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ABSTRACT
We consider a student-project-resource matching-allocation prob-

lem, in which students (resp. resources) are matched (resp. allocated)

to projects. A project’s capacity for students is endogenously deter-

mined by the resources allocated to it. Traditionally, (1) resources

are allocated to projects based on some expectations, and then (2)

students are matched with projects based on the capacities deter-

mined by (1). Although resource allocation and two-sided match-

ing are well-understood, unless the expectations used in the first

problem are correct, we obtain a suboptimal outcome. Thus, it is

desirable to solve this problem as a whole without dividing it.

In this paper, we show that finding a nonwasteful matching is

FP
NP[log]-hard, and that deciding whether a stable matching (i.e.

nonwasteful and fair) exists is NP
NP

-complete. We also show that

no strategyproof mechanism can satisfy fairness and very weak

efficiency requirements. Then, we develop a new strategyproof

mechanism, called Sample and Vote Deferred Acceptance (SVDA),

that strikes a good balance between fairness and efficiency.
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1 INTRODUCTION
In this paper, we introduce a simple but fundamental model, which

we call Student-Project-Resource matching-allocation (SPR). On

one hand, this problem is a two-sided, many-to-one matching prob-

lem [24], where students are matched with projects based on their

preferences. On the other hand, it also contains a resource allo-

cation problem [20], since resources are allocated to projects. A

common practice is to determine the resource allocation part, based

on some expectations or past data and fix the capacities of projects.

Then, the actual matching of students to projects is determined by a
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matching mechanism. If the expectations used in the first problem

are incorrect, the outcome is suboptimal: excess demand of seats

and excess supply may coexist in the same matching-allocation.

One real-life instance where this practice is applied is the nursery-

school waiting list problem
1
[22]. Unlike that standard two-sided

matching setting where the capacity of each project is exogenously

fixed, we assume capacities are endogenously determined by the

resource allocation.

Related works. Two-sided matching has been attracting consider-

able attention [3, 12, 13]. Real-world matching markets are subject

to a variety of distributional constraints [19], including regional

maximum quotas [17], minimum quotas [8, 25, 26] and diversity

constraints [6, 10, 18]. Other works examine the computational

complexity for finding a matching [4, 7, 11]. A similar model was

recently considered [16], but with a compact representation scheme.

Besides, in three-sided matching problems [2, 14, 21] three types

of players/agents are matched, e.g., males, females, and pets, or

students, projects and lecturers [1, 5, 19, 23].

Our model. We introduce necessary definitions and notations:

Definition 1.1. An SPR instance is a tuple (S, P ,R,≻S ,≻P ,TR ,qR ).
• S = {s1, . . . , s |S |} is a set of students.
• P = {p1, . . . ,p |P |} is a set of projects.
• R = {r1, . . . , r |R |} is a set of resources.
• ≻S= (≻s )s ∈S are the students’ preferences over set P ∪ {∅}.
• ≻P= (≻p )p∈P are the projects’ preferences over set S ∪ {∅}.
• Resource r has capacity qr ∈ N>0, and qR = (qr )r ∈R .
• Resource r is compatible with Tr ⊆ P , and TR = (Tr )r ∈R .

Contract (s,p) ∈ S × P means student s is matched to project p.
Contract (s,p) is acceptable for student s (resp. project p) if p ≻s ∅
holds (resp. s ≻p ∅). W.l.o.g., we define set of contracts X ⊆ S × P
by (s,p) ∈ X if and only if it is acceptable for p.

Definition 1.2 (Matching). A matching is a subset Y ⊆ X , where

for every student s ∈ S , subset Ys = {(s,p) ∈ Y | p ∈ P} satisfies
|Ys | ≤ 1, and either Ys = ∅, or Ys = {(s,p)} and p ≻s ∅, holds. For
a matching Y , let Y (s) ∈ P ∪ {∅} denote the project s is matched,

and Y (p) ⊆ S denote the set of students assigned to project p.

Definition 1.3 (Allocation). An allocation µ : R → P maps each

resource r to a project µ(r ) ∈ Tr . Let qµ (p) =
∑
r ∈µ−1(p) qr .

2

1
In April 2018, the number of children waiting for nursery school places in Japan

reached a record-breaking 55,433 toddlers.

2
For µ−1(p) = ∅, we assume that an empty sum equals zero.
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Definition 1.4 (Feasibility). A feasiblematching (Y , µ) is matching-

allocation couple where |Y (p)| ≤ qµ (p) holds for every p ∈ P .

Traditionally (e.g. with fixed quotas), for feasible matching (Y , µ)
and (s,p) ∈ X \ Y , we say student s claims an empty seat of p if

p ≻s Y (s) and matching Y \ {(s,Y (s))} ∪ {(s,p)} is feasible with
same allocation µ. However, in our setting, since the distributional

constraint is endogenous and as flexible as allocations are, the

definition of nonwastefulness uses this flexibility, as follows.

