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ABSTRACT
Competing firms tend to select similar locations for their stores.
This phenomenon, called the principle of minimum differentiation,
was captured by Hotelling with a landmark model of spatial compe-
tition but is still the object of an ongoing scientific debate. Although
consistently observed in practice, many more realistic variants of
Hotelling’s model fail to support minimum differentiation or do not
have pure equilibria at all. In particular, it was recently proven for
a generalized model which incorporates negative network exter-
nalities and which contains Hotelling’s model and classical selfish
load balancing as special cases, that the unique equilibria do not
adhere to minimum differentiation. Furthermore, it was shown that
for a significant parameter range pure equilibria do not exist.

We derive a sharp contrast to these previous results by investi-
gating Hotelling’s model with negative network externalities from
an entirely new angle: approximate pure subgame perfect equilibria.
This approach allows us to prove analytically and via agent-based
simulations that approximate equilibria having good approxima-
tion guarantees and that adhere to minimum differentiation exist
for the full parameter range of the model. Moreover, we show that
the obtained approximate equilibria have high social welfare.
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1 INTRODUCTION
The choice of a profitable facility location is one of the core strategic
decisions for firms competing in a spatial market. Finding the right
location is a classical object of research and has kindled the rich and
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interdisciplinary research area called Location Analysis [6, 14, 32].
In this paper we investigate one of the landmark models of spatial
competition and strategic product differentiation where facilities
offering the same service for the same price compete in a linear
spatial marked. Originally introduced by Hotelling [24] and later
extended by Downs [10] to model political competition, the model
is usually referred to as the Hotelling-Downs model. It assumes a
market of infinitely many clients which are distributed evenly on
a line and finitely many firms which want to open a facility and
which strategically select a specific facility location in the market
to sell their service. Every client wants to obtain the offered service
and selects the nearest facility to get it. The utility of the firms is
proportional to the number of clients visiting their facility. Thus,
the location decision of a firm depends on the facility locations
of all its competitors as well as on the anticipated behavior of the
clients. This two-stage setting is challenging to analyze but at the
same time yields a plausible prediction of real-world phenomena.

One such phenomenon is known as the principle of minimum
differentiation [5, 13] and it states that competing firms selling the
same service tend to co-locate their facilities instead of spreading
them evenly along the market. This can be readily observed in
practice, e.g., stores of different fast-food chains or consumer goods
shops are often located right next to each other. For the original
version where clients simply select the nearest facility, Eaton and
Lipsey [13] proved in a seminal paper that forn , 3 competing firms
the Hotelling-Downs model has pure subgame perfect equilibria
which respect the principle of minimum differentiation.

However, the original Hotelling-Downs model is overly simple.
A more realistic variant, where the cost function of a client is a
linear combination of distance and waiting time, was proposed by
Kohlberg [25] and will be the focus of our attention. Kohlberg’s
model is especially interesting, since it can be interpreted as an
interpolation of two extreme models: the Hotelling-Downs model,
where clients select the nearest facility and classical Selfish Load
Balancing [39], where clients select the least congested facility.

For Kohlberg’s model it is known that no pure subgame perfect
equilibria exist where the facility locations are pairwise different.
Furthermore, in a recent paper Peters et al. [31] show for up to six
facilities that pure equilibria exist if and only if there is an even
number of facilities and the clients’ cost function is tilted heavily
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towards preferring less congested facilities. Moreover, in sharp
contrast to the principle of minimum differentiation, they show
that in these unique equilibria only two facilities are co-located.

In this paper we re-establish the principle of minimum differ-
entiation for Kohlberg’s model by considering approximate pure
subgame perfect equilibria. We believe that in contrast to studying
exact subgame perfect equilibria, investigating approximate sub-
game perfect equilibria yields more reliable predictions since the
study of exact equilibria assumes actors who radically change their
current strategy even if they can improve only by a tiny margin.
In the real world this is not true, as many actors only move out of
their “comfort zone” if a significant improvement can be realized.
This threshold behavior can naturally be modeled via a suitably
chosen approximation factor. Furthermore, approximate equilibria
are the only hope for a plausible prediction for many variants of
the Hotelling-Downs model where exact equilibria do not exist. To
the best of our knowledge, approximate equilibria have not been
studied before in the realm of Location Analysis.

