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ABSTRACT
Games of chance and bluffing, such as bridge, The Resistance, and
poker allow epistemic reasoning. Players know their own cards
while being uncertain of opponents’. Success generally involves
reducing your uncertainty without reducing that of your opponents.
Reasoning in such games requires a mix of logical (deducing what
is possible) and probabilistic (what is likely). We present a dynamic
aleatoric logic for epistemic reasoning in such games.
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1 INTRODUCTION
This paper proposes a probabilistic generalisation of dynamic epis-
temic logic for reasoning about games of bluffing and chance. Typi-
cally these games have a hidden epistemic state, so that the knowl-
edge of all agents is not equal. There is also an element of chance,
either coming through an initial deal of cards, or some random
element such as dice or a coin. Finally there should be a strategic
advantage to having knowledge, an incentive to discover what the
opponent knows, and to hide their own knowledge. Such games
include traditional games like Poker and Bridge, and the more re-
cent The Resistance and Hanabi. Aleatoric, Latin for “depending
on the throw of a dice”, describes both explicit elements of such
games (card deals, dice rolls) as well as the policies and strategies
of players in the game (so a player may bluff 10% of the time).

There has been substantial work in this direction: Hailperin [6]
and Nilsson [10] generalised propositional logic so the the seman-
tics of true and false are replaced by probability measures, and in
[12] Williamson provided an inference system based on Bayesian
epistemology. Feldman and Harel [4] and Kozen [9] gave a proba-
bilistic variation of propositional dynamic logic. Epistemic logics
also have probabilistic variants [3, 7] based on Dempster-Shafer
models of belief, and Kooi and van Benthem [8, 11] extended dy-
namic epistemic logic with explicit probabilities. Baltag and Smets
[1] provided similar extensions in the context of belief revision.

Here we provide a lightweight logic, the aleatoric dynamic epis-
temic logic, building on recent development of the modal aleatoric
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calculus [5] for formalising reasoning processes in games of chance.
To demonstrate the logic, we use The Resistance, a card game where
players are required to sabotage one another without revealing
their true purpose.

2 SYNTAX AND SEMANTICS
We take a many-valued approach. Rather than presenting a logic
that describes what is true about a probabilistic scenario, we present
the aleatoric dynamic epistemic logic (ADEL) for determining what
is likely. The difference is subtle: In probabilistic dynamic epistemic
logic [8] it is possible to express that the statement “Alice thinks X
has probability 0.5” is true; whereas the calculus here simply has a
term “Alice’s expectation of X” which may have the value 0.5.

The syntax is given for a set of random variables X , and a set
of agents N . We also a constants ⊤ and ⊥. The syntax of aleatoric
dynamic epistemic logic, ADEL, is as follows:

α ::= x | ⊤ | ⊥ | (α?α :α) | (α |α)i | [α]α

where x ∈ X is a random variable and i ∈ N is an agent. As usual,
we let v(α) refer to the set of variables that appear in α . We refer
to ⊤ as always and ⊥ as never. The if-then-else operator (α?β :γ )
is read if α then β else γ and uses the ternary conditional syntax
of programming languages such as C. The marginal expectation
operator (α | β)i is agent i ’s expectation of α given β . The global
observation operator [α]β is the expectation of β once α is observed
by all agents. This corresponds to Bayesian conditioning on a public
announcement of α .

Some abbreviations we can define in ADEL are as follows:
α ∧ β = (α?β : ⊥), α ∨ β = (α?⊤ : β), α → β = (α?β : ⊤) and
¬α = (α?⊥ :⊤).

The aleatoric dynamic epistemic logic is interpretted over proba-
bility models similar to the probability structures of [7],

Definition 2.1. Given a set S , PD(S) is the set of probability dis-
tributions over S , where µ ∈ PD(S) implies: µ : S −→ [0, 1]; and
Σs ∈S µ(s) = 1. Given a set of variables X and a set of agents N , a
probability model is specified by the tuple P = (W ,π , f ), where:

• W is a set of possible worlds.
• π : N −→ W −→ PD(W ) assigns for each agent, for each
worldw ∈W , a probability distribution πi (w) overW , such
that for all i , for all u,v ∈ W πi (u,v) > 0 implies πi (u) =
πi (v). We will write πi (w,v) in place of π (i)(w)(v).

• f :W −→ X −→ [0, 1] is a probability assignment so fw (x)
is the probability of the variable x being true at the worldw .

A pointed probability model, Pw = (W ,π , f ,w), specifies a world in
the model as the point of evaluation.
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Given pointed model Pw , the semantic interpretation of formula
α is Pw (α) ∈ [0, 1] which is the expectation of the formula being
true in a model,

Definition 2.2. The semantics of the dynamic aleatoric calculus
take a pointed probability model, fw , and a proposition defined
in ADEL, α , and calculate the expectation of α holding at Pw .
Given an agent i , a worldw and a ADEL formula α , we define i’s
expectation of α atw as

Eiw (α) =
∑
u ∈W

πi (w,u).Pu (α).

