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ABSTRACT

Training reinforcement learning agents on a distribution of procedu-
rally generated environments has become an increasingly common
method for obtaining more generalisable agents. However, this
makes evaluation challenging, as the space of possible environ-
ment settings is large; simply looking at the average performance
is insufficient for understanding how well - or how poorly - the
agents perform. To address this, we introduce a method for strate-
gically evaluating and influencing the behaviour of reinforcement
learning agents. Using deep generative modelling to encode the
environment, we propose a World Agent which efficiently gener-
ates and optimises worlds (i.e. environment settings) relative to
the performance of the agents. Through the use of our method on
two distinct environments, we demonstrate the existence of worlds
which minimise and maximise agent reward beyond the typically
reported average reward. Additionally, we show how our method
can also be used to modify the distribution of worlds that agents
train on, influencing their emergent behaviour to be more desirable.
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1 GENERATIVE WORLD AGENT

We propose the introduction of a generative World Agent into the
training and evaluation process of reinforcement learning agents.
By encoding the environment using a deep generative model and
then searching in the model’s latent space, our World Agent is
able to efficiently adapt the distribution of worlds based on the
performance of the reinforcement learning agents.

To help explain our method, we separate it into three phases:

(1) Generate Worlds: Sample worlds using our trained VAE.

(2) Train Agents: Train reinforcement learning agent(s) on the
sampled set of generated worlds.

(3) Optimise Worlds: Iteratively generate and optimise worlds
to maximise a given agent-based metric.
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Figure 1: Optimised worlds which minimise and maximise
agent reward, alongside typically reported average reward.

1.1 Generating Worlds

Rather than individually optimising every aspect of a world, for
example at an individual pixel level, we use a VAE [4] to compress
the complex distribution over the world space W into a tractable
distribution over the latent space z. In Equation 1 we show how a
world w; can be sampled from the latent space by passing a sample
z; to the generator G, where 6, are the generator’s weights:

w; = G(Z,’;Og), zZj ~ q(Z | Be) (1)

To learn 6, and e, we train our VAE on a dataset of worlds created
by a handcrafted procedural generator for each environment.

1.2 Training Agents

The second phase is the training of the reinforcement learning
agents which interact in the worlds produced by our World Agent.

For a given world w; and its latent representation z;, the be-
haviour of the agents is summarised in their corresponding set of
trajectories 7;.

1.3 Optimising Worlds

To search the space of worlds, we use an optimiser to sample from
the latent space of the generator. Samples are selected with the goal
of maximising the World Agent’s objective function (i.e. metric M),
where the optimisation task: z* = argmax M (G(z; 0y), T(2)), is

over the latent space. This objective flinction depends on the be-
haviour of the agents (i.e. trajectories 7°) and the generated worlds
{G(z;; Og)}fi 1» both of which are functions of the latent space.
We use two different optimisers: (1) Covariance Matrix Adapta-
tion Evolution Strategy (CMA-ES) [2] and (2) Bayesian Optimisation
(BO) [7]. We also consider a number of different metrics M such as
minimising/maximising the agent’s reward, minimising the agent’s
crash rate, and maximising the equality of a group of agents.
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Figure 2: Comparison between training methods for (left) Particle Racing and (right) Resource Harvest. Default Training
is where agents are trained on randomly sampled worlds. Influenced Training is where agents are trained on our modified
training distribution. We also include two example worlds which are included in the new training distribution. Additional
Metrics: Crash Rate is the probability of an agent crashing in an episode, Conflict is the average number of steps in an episode
where agents are tagged out, and Equality is the distribution of rewards across agents calculated as 1-Gini Coeflicient [6].

2 EXPERIMENTS

2.1 Environments

Particle Racing. A single-agent particle racing game based on
the OpenAI Gym Car Racing environment [1]. The agent’s objective
is to complete loops of the track as quickly as possible, with the
episode terminating early if the agent leaves the track (i.e. crashes).

Resource Harvest. A multi-agent resource gathering game based
on related work [3, 5, 6]. In this environment, four self-interested
agents (shown in red) are individually rewarded for harvesting re-
sources (shown in green). Therefore, they are motivated to harvest
the resources as fast as possible before the other agents are able to
do so. Notably, however, resources recover based on the amount of
nearby resources, meaning it is beneficial in the long run to leave
several untouched so that the harvested resources recover faster.

2.2 Evaluating Agents

In this experiment, we use our method to evaluate agents by effi-
ciently finding worlds where they perform worst (minimum reward)
and perform best (maximum reward).

For Particle Racing (Figure 1, top), our method finds a rare world
which consistently causes the agent to crash, resulting in a mini-
mum reward of 0.13. Notably, the environment has a high number
of sharp and unexpected corners. In contrast, the world the agent
performs best on - obtaining a reward of 0.99 - has no surprising
corners, and is instead a simple rectangle-like shape.

For Resource Harvest (Figure 1, bottom), our method finds a
spatial arrangement of resources and walls such that the reward of
the agents is heavily diminished - from the average of 0.61 down
to a minimum of 0.05 (a 91.2% reduction). This was achieved by
spreading out the resources so that they do not gain the recovery
bonus from nearby resources. Conversely, reward is maximised
(0.92, up from the average of 0.61) by removing walls and grouping
resources so that they all benefit from the recovery bonus and
therefore recover as quickly as possible.

2.3 Influencing Agents

In our next set of experiments, we use our method to adjust the
training distribution of agents by sampling worlds which maximise
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a given agent-related property. Concretely, we create a new training
distribution consisting only of sampled worlds which have the prop-
erty we desire and then train new agents on this distribution. We
refer to this process as influencing agents as our method influences
the learned emergent behaviour of the agents.

Influenced agents are safer. In Particle Racing, we observe
that there exists many possible worlds which causes agents to crash.
To this end, we sample worlds where agents are likely to crash (i.e.
high crash rate, > 0.5) to form the new training distribution. As
shown in Figure 2 (left), these worlds tend to be challenging with
at least one sharp corner.

In Figure 2 (left) we present the results of our influenced training
regime. Notably, crash rate is significantly reduced, dropping from
0.11 to 0.04. This comes at the cost of a 5% reduction in reward due
to the agent driving slower and therefore taking longer to complete
the track. In the context of safety, our re-trained agent’s behaviour
is more desirable as it crashes less often.

Influenced agents are fairer. In Resource Harvest, we con-
sider the situation where one agent in a multi-agent system has
more power than the others. Specifically, we allow this agent to per-
form the TAG action which fires a beam that temporarily removes
any agent hit from the episode for a number of timesteps.

Typically in this situation, the more powerful agent would fre-
quently tag other agents (high conflict), reducing competition and
therefore privatising the resources for itself (high inequality).

To counter this undesirable behaviour, we sample worlds which
minimise conflict to form the new training distribution. Specifically,
we sample worlds where no agents are tagged out in an entire
episode and then train fresh agents on this new distribution. As
shown in Figure 2 (right), these low-conflict worlds typically isolate
the tagging agent (shown as blue in the top left of the world) from
the other agents through the use of walls.

As can be seen in Figure 2 (right), our influenced training regime
results in significantly lower conflict (0.51 to 0.05) and higher equal-
ity (0.33 to 0.78). This arises as the tagging agent never learns to
associate its aggressive TAG action with increased reward, therefore
reducing the probability of its use. However, this leads to reduced
group reward as the resources are less likely to be privatised.
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