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ABSTRACT
While most of the work on reward shaping focuses on fully ob-
servable problems, there are very few studies that couple reward
shaping with partial observability. Moreover, for problems with
hidden states, where there is no prior information about the under-
lying states, reward shaping opportunities are unexplored. In this
paper, we show that landmarks can be used to shape the rewards
in reinforcement learning with hidden states. Proposed approach is
empirically shown to improve the learning performance in terms
of speed and quality.
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1 INTRODUCTION AND RELATEDWORK
In Reinforcement Learning (RL) context, Reward Shaping (RS) meth-
ods aim to provide the agent with additional rewards for a problem
with sparse or late rewards, so that the agent avoids extensive
and probably unnecessary exploration throughout learning. RS
is shown to guarantee policy invariance under Markov Decision
Process (MDP) model assumption [19].

For most problems, however, the environment is not fully ob-
servable as in the MDP. Partially Observable MDP (POMDP) model
is a generalization of MDP to fulfill this requirement, where the
agent has indirect access to the state space through observation
space via an observation function of states and actions [12]. An
interpretation of POMDP assumes the set of states are entirely hid-
den, and the model provides a limited set of observations, violating
Markov property and giving rise to perceptual aliasing [1, 23].

Although perceptual aliasing makes it very difficult, sometimes
even impossible, to solve the problem, the agent can benefit from
any information that can completely distinguish its state. A land-
mark corresponds to such an information and takes place as a
distinctive indicator in different fields of the related literature, such
as planning [5, 13] and robotic navigation [6, 21] . Although there
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is no agreed definition of a landmark, the one used in our work
fuses the ideas from the “unique observation” interpretation in [11]
and “memory-based” approach used in [14].

Known RL algorithms like Q-Learning [22] lose convergence
guarantees when the task is non-Markovian as in POMDP with hid-
den states [20]. Eligibility traces are used to overcome this problem
where the agent leaves decaying traces over the previous transi-
tions and employs value updates based on these traces [15, 22].
James et al., proposed an adaptation of the well-known eligibility
trace based Sarsa(λ) algorithm for problems containing landmarks,
called SarsaLandmark, and showed that this adaptation can further
improve the convergence of the algorithm [11].

Various studies adapt RS idea using different approaches, such as
potential based RS (PBRS) [19] and plan based RS [9]. The methods
were tailored for different settings [7] including multi-agent RL
[2, 3], and theoretical analyses were carried out [8, 16]. Automatic
learning of the potential function also gained attention, where
macro-action oriented abstractions were used [10, 17].

Most of the RS effort, however, assume MDP model. Even the
studies for the POMDP case assume belief state formalism [4],
which is essentially a continuous MDP. To our best knowledge, this
is the first attempt to incorporate RS for problems with hidden state
interpretation of POMDP.

2 LANDMARK BASED REWARD SHAPING
Regular RS approach provides a shaping reward for every transition
based on the potentials of the states in it. However, if there is
perceptual aliasing, finding a unique potential value is impossible
for an ambiguous observation which represents multiple states
with possibly different potentials. To overcome this challenge, a
state estimate can be kept and used to find a suitable policy [15].
However, the problem of assigning a potential to an estimated state
persists if that estimated state is still aliased.

On the other hand, it is often the case that some estimated states
are unique in the problem so that the agent can rely on them. The
agent can be informed about its progress in the given task by using
those “specific” estimated states.

Definition 2.1. A state estimate x is a landmark, if it uniquely
represents a state in a partially observable environment.

Following the Definition 2.1, a landmark is free of any form as
long as it can completely distinguish a true problem state. Due
to this one-to-one mapping, it is now straightforward to assign a
potential to a landmark and use it for RS.
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Figure 1: LBRS workflow, combined with the underlying RL
algorithm. l and l ′ represent the previously observed land-
mark and the recently reached landmark respectively, and
V (.) represents the value of a landmark that is used as the
potential value. R, F , R′ are as defined in [19].

We argue that, a shaping reward can only be reasonable when a
transition between two landmarks occurs. Since the potentials of
the landmark are consistent, RS, based on these potentials, would
also be consistent, providing a reliable information to the agent
about its actions. A transition between landmarks may take more
than one step, forming an abstract transition within an abstract
model of landmarks.

