
Towards Predictive Execution Monitoring in BDI Recipes
Extended Abstract

Mika Barkan
Bar Ilan University
Ramat Gan, Israel

barkanm1@biue.ac.il

Gal A. Kaminka
Bar Ilan University
Ramat Gan, Israel
galk@cs.biu.ac.il

KEYWORDS
Execution Monitoring; BDI
ACM Reference Format:
Mika Barkan and Gal A. Kaminka. 2019. Towards Predictive Execution
Monitoring in BDI Recipes. In Proc. of the 18th International Conference
on Autonomous Agents and Multiagent Systems (AAMAS 2019), Montreal,
Canada, May 13–17, 2019, IFAAMAS, 3 pages.

1 INTRODUCTION
Agents do not only generate and choose plans for execution, they
also monitor the execution of plans and handle contingencies [1, 5,
6]. The capacity for execution monitoring allows agents to assess
the execution of plans, determine the need for re-planning, identify
opportunities, and re-evaluate goal selection.

In practice, many BDI plan execution systems focus only on the
current plan step. They do not project ahead the current knowledge
of the agent to determine implications on future steps. Thus a failure
of a future plan-step, which may already be predictable with given
the current knowledge of the agent, is not detected until the last
possible moment.

This paper examines the task of predictive execution monitor-
ing in BDI recipes. Such capability is similar in principle to BDI
planning [4, 7, 8], in the sense that both tasks require prediction
of future states, based on simulation of actions taken. However,
monitoring of recipes does not require ordering decisions, this is
already defined by the structure of the recipe, and would seem to
therefore require lighter computation. Alas, this is not the case.

We discuss a base algorithm for predictive execution monitoring,
intended for hierarchical recipes. We show that its complexity is
super-exponential in the general case. We then discuss several
methods for reducing the projected execution space. We evaluated
these methods in various combinations in hundreds of experiments.
2 BACKGROUND AND RELATEDWORK
Unlike plan-based monitoring, BDI recipes have only partial infor-
mation about the effects of plan steps, and thus the number of pos-
sible changes that can occur grows super-exponentially. Moreover,
BDI recipes are very often hierarchical. Thus execution monitoring
of hierarchical plans is relevant. de Silva et al. has shown the close
similarities between BDI systems and HTN planning [3]. In their
work they compare the runtime of an HTN planner and BDI system
in both static and dynamic environments, using the blocks world
environment. Their work shows that the BDI system has better
results both in static and dynamic environments. However, the

Proc. of the 18th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2019), N. Agmon, M. E. Taylor, E. Elkind, M. Veloso (eds.), May 13–17, 2019,
Montreal, Canada. © 2019 International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

problems are created such that there is no need for an HTN-style
lookahead (prediction). This is done since BDI does not have the
capabilities to do so. In contrast, such capability for prediction is
exactly what we seek to investigate.

Sardina et al. [7] used HTN planner to add lookahead capabilities
to BDI for planing purposes. As in [3] the HTN planner derives its
knowledge from the plan library of the BDI agent and its beliefs.
The HTN planner is invoked and does a full lookahead search. If a
plan is found then the BDI agent will follow it until goal is reached
or until a step in the plan is no longer possible. Detection of such
a failure occurs late. To address this, the algorithms we present
attempts to provide early detection of failures.

Belker et al. [2] used HTN planning to estimate the outcome of
actions in navigation tasks. This in turn allows the agent to choose
alternative actions (if available) that improve the projected outcome
over the original chosen action, and results in a considerable per-
formance improvement (42%). Encouraged by this, we seek to use
predictions to improve the execution of BDI plans in general.
3 PREDICTIVE RECIPE MONITORING
Predictive execution monitoring begins with (i) a recipe, (ii) the cur-
rent execution state in the recipe (that is, which behaviors are cur-
rently selected), and (iii) the current knowledgebase of the agent. It
then projects ahead, given the current beliefs of the agent, whether
any future behaviors can be shown to be un-selectable, given po-
tential changes to the beliefs of the agent, by behaviors preceding
this future behavior, in the execution.
3.1 BDI Beliefs, Recipes, and Plans
A BDI agent has a knowledgebase of beliefs, which are revised and
modified during the operation of the agent.

The BDI recipe is an augmented connected directed graph
where vertices represent behaviors (see below). Hierarchical task-
decomposition edges, allow a higher-level behavior to be broken
down into lower level behaviors, until reaching a primitive behavior.
Sequential edges, constrain the execution order of behaviors, a se-
quential edge fromb1 tob2 specifies thatb1 must be executed before
executing b2. Sequential edges may form circles, but hierarchical
edges cannot.

