
Attention-based Deep Reinforcement Learning
for Multi-view Environments

Extended Abstract

Elaheh Barati
Wayne State University

Detroit, MI
elaheh.barati@wayne.edu

Xuewen Chen
AIWAYS AUTO
Shanghai, China

xuewen.chen@ai-ways.com

Zichun Zhong
Wayne State University

Detroit, MI
zichunzhong@wayne.edu

ABSTRACT
In reinforcement learning algorithms, it is a common practice to
account for only a single view of the environment to make the
desired decisions; however, utilizing multiple views of the envi-
ronment can help to promote the learning of complicated policies.
Since the views may frequently suffer from partial observability,
their provided observation can have different levels of importance.
In this paper, we present a novel attention-based deep reinforce-
ment learning method in a multi-view environment in which each
view can provide various representative information about the en-
vironment. Specifically, our method learns a policy to dynamically
attend to views of the environment based on their importance in
the decision-making process. We evaluate the performance of our
method on TORCS racing car simulator and three other complex
3D environments with obstacles.

KEYWORDS
Reinforcement learning; Deep learning; Attention networks

ACM Reference Format:
Elaheh Barati, Xuewen Chen, and Zichun Zhong. 2019. Attention-based
Deep Reinforcement Learning for Multi-view Environments. In Proc. of the
18th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2019), Montreal, Canada, May 13–17, 2019, IFAAMAS, 3 pages.

1 INTRODUCTION
Distributed reinforcement learning algorithms [2, 4] have been
proposed to improve the performance of the learning algorithm
by passing copies of the environment to multiple workers. The
adoption of multiple workers in these works is rather to increase
the training reward and earlier convergence, not to collectively in-
crease the amount of observable information from the environment
through multiple sensory inputs.

In a realistic environment, observability can be typically partial
on account of occlusion from the obstacles or noise that affect the
sensors such as cameras in the environment. Utilizing only one
camera view can result in failure, since locating a single camera
in a position that can capture both the targets as well as details
of agents body is difficult [7]. On the other hands, sensory inputs
with less importance can sometimes provide observations which
are vital for achieving rich behavior. Therefore, it is desirable to
incorporate multiple sensory inputs in the decision-making process

Proc. of the 18th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2019), N. Agmon, M. E. Taylor, E. Elkind, M. Veloso (eds.), May 13–17, 2019,
Montreal, Canada. © 2019 International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

FC Layers

FC Layers

Deep Actor-Critic Network

Deep Actor-Critic Network

+

+

Workers
Global Network

FC Layers

P
o
o
li
n
g

Critic

Network

S
o
ft

m
a
x

Critic

Network

Attention Module

Feature Extractor

Feature Extractor

Figure 1: Architecture of the deep network that leverages at-
tention mechanism in its global network. p(w )

k is the weight
of worker w obtained from the attention module according
to the importance of its view.

according to their importance and their provided information at
each time step. It reduces the sensitivity of policies to an individual
sensor and makes the system capable of functioning despite one
or more sensors malfunctioning. Since sensors can provide diverse
views of the environment and they are likely to be perturbed by
different noise impacts, a policy is required to attend to the views
accordingly.

In this paper, we propose an attention-based deep reinforcement
learning method (depicted in Figure 1) that learns a policy to attend
to different views of the environment based on their importance.
Each sensory input, which provides a specific view of the envi-
ronment, is assigned to a worker. We employ an extension of the
actor-critic approach [6] to train the network of each worker and
make the final decision through the integration of feature repre-
sentations provided by the workers using an attention mechanism.
Since the critic network of each worker provides a signal regarding
the amount of salient information supplied by its corresponding
view, we employ this signal in the attention module to estimate the
amount of impact that each of the views should have in the final
decision-making process.