The core idea is to use the landmarks in a problem with hidden
states to form an abstract model and apply RS whenever the agent
completes an abstract transition between two landmarks. Assuming
that the agent knows the landmarks in advance, the remaining
question is how to find the potentials of these landmarks. In order
to learn the potentials, we follow Grześ’s work [10] which makes
an abstraction over the set of states and applies value iteration
on the abstract states. However, unlike in [10], we only form the
abstract model with the landmarks of the problem since it would not
be reasonable to make further abstraction over an already aliased
abstraction of observations.

Figure 1 summarizes the main RL loop combined with the pro-
posed RS approach, named Landmark Based Reward Shaping (LBRS).
Basically, whenever the agent completes an abstract transition be-
tween two landmarks, say l and l ′, it uses their values to calculate
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Figure 2: Illustration of the 6 rooms domain. Landmarks and
the goal state are indicated by L and G respectively. The the
black grids represent the walls.
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Figure 3: Number of steps taken to reach the goal state in
6 rooms domain. Results are averaged over 100 experiments
with 5000 step limit, α = 0.01, γ = 0.9 and ϵ-greedy action se-
lection linearly decaying from 0.2 downto 0.0001. MDP base-
line represents optimal MDP policy performance.

a shaping reward. Then, it updates the abstract model composed
of landmarks with this new abstract transition and applies value
iteration. Finally, the shaping reward is coupled with the regular
reward mechanism to be provided to the underlying RL algorithm.

3 EXPERIMENT
As an empirical evaluation, we experimented LBRS on 6 rooms
domain [18], by coupling it with SarsaLandmark [11]. In 6 rooms
domain (Figure 2), the landmarks reside in bottleneck regions, ex-
cept the goal state, which is in the bottom right part of a room.
The agent starts from any cell at the top-left room, aiming to reach
the goal state with four navigational actions while getting −0.01
punishment for a regular movement and +1 reward for ending up in
the goal state. The problem is partially observable since the agent’s
observations are formulated by its distance to the walls in four
directions. The distances are enumarated into four categories (one
step from the wall, two steps from the wall, closer to the wall in
this direction than the other, further from the wall in this direction
than the other).

Figure 3 shows SarsaLandmark with LBRS not only learns faster,
but helps the agent find a better policy. Since each room provides a
similar set of observations, finding a good policy is difficult without
keeping a memory. However, it is clear from Figure 3 that LBRS
improved the algorithm by leading the agent to the goal state much
earlier. Since LBRS provides the agent with reliable feedback from
the environment about its progress, the agent reaches the goal state
much sooner throughout the learning process.

4 CONCLUSION
This paper proposes that RS can be adapted to problemswith hidden
states by making use of landmarks. It is shown that LBRS further
improves the performance of a landmark based algorithm designed
for problems with hidden state, by leading the agent to the goal
state much faster. As an immediate future work, we plan to extend
our experimentation to more complex domains with sophisticated
landmarks.

Extended Abstract AAMAS 2019, May 13-17, 2019, Montréal, Canada

1923



REFERENCES
[1] Lonnie Chrisman. 1992. Reinforcement Learning with Perceptual Aliasing: The

Perceptual Distinctions Approach. In Proc. of the Tenth National Conference on
Artificial Intelligence (AAAI’92). 183–188.

[2] Sam Devlin and Daniel Kudenko. 2011. Theoretical Considerations of Potential-
based Reward Shaping for Multi-agent Systems. In The 10th International Con-
ference on Autonomous Agents and Multiagent Systems - Volume 1 (AAMAS’11).
225–232.

[3] Sam Devlin and Daniel Kudenko. 2016. Plan-based reward shaping for multi-
agent reinforcement learning. The Knowledge Engineering Review 31, 1 (2016),
44–58.

[4] Adam Eck, Leen-Kiat Soh, Sam Devlin, and Daniel Kudenko. 2016. Potential-
based reward shaping for finite horizon online POMDP planning. Autonomous
Agents and Multi-Agent Systems 30, 3 (2016), 403–445.

[5] Mohamed Elkawkagy, Pascal Bercher, Bernd Schattenberg, and Susanne Biundo.
2012. Improving Hierarchical Planning Performance by the Use of Landmarks.
In Proc. of the Twenty-Sixth AAAI Conference on Artificial Intelligence (AAAI’12).
1763–1769.

[6] Lutz Frommberger. 2008. Representing and Selecting Landmarks in Autonomous
Learning of Robot Navigation. In Intelligent Robotics and Applications (ICIRA 2008,
LNCS), Vol. 5314. Springer Berlin Heidelberg, 488–497.

