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1 INTRODUCTION
Aggregating information coming from multiple sources is a long-

standing problem in both knowledge representation and multi-

agent systems (see, e.g., [28]). Depending on the chosen repre-

sentation for the incoming pieces of knowledge or information, a

number of competing approaches has seen the light in these litera-

tures. Belief merging [21–23] studies the problem of aggregating

propositional formulas coming from different agents into a set of

models, subject to some integrity constraint. Judgment and binary

aggregation [11, 12, 17] asks individual agents to report yes/no

opinions on a set of logically-related binary issues – the agenda

– in order to take a collective decision. Social welfare functions,

the cornerstone problem in social choice theory (see, e.g., [2]), can

also be viewed as mechanisms to merge conflicting information,

namely the individual preferences of voters expressed in the form

of linear orders over a set of alternatives. Other examples include

graph aggregation [13], multi-agent argumentation [6–8], ontology

merging [26], and clustering aggregation [15].

In this work we take a general perspective and represent in-

dividual knowledge coming from multiple sources as a profile of

databases, modelled as finite relational structures [1, 25]. Our moti-

vation lies in between two possibly conflicting views on the problem

of information fusion. On the one hand, the study of information

merging (typically knowledge or beliefs) in knowledge representa-

tion has focused on the design of rules that guarantee the consis-

tency of the outcome, with themain driving principles inspired from

the literature on belief revision. On the other hand, social choice

theory has focused on agent-based properties, such as fairness and

representativity of an aggregation procedure, paying attention as

well to possible strategic behaviour by either the agents involved in

the process or an external influencing source. While there already

have been several attempts at showing how specific merging or

aggregation frameworks could be simulated or subsumed by one

another (see, e.g., [9, 14, 16, 18]), a more general perspective allows

us to find a compromise between the two views described above.
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Our Contribution. We propose a number of rules for database

aggregation, some inspired by existing ones from the literature

on computational social choice and belief merging, and a new

one adapted from representations of incomplete information in

databases [24]. We first evaluate these rules axiomatically, using no-

tions imported from the literature on social choice, to provide a first

classification of the agent-based properties satisfied by our rules.

Then, when integrity constraints are present, we study how to guar-

antee that a given aggregator “lifts” the integrity constraint from

the individual to the collective level, i.e., the aggregated databases

satisfy the same constraints as the individual ones.

2 DATABASES AND CONSTRAINTS
Our starting point is a set of finite relational structures on the same

signature, coming from a group of agents or sources, and our re-

search problem is how to obtain a collective database summarising

the information received. Virtually all of the aggregation settings

mentioned in the introduction (beliefs, graphs, preferences, judg-

ments, . . . ) can be represented as databases, showing the generality

of our approach. Let us give the following basic definition:

Definition 2.1 (Database Schema and Instance). A (relational) data-
base schema D is a finite set {P1/q1, . . . , Pm/qm } of relation sym-

bols P with arity q ∈ N. Given database schemaD and domainU , a

D-instance overU is a mapping D associating each relation symbol

P ∈ D with a finite q-ary relation over U , i.e., D (P ) ⊂
fin

U q
.

Properties and constraints on databases can be expressed as

formulas of a suitable first-order language:

Definition 2.2 (FO-formulas overD). Given a database schemaD,

the formulas φ of the first-order language LD are defined by the

following BNF, where P ∈ D, x1, . . . ,xq is a q-tuple of variables,
as are x ,x ′:

φ ::= x = x ′ | P (x1, . . . ,xq ) | ¬φ | φ → φ | ∀xφ

Let us illustrate one well-known class of integrity constraints

on databases and its representation as a first-order formula. A

functional dependency is an expression of type ℓ1, . . . , ℓk 7→

ℓk+1, . . . , ℓq . A database instance D satisfies a functional depen-

dency ℓ1, . . . , ℓk 7→ ℓk+1, . . . , ℓq for predicate symbol P with arity

q iff for every q-tuples u⃗, u⃗ ′ in D (P ), whenever ui = u
′
i for all i ⩽ k ,

then we also have ui = u ′i for all k < i ⩽ q. If k = 1, we say that

it is a key dependency. Clearly, any database instance D satisfies a

functional dependency ℓ1, . . . , ℓk 7→ ℓk+1, . . . , ℓq iff it satifies the

following FO-sentence:

∀x⃗ , y⃗ *.
,
P (x⃗ ) ∧ P (y⃗) ∧

∧
i⩽k

(xi = yi ) →
∧

k<i⩽q

(xi = yi )
+/
-
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3 AGGREGATORS
We propose a number of rules for database aggregation, some of

which are inspired by existing ones from the literature on computa-

tional social choice and belief merging. We fix a database schemaD

over a common domainU , and consider a profile D⃗ = (D1, . . . ,Dn )
of n instances over D and U . Then, we define what is an aggrega-

tion procedure on such instances. We privilege computationally

friendly aggregators, for which the time to determine the collective

outcome is polynomial in the individual input received.