2 ATTENTION-BASED RL FRAMEWORK
By utilizing an attention weighted representation as introduced
in [1], we incorporate the importance of the views in computing
a unit representation of the environment (xk ). We use a softmax
gate function to learn the attention module as

xk =
Nw∑
w=1

p(w )

k ⊙ x(w )

k =

Nw∑
w=1

exp(дw fw )∑
l exp(дl fl )

⊙ x(w )

k , (1)

where ⊙ stands for Hadamard product, x(w )

k is the feature represen-
tation obtained by workerw , and дw is a parameter of the model.

Extended Abstract AAMAS 2019, May 13-17, 2019, Montréal, Canada

1805



−1000

0

1000

2000

3000

4000

0e+00 1e+07 2e+07 3e+07
Step

R
ew
ar
d

ADRL

D3PG

PPO

DDPG

A3C

(a) TORCS

1000

2000

3000

0e+00 1e+07 2e+07 3e+07
Step

R
ew
ar
d

ADRL

D3PG

PPO

DDPG

A3C

(b) Ant-Maze

0

1000

2000

3000

0e+00 1e+07 2e+07 3e+07
Step

R
ew
ar
d

ADRL

D3PG

PPO

DDPG

A3C

(c) Hopper-Stairs

0

1000

2000

3000

4000

0e+00 1e+07 2e+07 3e+07
Step

R
ew
ar
d

ADRL

D3PG

PPO

DDPG

A3C

(d) Walker-Wall

Figure 2: Average reward vs. training step for themethods DDPG, D3PG, PPO, A3C, and ADRL. We obtain the rewards in these figures
by averaging rewards obtained from 5 runs.

In (1), fw is obtained from the output of critic network learned
for each worker w separately, i.e., fw = Q(s(w ),a(w )) . At each
time step k , the attention mechanism generates a positive weight
p(w )

k for each worker which determines the relative importance of

workerw in blending the feature vectors {x(w )

k |w = 1, 2, . . . ,Nw}.
During training of our model, the aim is to promote the behavior

of each worker by comparing its selected action with the actions
selected by all the other workers. To do so, we modify the reward at
training of the global network by introducing a penalty term that
depends on the actions selected by all the workers (Ak ) as:

r ck = rk − γrδ (Ak ) = rk − γr
1
Nw

Nw∑
w=1

δ (w )(Ak ) (2)

where rk is the original reward, γr is a constant that provides a
trade-off between the deviation of actions and the original reward,
and Ak is the action matrix with columns a(w )

k . In (2), we define

δ (w )(Ak ) =

��������a(w )

k −
1

Nw − 1

Nw∑
v=1
v,w

a(v)k

��������2 (3)

as a deviation function that depends on the variation of action
a(w )

k of workerw from the average of actions selected by the other
workers in the network. In (3), the first term is the action of worker
w while the second term is the average action of other workers.
In the case that all workers have trained sufficiently, the deviation
δ (Ak ) becomes close to zero, while by experiencing weak training
performance from a worker, we get a higher δ (Ak ) and a lower
reward r ck . Therefore, the penalty term in (2) enforces improvement
in the training of the workers that are yet to be trained sufficiently.
We consider γr in (2) to be 0.1 in our experiments.

The final action (ack ) is determined by the global network from
an aggregation of feature representations (sck = xk ) obtained from

the workers. To train the parameters of global network (θ µ
c

k , θQ
c

k ),
at each time step k , we stack the modified reward r ck on the replay
buffer, forming a tuple ≺sck , a

c
k , r

c
k , s

c
k+1≻. Then, we sample a ran-

dom mini-batch from the replay buffer to train critic network (θQ
c

k )
by minimizing the following loss function [3]:

L(θ
Q c

k ) = E

(
r ck + γQ(s

c
k+1, µ

c(sck+1;θ
µc );θQ

c
) −Q(sck , a

c
k ;θ

Q c

k )

)2
.

