vi (M ) = −1.
In this work, we consider the case when agents are asymmet-

ric. Particularly, every agent has a share for the chores, namely

si ∈ (0, 1]. The shares add up to 1, i.e.,

∑
i ∈N si = 1. Letting

V = (V1, · · · ,Vn ) and s = (s1, · · · , sn ), we use I = (N ,M, s,V )
to denote a chore allocation instance. Let Π(M ) be the set of all
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n-partitions of the items. A generic allocation will be denoted by

X = ⟨X1,X2, . . . ,Xn⟩ where Xi is the bundle of agent i .

2.2 WMMS fairness
Before presenting the WMMS fairness concept that takes into ac-

count the shares of the agents, we first present the standard MMS

fairness concept that assumes the shares of the agents are equal. For

symmetric agents, the classical maxmin share (MMS) of an agent i
with valuation Vi is defined as

MMSi = max

⟨Xi ⟩i∈N ∈Π(M )
min

j ∈N
Vi (X j ).

Intuitively, when allocating items to n agents, each agent should

get an allocation with value that is 1/n of the total value they have

for all the items. Since the items are not divisible, this proportional-

ity requirement may be not achievable for the agents. In view of

this,MMSi can be viewed as a relaxed lower bound on the value

that agent i hopes for if she has the chance to partition the items

into n bundles and every other agent adversarially choses a bundle

before i . Next, we generalize the classical MMS notion to the setting

with asymmetric agents.

Definition 2.1 (Weighted MMS). Given any chore allocation in-

stance I = (N ,M, s,V ), for every agent i ∈ N , the weighted
maxmin share (WMMS) value of i is defined as:

WMMSi (I) = max

⟨Xi ⟩i∈N ∈Π(M )
min

j ∈N
Vi (X j )

si
sj
.

The definition above for WMMS fairness is exactly the same as

that of WMMS as formalized by Farhadi et al. [6] for the case of

goods except that the entitlement ei of an agent i is replaced by

her share si . As mentioned in the introduction, whereas a higher

entitlement for goods is desirable for an agent, a higher share for

chores is undesirable for the agent.

We call an allocationWMMS if the value of the allocation to each

agent i is worth at leastWMMSi to her. Similarly, an allocation is

called α-WMMS, if the total value of the share allocated to each

agent i is at least αWMMSi to her for α ≥ 1.

Note that when all shares are equal, WMMS coincides with

MMS fairness so it is a proper generalization of MMS. Secondly, we

spell out an insight that also provides justification for the WMMS

concept that was defined by Farhadi et al. [6].We note that when the

items are divisible, then WMMSi = siVi (M ). Hence, for divisible
chores, WMMS fairness also implies a natural generalization of

proportionality that takes into account the shares of agents.

Next we show a simple algorithm, Naive, which returns an n-
WMMS allocation. Algorithm Naive produces an allocation that

allocates all of the items to a single agent who has the highest share

(ties are broken arbitrarily).

Lemma 2.2. Let I = (N ,M, s,V ) be any chore allocation in-
stance and ⟨Xi ⟩i ∈N be the output of AlgorithmNaive. ThenVi (Xi ) ≥
nWMMSi (I) for any i ∈ N .

2.3 Optimal WMMS fairness
It is well known that for symmetric agents, no matter the items are

goods or chores, an MMS allocation always exists for 2-agent case.

But for asymmetric agents, we note that an exactWMMS allocation
may not exist even when there are only two agents. Indeed, by the

following lemma, we see that the lower bound of the problem is at

least
4

3
, which means that there is no allocation that can guarantee

each agent’s value to be greater than
4

3
WMMSi (I) for every i ∈ N .

Lemma 2.3. In the chore allocation problem, any algorithm has an
approximation ratio of at least 4

3
for WMMS fairness.

Since an exactWMMS allocation barely exists, it is natural to con-
sider a relaxed version, optimal WMMS (OWMMS) fairness, which
is similar to the one introduced in [3].

Definition 2.4 (Optimal WMMS). Let I = (N ,M, s,V ) be any

chore allocation instance. The optimal WMMS (OWMMS) ratio α∗ is
defined as the minimal α ∈ [1,∞) for which an α-WMMS allocation

always exists. Let OWMMSi (I) = α∗WMMSi for any i ∈ N . A

partition X = ⟨X1,X2, . . . ,Xn⟩ is called an OWMMS allocation, if

Vi (Xi ) ≥ OWMMSi (I) for all i ∈ N .

For any partition X = ⟨Xi ⟩i ∈N , ifVi (Xi ) ≥ c ·OWMMSi (I) for
all i ∈ N , X is called c-approximation to the OWMMS allocation.

3 APPROXIMATION ALGORITHMS
For the case of goods allocation, the greedy round robin algorithm

considered by Farhadi et al. [6] gives the best guarantee (of n-
approximation for goods). Interestingly, the same algorithm was

proved to provide a 2-approximation for MMS allocation of chores

when agents are symmetric [3]. However, when agents have dif-

ferent shares, such an algorithm can be arbitrarily poor. We can

show that some natural attempts to ‘fix’ the bad performance of

the greedy sequential algorithm does not help.

For the general setting, we design a polynomial-time algorithm

that is (4 + ϵ )-approximation with respect to OWMMS fairness.

Theorem 3.1. Given any chore allocation instanceI = (N ,M, s,V )
with α∗ being the OWMMS ratio. For any ϵ > 0, there is an algo-
rithm that runs in polynomial time (for any number of agents) and
returns an allocation ⟨Xi ⟩i ∈N such that for any agent i , Vi (Xi ) ≥
(4 + ϵ )OWMMSi (I).

The algorithm used in Theorem 3.1 establishes the connection

of our problem to the parallel processors scheduling problem [8,

10]. Through this connection, the computation of the OWMMS

ratio is formulated as an integer program, and using the rounding

technique in [11], we are able to round a fractional assignment of

the relaxation of the integer program to an integer assignment.

Next, we consider two restricted cases. Given any instance I =

(N ,M, s,V ) with N = {1, 2}, we prove that it is always possi-

ble to guarantee each agent i’s value to be at least
3

2
WMMSi (I),

via a divide-and-choose style algorithm. Thus, by Lemma 2.3, the

OWMMS ratio α∗ for 2-agent case is within [
4

3
, 3
2
].

Theorem 3.2. Let I = (N ,M, s,V ) with N = {1, 2}. There is an
algorithm that returns an allocation ⟨X1,X2⟩ such that for any agent
i ∈ N , Vi (Xi ) ≥ 3

2
WMMSi (I).

Finally, we study the case with any number of agents but all of

them have (different) binary valuations: Vi j ∈ {0, ci }, where ci ≤ 0,

for all i ∈ N and j ∈ M .

Theorem 3.3. When the valuations of the agents are binary, a
WMMS allocation exists and can be found in polynomial time.
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