Behaviors change the current beliefs of the agent (knowledge-
base), and its state in the world (e.g., a command to move forward,
changing its position in the world). Every behavior b is associated
with the following: preconditions, a set of beliefs that need to be
true (in the knowledgebase) in order for this behavior to be se-
lectable by the agent; termination conditions, a set of beliefs that
signal that execution of the behavior should terminate (typically,
because of the achievement of the behavior goal, or its failure);
and support, a set of beliefs whose value might be changed by the
behavior.

Extended Abstract AAMAS 2019, May 13-17, 2019, Montréal, Canada

1808



3.2 Predicting Execution Possibilities
A base line algorithm searches the space of possible recipe executions.
Each discrete point in this space is a combination of a valid path
through the recipe graph (along hierarchical and sequential edges),
coupled with the knowledgebase which holds at the end of the path.
With each search iteration, the algorithm considers extending the
path structurally. Each such expansion can involvemultiple possible
knowledgebase revisions. Thus each search iteration results in
multiple discrete points in the search space, to be considered.

The algorithm proceeds by iterating over a queue of execution
traces to be considered. Each search node q contains a valid possible
execution path. This path records a potential execution trace (behav-
iors and beliefs), beginning with the agent’s beliefs and behaviors
when the algorithm was called. The execution path contains a se-
quence of behaviors selected for execution by the BDI executive,
in response to possible revisions to the knowledgebase, made by
behaviors and the knowledgebase at the time of selection of each
node. If q is a leaf then it is a possible termination of the execution,
and the path leading to it (q.path) is added to the set of successful
executions. Otherwise, if all edges of the recipe graph are accounted
for in the set of successful paths, then this means that no future
behavior can be proven to be unselectable at this point, and thus
the search can terminate.

The expansion of the search is as follows. First, the algorithm
asks for the set of all possible expansions of the current search
node q, by structural and belief revisions. This set is then pruned if
possible, to reduce the number of such expansions (this key step is
discussed below). Then, the new nodes are put on the queue and
marked as visited, so they do not get expanded again.

The process bears some similarity to a BFS search through a
graph, however we note that unlike BFS, the search does not stop
when we found a single path to a target behavior, but continues
examining other paths, to other behaviors.

3.3 Complexity
Even the simplest of recipes consisting of a single path of sequential
links, has an exponential number of possible execution paths, due
to the combinatorial explosion in the combination of termination
conditions. Let us look at a simple graph with k nodes. Each expand
called for an edge produces at the most t expanded nodes, the
number of termination condition, since each termination condition
can create a new and different knowledgebase. This expand is called
for each combination of a node and a knowledgebase created before.
This means that for the first edge there will be only t such paths
created. The next edge will create for each such path another t
expanded nodes, and so on. This gives us tk−1 search paths.

A directed acyclic graph (DAG) has combinatorial number of
paths. For each path of lengthm we will have this complexity, this
mean that even when we look at a graph plan that only has sequen-
tial edges and no cycles, we get an super-exponential worst case run
time: a combinatorial number of paths, each generating a combina-
torial number of execution paths to be considered. When we add
hierarchical edges (which allow more complex paths), and when
we allow cycles in our sequential edges, the runtime is exacerbated
even further.

4 PRUNING POSSIBLE EXECUTIONS
We explore three different pruning methods, which cut the search
space of possible executions.

Successful Visited. When a path p from successful paths already
contains a tuple where the current vertex (from the expanded) with
the same knowledge-base has been shown to be successful, then
there is no use checking from the current node forward (the tuple
from the successful path shows us that from this point on, the issue
is resolved). Thus the only new information in the expanded tuple
is in the prefix path, leading to the current node, which may be
new. If so, we save it.

Cycle Detection. A cycle in a search graph is when we reach
the same vertex again. In our case, since each search node also
includes the path, and there are cycles in the recipe graph simply
comparing the search node is not enough. Thus, to make sure the
algorithm only goes in cycles through the graph until there is no
new information to gain from the cycle. Cycle detection prunes
a search node if a pair of the new knewledgebase and the node
appear anywhere in the nodes path, excluding the last part we just
added the pair too.