Related Work. The Hotelling-Downs model was also analyzed
for non-linear markets, e.g., on graphs [19, 20, 30], fixed locations
on a circle [34], finite sets of locations [27, 28], and optimal interval
division [36]. Moreover, many facility location games are variants
of the Hotelling-Downs model and there is a rich body of work
analyzing them [7, 11, 15, 18, 21, 33, 38] and Vornoi games [2, 3, 12].

In our model facilities offer their service for the same price.
Models where facilities can also strategically set the price have been
considered [1, 8, 9, 22, 23, 26, 29]. Other recent work investigates
different client attraction functions instead of simply using the
distance to the facilities [4, 16, 35].

Using agent-based simulations for variants of the Hotelling-
Downs model seems to be a quite novel approach. We could find
only the recent work of van Leeuwen & Lijesen [37] in which the
authors claim to present the first such approach. They study a
multi-stage variant with pricing which is different from our setting.

2 OUR CONTRIBUTION
We study approximate pure subgame perfect equilibria in Kohlberg’s
model of spatial competition with negative network externalities
in which n facility players strategically select a location in a linear
market. Our slightly reformulated model has a parameter 0 ≤ α ≤ 1,
where α = 0 yields the original Hotelling-Downs model, i.e., clients
select the nearest facility, and where α = 1 yields classical selfish
load balancing, i.e., clients select the least congested facility.

First, we study the case n = 3, which for α = 0 is the famous
unique case of the Hotelling-Downs model where exact equilibria
do not exist. We show that for all α an approximate subgame perfect
equilibrium exists with approximation factor ρ ≤ 1.2808. Moreover,
for α = 0 we show that this bound is tight.

Next, we consider the facility placement which is socially optimal
for the clients and analyze its approximation factor, i.e., we answer
the question how tolerant the facility players have to be to accept
the social optimum placement for the clients. For this placement,
in which the facilities are uniformly distributed along the linear
market, we derive exact analytical results for 4 ≤ n ≤ 10. Building
on this and on a conjecture specifying the facility which has the
best improving deviation, we generalize our results to n ≥ 4. We

find that the obtained approximation factor ρ approaches 1.5 for
low α which implies that in these cases facility players must be
very tolerant to support these client optimal placements (cf. Fig. 1).
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Figure 1: Results for client-optimal facility placement.
We contrast this by our main contribution, which is a study of a
facility placement proposed by Eaton & Lipsey [13] (cf. Fig. 2) from
an approximation perspective. This placement supports the prin-
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Figure 2: Facility placements from [13] for 4 ≤ n ≤ 10. Co-
located facilities are red, single facilities are colored blue.

ciple of minimum differentiation since all but at most one facility
are co-located with another facility and at the same time it is an
exact equilibrium for both extreme cases of the model, i.e., for α = 0
and α = 1. We provide analytical proofs that for these placements
ρ ≤ 1.0866 holds for 4 ≤ n ≤ 10. Also, based on another conjecture,
we show that for arbitrary even n ≥ 10 we get ρ ≈ 1.08 (cf. Fig. 3).
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Figure 3: Results for facility placements from [13].

Our conjectures used for proving the general results are based on
the analytical results for n ≤ 10 and on extensive agent-based
simulations of a discretized variant of the model. It turns out that
these simulations yield reliable predictions for the original model
and we also use them for providing promising results for the general
case with odd n. In particular, we demonstrate that empirically we
have ρ ≈ 1.08 for arbitrary n ≥ 10.

Last but not least, we show that the facility placements pro-
posed by Eaton & Lipsey [13] are also socially good for the clients.
We compare their social cost with the cost of the social optimum
placement and prove a low ratio for all α .

All omitted details can be found in the full version [17].

3 CONCLUSION
We demonstrate that for Kohlberg’s model facility placements exist
which adhere to the principle of minimum differentiation, are close
to stability in the sense that facilities can only improve their utility
by at most 8% by deviating and these placements are also socially
beneficial for all clients. This remarkble contrast to the results of
Peters et al. [31] indicates that studying approximate equilibria may
yield more realistic results than solely focusing on exact equilibria.
Moreover, investigating approximate equilibria may also lead to
new insights for other models in the realm of Location Analysis.
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