We update the actor network at each time step with respect to the
set of parameters θ µ

c

k by using sampled policy gradient:

∇
θ µ

c
k
J = E

(
∇aQ(s, a;θ

Q c

k )|s=sck ,a=µ
c(sck )

∇θ c
µ
µc(s;θ µ

c

k )|s=sck

)
. (4)

3 EXPERIMENTS
We compare the performance of our method with the baselines on
tasks, Ant-Maze, Hopper-Stairs, and Walker-Wall developed in the
MuJoCo physics simulator [8]. We also verify our method for au-
tonomous driving on an open-source platform for car racing called
TORCS [9]. The baselines D3PG [2], PPO [5], DDPG [3], and A3C [4]
are state-of-the-art actor-critic based methods that are designed
to work on continuous action spaces. Figure 2 shows the training
speed of our method, Attention-based Deep RL (ADRL), and four of
its baselines in terms of average reward per step. At the first stage
in training of ADRL, multiple workers are trained separately given
multiple views of the environment, and the reward of ADRL is the
average reward of all these workers. Since D3PG uses all its workers
to train the network given a single view of the environment, at the
initial steps of training, the reward of ADRL is less than D3PG for all
the tasks other than Ant-Maze. However, after convergence, the re-
ward of ADRL is either higher or comparable to D3PG in all the tasks
which is an indication of the advantage of attending to multiple var-
ious views of the environment. In Ant-Maze task, different camera
views provide significantly diverse information about the environ-
ment, and leveraging these views via the attention mechanism in
ADRL leads to a significantly higher reward for ADRL in comparison
to its baselines. In Walker-Wall task, the reward of ADRL is slightly
less than D3PG which is due to having a low diversity between the
camera views provided from the environment.

4 CONCLUSION
Our method, ADRL, takes advantage of multiple views of the envi-
ronment to obtain a stabilized training policy. ADRL dynamically
attends to views according to their importance in the final decision-
making process. To measure the importance of each view, ADRL uses
the output of the critic network designated for that view. Through
the experiments, we observed that ADRL outperforms its baselines.

Extended Abstract AAMAS 2019, May 13-17, 2019, Montréal, Canada

1806



REFERENCES
[1] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2015. Neural machine

translation by jointly learning to align and translate. In International Conference
on Learning Representations (ICLR-15).

[2] Gabriel Barth-Maron, Matthew W Hoffman, David Budden, Will Dabney, Dan
Horgan, Alistair Muldal, Nicolas Heess, and Timothy Lillicrap. 2018. Distributed
Distributional Deterministic Policy Gradients. In Proceedings of International
Conference on Learning Representations (ICLR-18).

[3] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom
Erez, Yuval Tassa, David Silver, and Daan Wierstra. 2015. Continuous control
with deep reinforcement learning. In Proceedings of International Conference on
Learning Representations (ICLR-15).

[4] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timo-
thy Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. 2016. Asynchro-
nous methods for deep reinforcement learning. In International Conference on

Machine Learning (ICML-16). 1928–1937.
[5] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.

2017. Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347
(2017).

[6] David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and
Martin Riedmiller. 2014. Deterministic policy gradient algorithms. In Proceedings
of International Conference on Machine Learning (ICML-14). 387–395.

[7] Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las
Casas, David Budden, Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, et al.
2018. DeepMind Control Suite. arXiv preprint arXiv:1801.00690 (2018).

[8] Emanuel Todorov, Tom Erez, and Yuval Tassa. 2012. Mujoco: A physics engine
for model-based control. In Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ
International Conference on. IEEE, 5026–5033.

[9] Bernhard Wymann, Eric Espié, Christophe Guionneau, Christos Dimitrakakis,
Rémi Coulom, and Andrew Sumner. 2000. TORCS, the open racing car simulator.
Software available at http://torcs. sourceforge. net (2000).

Extended Abstract AAMAS 2019, May 13-17, 2019, Montréal, Canada

1807


	Abstract
	1 Introduction
	2 Attention-based RL Framework
	3 Experiments
	4 Conclusion
	References