Merging paths. We observe that the role of the path p in each
search node is to maintain information about which edges we can
keep in our new plan. However, if a path leads to the same behav-
ior with the same knowledgebase and same type of expand, then
the checks from there on will be the same. So a new search node
duplicating this check need not be added to the queue.
5 PRELIMINARY EXPERIMENTS
We empirically evaluated two independent issues. First, the impact
of the graph structure and the impact of the knowledge state space
size (as reflected by the number of termination conditions used
in behaviors), on the actual runtime of the execution algorithm.
Second, we seek to evaluate the efficacy of the different pruning
methods we introduced.

Our preliminary results confirmed our complexity analysis,
where we saw that the number of termination conditions for a
behavior, increases the number of possible exploration options. The
complexity of the problem is not only dependent on the number of
behaviors in the recipe. Furthermore the experiments showed that
breadth has more influence on the time complexity than depth.

In addition we saw that cycle detection does worse than the rest.
Successful visited with cycle detection does slightly better than
cycle detection alone, but not by much. On the other hand Merge
Paths and all its combinations, finish faster and thus also finish
more recipe graphs in the time given.
6 CONCLUSION
In this paper we presented the problem of predictive execution
monitoring of BDI recipes; the ability to project forward the current
knowledge of the agent to prevent future failures that can already
be predicted. We then analyzed the complexity of the problem and
showed that even on simple acyclic flat recipe graphs it is a super-
exponential problem. We presented an algorithm that goes over
the branches of the BDI recipe graph to try and find the branches
that are predicted to fail. We then presented pruning methods to
make the algorithm more efficient and reduce the running time. We
proved that this pruning method are complete.

Extended Abstract AAMAS 2019, May 13-17, 2019, Montréal, Canada

1809



REFERENCES
[1] J. A. Ambros-Ingerson and S. Steel. 1988. Intergrating Planning, Execution

and Monitoring. In Proceedings of the Seventh National Conference on Artificial
Intelligence (AAAI-88) (St. Paul, MN). AAAI Press, Minneapolis/St. Paul, MN.

[2] Thorsten Belker, Martin Hammel, and Joachim Hertzberg. 2003. Learning to
optimize mobile robot navigation based on HTN plans. In Robotics and Automa-
tion, 2003. Proceedings. ICRA’03. IEEE International Conference on, Vol. 3. IEEE,
4136–4141.

[3] Lavindra de Silva and Lin Padgham. 2004. A comparison of BDI based real-time
reasoning and HTN based planning. In Australasian Joint Conference on Artificial
Intelligence. Springer, 1167–1173.

[4] Lavindra de Silva, Sebastian Sardina, and Lin Padgham. 2009. First principles
planning in BDI systems. In Proceedings of The 8th International Conference on
Autonomous Agents and Multiagent Systems-Volume 2. International Foundation
for Autonomous Agents and Multiagent Systems, 1105–1112. http://dl.acm.org/
citation.cfm?id=1558167

[5] Charles Earl and R. James Firby. 1997. Combined Execution and Monitoring for
Control of Autonomous Agents. In Proceedings of the First International Conference
on Autonomous Agents (Agents-97), W. Lewis Johnson (Ed.). ACM Press, Marina
del Rey, CA, 88–95.

[6] Martha E. Pollack. 1990. Plans As Complex Mental Attitudes. In Intentions in
Communication. MIT Press, 77–103.

[7] Sebastian Sardina, Lavindra de Silva, and Lin Padgham. 2006. Hierarchical Plan-
ning in BDI Agent Programming Languages: A Formal Approach. In Proceedings
of the Fifth International Joint Conference on Autonomous Agents and Multiagent
Systems (2006) (AAMAS ’06). ACM, 1001–1008. https://doi.org/10.1145/1160633.
1160813

[8] Andrzej Walczak, Lars Braubach, Alexander Pokahr, and Winfried Lamersdorf.
2006. Augmenting BDI agents with deliberative planning techniques. In In-
ternational Workshop on Programming Multi-Agent Systems. Springer, 113–127.
https://link.springer.com/chapter/10.1007/978-3-540-71956-4_7

Extended Abstract AAMAS 2019, May 13-17, 2019, Montréal, Canada

1810

http://dl.acm.org/citation.cfm?id=1558167
http://dl.acm.org/citation.cfm?id=1558167
https://doi.org/10.1145/1160633.1160813
https://doi.org/10.1145/1160633.1160813
https://link.springer.com/chapter/10.1007/978-3-540-71956-4_7

	1 Introduction
	2 Background and Related Work
	3 Predictive Recipe Monitoring
	3.1 BDI Beliefs, Recipes, and Plans
	3.2 Predicting Execution Possibilities
	3.3 Complexity

	4 Pruning Possible Executions
	5 Preliminary Experiments
	6 Conclusion
	References



