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ABSTRACT
In this paper, we introduce and study a graph-based variant of the

path planning problem arising in hostile environments. Here, the

robot must reach a given destination while avoiding being inter-

cepted by probabilistic entities which exist in the graph with a given

probability and move according to a probabilistic motion pattern.

Given a deadline to reach its goal, the robot must compute a path

that maximizes its chances of survival. To solve this problem, which

is proven to be NP-hard, we present a convex Mixed-Integer Non-

linear Program to compute optimal solutions and a more scalable

heuristic algorithm.
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1 INTRODUCTION
Motivated by the recent interest of the AI community in the navi-

gation of hostile environments [1], in this paper we introduce and

study a graph-based variant of the path planning problem arising

in those kinds of settings. Here, the robot must reach a given des-

tination while avoiding being intercepted by some entities –that

we generically call “obstacles”– existing with a given probability,

moving according to a probabilistic motion pattern, and capable of

“intercepting” the robot along its path (e.g., within a given range).

Given a deadline to reach its goal, the robot must compute a path

that maximizes its chances of survival (see Figure 1 for an exam-

ple problem instance). Possible applications include, for instance,

those related to intrusion scenarios, where obstacles may represent

enemy guards deployed to protect the entrances of a building [6].

Another example is given by situations where the robot’s sensors

have been compromised by an attacker, who is trying to make the

robot crash by injecting false dynamic obstacles into the robot’s

perception pipeline [5]. To solve this problem, which is proven to

be NP-hard, we present a convex Mixed-Integer Nonlinear Program

(MINLP) to compute optimal solutions and a more scalable heuristic

algorithm.
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Figure 1: A problem instance. The environment is a 22x22
grid graph with holes (the black squares). The robot must
move from the bottom-left corner to the upper-right. Static
probabilistic obstacles (green triangles) and dynamic proba-
bilistic obstacles (red circles) can intercept the robot. The ro-
bot must reach the goal within a given deadline by traveling
along the path that minimizes its interception probability.

2 PROBLEM SETTING
Let G = (V ,E) be a connected, undirected, simple graph with

unitary edge lengths representing the environment, and let V =
{1, . . . ,n}. A robot must plan a path onG in the form of an ordered

sequence of vertices π = (vs ,v1,v2, . . . ,vд) from a start vertex vs
to a goal vertex vд . The robot moves deterministically on G: time

evolves in discrete steps and, at each step, the robot can either stay

still at the current vertex, or move along a graph edge. We use

π [i] to denote the position of the robot at the i-th time step when

executing π , |π | to denote the number of time steps required to

reach the goal in π , and P to denote the set of all the possible paths

according to our definition. We assume that the environment may

contain probabilistic obstacles able to intercept the robot along its
path, which can be either static or dynamic. The existence and the

interception events related to a given obstacle in G are assumed to

be independent of those of all the others.
The set of static probabilistic obstacles is denoted by S . Each s ∈ S

is completely described by a probability of existence ps < 1 and by

a set of verticesV (s) ⊆ V \ {vs ,vд} inducing a connected subgraph
onG . The semantic associated with a static probabilistic obstacle s is
simple: if the robot executes a path π traversing any of the vertices

in V (s), it is intercepted by s with probability ps and it survives s
with probability 1 − ps . We use the function σ : P × S → {0, 1} to

associate each ⟨π , s⟩ pair with the presence (σ (π , s) = 1) or absence

(σ (π , s) = 0) of at least one passage of π through a vertex of s .
The set of dynamic probabilistic obstacles is denoted by D. Each

d ∈ D is associated with a probability of existence pd and, at each

time step t , is described by a belief vector

bd (t) = [bd
0
(t),bd

1
(t), . . . ,bdn (t)]. (1)
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The first element of the vector, bd
0
(t), represents the probability

that the robot has already been intercepted by d by time t if it

executes a given path π , conditioned on the obstacle existence in

the environment. All the subsequent vector elements bdv (t),v ∈

{1, . . . ,n} represent the probability that at time t the obstacle is in
vertexv , again assuming that the obstacle is actually present. Belief

vectors evolve according to (a) the obstacles’ probabilistic motion

models, and (b) the interception events associated with π .
The probabilistic motion model is assumed to be Markovian and

not changing between two subsequent steps. We can therefore rep-

resent it by means of a single stochastic matrixMd
whose generic

entryMd
uv represents the probability that d will move from u to v

between two subsequent steps t and t + 1.
Interception events related to a dynamic obstacle d are described

by means of n interception matrices Nd ;v ,v ∈ V having size (n +
1) × (n + 1). The effect of the application of an interception matrix

on the belief vector is to “move” some probabilities related to the

obstacle being in vertices allowing it to intercept the robot when

located in v to the robot’s interception state bd
0
(t) (see [4] for an

example in the context of a search problem).