Then the semantics of ADEL are as follows:

Pw (⊤) = 1 Pw (⊥) = 0 Pw (x) = fw (x)
Pw ((α?β :γ )) = Pw (α).Pw (β) + (1 − Pw (α)).Pw (γ )

Pw ((α | β)i ) =
Eiw (α∧β )
Eiw (β )

if Eiw (β) > 0 and 1 otherwise
Pw ([α]β) = Pαw (β)

where Pα is themodel (W ,π ′, f ) such that for allu,v ∈W ,π ′
i (u,v) =

Pv (α ).πi (u,v)
Eiu (α )

if Eiu (α) > 0, and πi (u,v) otherwise.

The concept of sampling is intrinsic to the semantics. Suppose
our agents are committed aleators, in that they use labelled coins
(or sample probability distributions) for everything. If we ask “is
x true” the agent will take the coin marked x , flip it and if it lands
heads, reply “yes”. Every formula is evaluated as a sampling process
this way. To interpret (α?β :γ ), the agent will execute the sampling
procedure for α and if it returns true, the agent will proceed with
the sampling procedure for β , otherwise the agent samples γ .

The conditional expectation operator (α | β)i expresses agent i’s
expectation of α conditioned on β . This is, as in the Kolmogorov
definition of conditional probability, agent i’s expectation of α ∧ β
divided by agent i’s expectation of β .

The observation operation [α]β is the expectation of β after α is
observed by all agents (or publicly announced in the terminology of
dynamic epistemic logic). The interpretation of α is also stochastic,
so we imagine that as before, the mental model of the universe is
sampled, and α is true in that sampling. Further, we suppose that
all agents are told that α was true in that sampling. Now every
agent updates their mental model of the universe. Pw is their prior
expectation of the universe, and we apply Bayesian conditioning
to determine the new (posterior) model.

3 EXAMPLE: THE RESISTANCE
The Resistance [2] is a bluffing game for five to ten players. Approx-
imately one third of the players are allocated as being government
spies, while the rest are true members of the resistance. The spies
know each others’ identity, but the true members do not know who
is a spy. The game consists of five rounds, each as follows:

(1) A leader is allocated (randomly, or next left to previous)
(2) The leader proposes a group of players to go on a “mission”.

The size of the group is given (depending on the number of
players and round), and the leader may include themselves.

(3) Players vote publicly on whether the mission proceeds. If
there is not a majority for, leadership moves left, and restarts.
Five missions voted against in a row means the spies win.
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(a) Before betrayal.
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(b) After betrayal.

Figure 1: Epistemic probability models, before and after. In
Figure 1a all connected worlds are considered equally likely.

(4) Each player on the mission plays a token (face down) to
indicate whether they betray the mission. These are shuffled
and then revealed to everyone. If a betrayal token was played,
the mission fails, and otherwise it succeeds.

The true members want a majority of missions to succeed, whilst
the spies want a majority to fail. As spies are in a minority, they
hide their identity. However, spies need to influence the debate and
vote so they are sent on enough missions to achieve their goal.

Here we present a simple analysis of a small version of the
game with four players, {1, 2, 3, 4}, two of them spies. This gives
six possible initial configurations. Spies know the identity of all
the other spies, the other players do not. The non-spies know only
that they are not spies, and therefore assign equal probability to
the three worlds in which they are not spies, and zero to the worlds
in which they are spies. For every agent, i ∈ {1, 2, 3, 4}, there is a
variable xi , which is the probability of i betraying a mission, if i is
a spy on that mission. We will suppose that for all i , for all worlds
where i is a spy, xi has initial value 3

4 . There are also variables si to
dictate who is a spy, so s1 has probability 1 in worldsw12, w13 and
w14 and probability 0 in all other worlds. This gives the model in
Figure 1a, which is a common prior for all players. The left-most
world is underlined: the actual world where 1 and 2 are spies.

Suppose that 2, 3 are sent on a mission, and 2 betrays it. All
agents are informed that exactly one agent betrayed the mission,
which is equivalent to the announcement (x2 ∧ ¬x3) ∨ (¬x2 ∧ x3).
We can calculate this event has 0 probability in the world (14), since
neither 2 nor 3 are spies in that world. The event has 3

4 probability
in worlds (12), (13), (24) and (34), and probability 97

256 in (23).
Agents infer different information from this announcement.

Agent 3 will know 2 is a spy, and assigns equal probability to 1 and
4 being spies. Agent 4 does not know who is a spy, but the fact that
only one agent betrayed the mission makes it less likely that both 2
and 3 are spies, so 4’s expectation that 1 is a spy actually increases.

The aleatoric calculus allows us to express more complex policies
for agents. In the instance described above an agent simply flips
a biased coin (with probability 3

4 of coming up betray). However,
we could also specify a policy whereby agent 2 will betray, if both
non-spies think 2 is a spy, or if both non-spies think 2 is not a spy.
That is, in worldw12 of Figure 1a agent 2’s likelihood of betraying a
mission could be Pw12 (E2(E3s2 ∧ E4s2) ∨ E2(E3¬s2 ∧ E4¬s2)) =

46
81 .

This demonstrates the reasoning capabilities of aleatoric dynamic
epistemic logic.
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