As an example, consider the following class of aggregators, well-

known in judgment aggregation [10]: a quota rule is an aggregation

rule F defined via functions qP : U q → {0, 1, . . . ,n+1}, associating
each symbol P and q-uple with a quota, by stipulating that u⃗ ∈

F (D⃗) (P ) iff |{i ⩽ n | u⃗ ∈ Di (P )}| ⩾ qP (u⃗). F is called uniform
whenever q is a constant function for all tuples and symbols.

Intuitively, if a tuple u⃗ appears in at least qP (u⃗) of the initial

databases, then it is accepted for symbol P . The well-known major-

ity rule is a (uniform) quota rule for q = ⌈(n + 1)/2⌉; while union
and intersection are quota rule for q = 1 and q = n respectively.

4 AXIOMS
Aggregation procedures are best characterised by means of axioms.

In particular, we consider the following properties, where relation

symbols P , P ′ ∈ D, profiles D⃗, D⃗ ′ ∈ D (U )n , tuples u⃗, u⃗ ′ ∈ U + are
all universally quantified.

Anonymity (A): for every permutation π : N → N , we have

F (D1, . . . ,Dn ) = F (Dπ (1) , . . . ,Dπ (n) ).

Independence (I ): if N D⃗ (P )
u⃗

= N
D⃗′ (P )
u⃗

then u⃗ ∈ F (D⃗) (P ) iff

u⃗ ∈ F (D⃗ ′) (P ).

Monotonicity (M): if u⃗ ∈ F (D⃗) (P ) and for every i ∈ N , either

Di (P ) = D ′i (P ) or Di (P ) ∪ {u⃗} ⊆ D ′i (P ), then u⃗ ∈ F (D
′) (P ).

Combinations of the axioms above can be used to characterise

some of the rules that we defined in Section 3. Some of these results,

such as the following, lift to databases known results in judgement

(propositional) aggregation.

Lemma 4.1. An aggregation procedure satisfies A, I , andM iff it is
a quota rule.

5 COLLECTIVE RATIONALITY
We present a notion of collective rationality that aims to capture the

appropriateness of a given aggregator F w.r.t. some constraint φ on

the input instancesD1, . . . ,Dn . Letφ be a sentence in the first-order

language LD associated to D, interpreted as a common constraint

that is satisfied by all D1, . . . ,Dn . Consider the following:

Definition 5.1 (Collective Rationality). A constraint φ is lifted by

an aggregation procedure F if whenever Di satisfies φ for all i ∈ N ,

then also F (D⃗) satisfies φ. An aggregation procedure F : D (U )n →
D (U ) is collectively rational (CR) with respect to φ iff F lifts φ.

Intuitively, an aggregator is CR w.r.t. constraint φ iff it lifts, or

preserves, φ. Consider the following:

Example 5.2. We now provide an illustrative example of first-

order collective (ir)rationality with the majority rule. Consider

agents 1 and 2 with database schemaD = {P/1,Q/2}. Two database
instances are given asD1 = {P (a),Q (a,b)} andD2 = {P (a),Q (a, c )}.
Clearly, both instances satisfy the constraint φ = ∀x (P (x ) →
∃yQ (x ,y)). However, their aggregate D = F (D1,D2) = {P (a)},
obtained by the majority rule, does not satisfy φ. This example,

which can be considered a paradox in the sense of [17], shows

that not every constraint in the language LD is collective rational

w.r.t. majority, thus obtaining a first, simple negative result.

For the classes of aggregators presented, we investigate collec-

tive rationality with respect to arbitrary integrity constraints. As

an example, consider the following result relating the quota rule

aggregators with constraints of functional dependency:

Proposition 5.3. A quota rule lifts a functional constraint iff for
all relation symbols P occurring in the functional constraint we have
that qP > n

2
, where n is the number of agents.

As immediate applications of Prop. 5.3, the intersection rule

clearly lifts any functional dependency, while the union lifts none.

6 RELATEDWORK AND CONCLUSIONS
The closest approach to ours is the work of Baral et al. [3, 4] and
Konieczny [20]. Baral et al. [4] considers the problem of merging

information represented in the form of first-order theories, taking a

syntactic rather than a semantic approach, and focusing on finding

maximally consistent sets of the union of the individual theories

received. In [20], the author applies techniques from belief merg-

ing to the equivalent problem of aggregating knowledge bases of

first-order formulas, proposing a number of rules analysed axiomat-

ically. Both contributions stem from a long tradition on combining

inconsistent theories, especially in the domain of paraconsistent

logics [5, 27]. However, all these approaches focus on merging syn-

tactic representations (e.g., logic programs, first-order theories),

while here we operate on semantical instances, i.e., databases. More

recently, connections between social choice theory and database

querying have been explored in [19], which enriches the tasks

currently supported in computational social choice by means of a

relational database, thus allowing for sophisticated queries about

voting rules, candidates, and voters.

In this work we propose a framework for the aggregation of

conflicting information coming from multiple sources in the form

of finite relational databases. We propose a number of aggregators

inspired by the literature on social choice theory, and adapt a num-

ber of axiomatic properties. We focus on a natural question which

arise when dealing with the aggregation of databases. Specifically,

we study what kind of integrity constraints are lifted by some of

the rules we propose, i.e., what constraints are true in the aggre-

gated database supposing that all individual input satisfies the same

constraints.
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