For a robot executing path π , the belief update equation describ-

ing its interactions with dynamic obstacle d is

bd (t + 1) = bd (t )
[
1 0

0 Md

]
N d ;π [t+1], (2)

where the 0s denote vectors of appropriate size. The semantic as-

sociated with a dynamic probabilistic obstacle d is as follows: if

the robot executes path π , it is intercepted by d with probability

pd · bd
0
(|π |) and it survives d with probability 1 − pd · bd

0
(|π |). We

consider the following optimization problem:

Problem 1. Given ⟨G, S,D⟩ and a deadline T ≥ d(vs ,vд), com-
pute the path π∗ defined as

π ∗ = argmax

π ∈P

∏
s∈S

(1 − ps )σ (π ,s )
∏
d∈D

(1 − pd · bd
0
( |π |)) s.t. (3)

Belief Update Equation (2) ∀d ∈ D, t ∈ {1, . . . , |π | } (4)

|π | ≤ T (5)

Wehave proven that the decision version of Problem 1 is NP-hard

even on seemingly simple problem instances (T ≤ |V |, rectangular

grid graphs where dynamic obstacles have a very small “intercep-

tion range”, move at 1 cell/step, and never cross static obstacles nor

each others’ paths at the same step).

3 ALGORITHMS
To compute optimal solutions to Problem 1, we first propose a

convex MINLP. In our formulation, legal paths are modeled on a

time-stamped version of G with vertex set V t = {⟨v, t⟩ ∈ V ×

{0, 1, . . . ,T }|d(vs ,v) ≤ t ∧ t + d(v,vд) ≤ T } ∪ {v ′
д}, with v ′

д
acting as dummy goal vertex (in general, the robot could reach

the goal between steps d(vs ,vд) and T ), and (directed) arc set

At = {(⟨u, t⟩, ⟨v, t+1⟩)|⟨u , vд , t⟩ ∈ V t ∧⟨v, t+1⟩ ∈ V t ∧[(u,v) ∈

E ∨ u = v]} ∪ {(⟨vд , t⟩,v
′
д)|⟨vд , t⟩ ∈ V t }. This allows to use bi-

nary path variables and linear constraints to express the robot’s

movements in G between two subsequent steps (see [2]). Intercep-

tion events related to static obstacles are modeled with the help of

Figure 2: Results obtained on the 28 × 28 grids. Left:
MINLP solution times. Right: heuristic gaps computed as
(optimal_solution - heuristic_solution)/optimal_solution.

binary variables zs , which are enforced to take value 1 by means

of linear constraints iff the robot traverses any of the vertices of

static obstacle s at any time step along its path. Interception events

related to dynamic obstacles are modeled by defining continuous
belief variables βdi ;t , representing the entries b

d
i (t) of the dynamic

obstacles’ belief vectors up to step T . Again, we use only linear

constraints to bind the path variables to an evolution of the belief

variables coherent with Eq. (2) (if a path reaches the goal at t̂ < T ,

we make sure that βd
0
(t) does not change after t̂ ). The objective

function can be stated as

maximize

∑
s∈S

zs log(1 − ps ) +
∑
d∈D

log(1 − pd · βd
0;T ), (6)

hence obtaining a convex MINLP.

We also present an algorithm allowing to obtain heuristically

good solutions in reasonable time (O(n |S |+n2 |D |T )worst-case run-
time) for large scale problems. The idea is to compute the shortest

(⟨vs , 0⟩,v
′
д) path on the directed graph (V t ,At ) introduced above,

where each arc (⟨u, t⟩, ⟨v, t + 1⟩) ∈ At is associated with a fixed
weight computed as the negative log probability that the robot will

not be intercepted by any probabilistic obstacle when located in v
at time t + 1, assuming no other prior interaction of the robot with

them. This algorithm should in general be able to make the robot

avoid space-temporal regions associated with a high probability of

interception. Besides, it computes the optimal solution when the

robot can survive with probability 1.

4 RESULTS
We assess the performance of the proposed algorithms on grid

instances similar to that shown in Figure 1, simulating an intrusion

scenario: each dynamic obstacle can intercept the robot within 1

cell, and is moving around a black square at 1 cell/step with a 0.05

probability of remaining still. We consider grids of sizem ×m,m ∈

{16, 22, 28}, and use the SCIP solver [3] with a 30 minutes timeout

to solve the MINLPs. Our results show that the MINLP approach is

generally able to compute the optimal solution in reasonable time

in instances of moderate size (m = 16, 22), and that the heuristic

behaves better as we increase the deadline T (as the survivability

approaches 1). Figure 2 shows the results obtained in the most

challenging 28×28 instances, having ps ∈ {0.05, 0.1} for each s ∈ S
and pd = 1 for each d ∈ D.
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