[7] Yang Gao and Francesca Toni. 2015. Potential Based Reward Shaping for Hierar-
chical Reinforcement Learning.. In Proc. of the International Joint Conference on
Artificial Intelligence (IJCAI’15). 3504–3510.

[8] Marek Grześ. 2017. Reward Shaping in Episodic Reinforcement Learning. In
Proceedings of the 16th Conference on Autonomous Agents and Multi-Agent Systems
(AAMAS’17). 565–573.

[9] Marek Grześ and Daniel Kudenko. 2008. Plan-based reward shaping for rein-
forcement learning. In Proc. of the 4th International IEEE Conference Intelligent
Systems, Vol. 2. 10–22 – 10–29.

[10] Marek Grześ and Daniel Kudenko. 2010. Online learning of shaping rewards in
reinforcement learning. Neural Networks 23, 4 (2010), 541 – 550. (Special Issue
for the 18th International Conference on Artificial Neural Networks, ICANN
2008).

[11] Michael R. James and Satinder Singh. 2009. SarsaLandmark: An Algorithm for
Learning in POMDPs with Landmarks. In Proc. of The 8th International Conference

on Autonomous Agents and Multiagent Systems - Volume 1 (AAMAS’09). 585–591.
[12] Leslie Pack Kaelbling, Michael L. Littman, and Andrew P. Moore. 1996. Rein-

forcement learning: a survey. Journal of Artificial Intelligence Research 4 (1996),
237–285.

[13] Erez Karpas, David Wang, Brian Charles Williams, and Patrik Haslum. 2015. Tem-
poral Landmarks: What Must Happen, andWhen. In Proc. of the 25th International
Conference on Automated Planning and Scheduling (ICAPS’15). 138–146.

[14] Yunlong Liu, Yun Tang, and Yifeng Zeng. 2015. Predictive State Representations
with State Space Partitioning. In Proc. of the 2015 International Conference on
Autonomous Agents and Multiagent Systems (AAMAS’15). 1259–1266.

[15] John Loch and Satinder P. Singh. 1998. Using Eligibility Traces to Find the Best
Memoryless Policy in Partially Observable Markov Decision Processes. In Proc.
of the Fifteenth International Conference on Machine Learning (ICML’98). 323–331.

[16] OfirMarom and Benjamin Rosman. 2018. Belief Reward Shaping in Reinforcement
Learning. In Proc. of the Thirty-Second AAAI Conference on Artificial Intelligence
(AAAI’18). 3762–3769.

[17] Bhaskara Marthi. 2007. Automatic Shaping and Decomposition of Reward Func-
tions. In Proc. of the 24th International Conference on Machine Learning (ICML’07).
601–608.

[18] Ishai Menache, Shie Mannor, and Nahum Shimkin. 2002. Q-Cut—Dynamic
Discovery of Sub-goals in Reinforcement Learning. In Proc. of the 13th European
Conference on Machine Learning (Mach. Learn.: ECML’02). 295–306.

[19] Andrew Y. Ng, Daishi Harada, and Stuart J. Russell. 1999. Policy Invariance Under
Reward Transformations: Theory and Application to Reward Shaping. In Proc. of
the Sixteenth International Conference on Machine Learning (ICML’99). 278–287.

[20] Satinder P. Singh, Tommi S. Jaakkola, and Michael I. Jordan. 1994. Learning
without State-estimation in Partially Observable Markovian Decision Processes.
In Proc. of the Eleventh International Conference on Machine Learning. 284–292.

[21] Tuomas Välimäki and Risto Ritala. 2016. Optimizing gaze direction in a visual
navigation task. In Proc. of the 2016 IEEE International Conference on Robotics and
Automation (ICRA’16). 1427–1432.

[22] Chris Watkins. 1989. Learning from Delayed Rewards. Ph.D. thesis. Cambridge
University.

[23] Steven D. Whitehead and Dana H. Ballard. 1991. Learning to Perceive and Act
by Trial and Error. Machine Learning 7, 1 (1991), 45–83.

Extended Abstract AAMAS 2019, May 13-17, 2019, Montréal, Canada

1924


	Abstract
	1 Introduction and Related Work
	2 Landmark Based Reward Shaping
	3 Experiment
	4 Conclusion
	References