Definition 1.5 (Nonwastefulness). Given feasible matching (Y , µ),
a contract (s,p) ∈ X \ Y is a claiming pair if and only if:

• student s has preference p ≻s Y (s), and
• Y \{(s,Y (s))}∪{(s,p)} is feasible with some (new) allocation.

A feasible matching (Y , µ) is nonwasteful if it has no claiming pair.

Definition 1.6 (Fairness). Given feasible matching (Y , µ), contract
(s,p) ∈ X \ Y is an envious pair if and only if:

• student s has preference p ≻s Y (s), and
• there exists student s ′ ∈ Y (p) such that p prefers s ≻p s ′.3

A feasible matching (Y , µ) is fair if it has no envious pair.

Definition 1.7 (Stability). A feasible matching (Y , µ) is stable if it
is nonwasteful and fair (no claiming/envious pair).

Definition 1.8 (Pareto Efficiency). MatchingY is Pareto dominated

byY ′
if all students weakly preferY ′

overY and at least one student

strictly prefers Y ′
. A feasible matching is Pareto efficient if no

feasible matching Pareto dominates it.
4

Definition 1.9. Given any SPR instance, a mechanism outputs a

feasible matching (Y , µ). If a mechanism always obtains a feasible

matching that satisfies property A (e.g., fairness), we say this mech-

anism is A (e.g., fair). A mechanism is strategyproof if no student

gains by reporting a preference different from her true one.

While mechanism Serial Dictatorship (SD) obtains a Pareto ef-

ficient (thus also nonwasteful) matching in time P
NP

, mechanism

Artificial Caps Deferred Acceptance (ACDA) obtains a fair matching

in polynomial-time [9].

Example 1.10. Nonwastefulness and fairness are incompatible

since there exists an instance with no stable matching. Let us show

a simple example with two students sa , sb , two projects pa ,pb , and
a unitary resource compatible with both. Students’ preferences are

pa ≻sa pb and pb ≻sb pa . Projects’ are sb ≻pa sa and sa ≻pb sb .
By symmetry, assume the resource is allocated to pa . From fairness,

sb must be allocated to pa . Then (sb ,pb ) becomes a claiming pair.

2 THE COMPLEXITY OF SPR
We found several complexity results, fully detailed [15].

Theorem 2.1. Given an SPR instance and a matching Y , deciding
whether an allocation µ exists such that (Y , µ) is a feasible matching,
is NP-complete.

Theorem 2.2. Given an SPR instance and a feasible matching
(Y , µ), deciding whether it is nonwasteful is coNP-complete.

3(Y \ {(s, Y (s)), (s ′, Y (s ′))}) ∪ {(s, p)} is feasible with same allocation µ .
4
Pareto efficiency implies nonwastefulness (not vice versa).

Theorem 2.3. Given an SPR instance, finding a nonwastefulmatch-
ing (Y , µ) is FPNP[log]-hard.

Theorem 2.4. Given an SPR instance, deciding whether a stable
matching exists is NPNP-complete.

3 MECHANISM SVDA
We discuss how to develop a strategyproof mechanism that can

strike a good balance between fairness and efficiency. A full de-

scription of the contents in this section including proofs, as well as

additional contents, can be found in http://mpra.ub.uni-muenchen.

de/92720. We introduce two conditions that related to efficiency.

The first one is called weak nonwastefulness.

Definition 3.1 (Weak Nonwastefulness). For feasible matching

(Y , µ), student s is a strongly claiming student if Y (s) = ∅, and for

any feasible matching (Y , µ ′), s claims an empty seat of some project

p (p can be different for each µ ′). A feasible matching is weakly

nonwasteful if it has no strongly claiming student.

To define another concept called resource efficiency, we first de-
fine unanimous preferences.

Definition 3.2 (Unanimous Preference). Students unanimously

prefer p over p′ if for every s ∈ S , (s,p) ∈ X and p ≻s p′ hold.

Definition 3.3 (Resource Efficiency). Resource allocation µ is re-

source efficient if any resource r , such that p′,p ∈ Tr and students

unanimously prefer p over p′, is not allocated to p′. A mechanism is

resource efficient if it always returns a resource efficient allocation.

Now we are ready to introduce our impossibility theorem.

Theorem 3.4. No mechanism exists that is fair, weakly nonwaste-
ful, resource efficient, and strategyproof.

Mechanism 1 (Sample and Vote Deferred Acceptance (SVDA)).
Step 1: Select S ′ ⊆ S , which we call the sampled students. We

call S \S ′ the regular students. Then run SD and find (partial)

matching YS ′ for S
′
.

Step 2: Allocate R′ ⊆ R to projects such that YS ′ is feasible and
R′

is minimal: no R′′ ⊊ R′
makes YS ′ feasible.

Step 3: Allocate R \ R′
based on the preferences of S ′. Then

run DA for S \S ′. The capacity of p is qµ (p)− |YS ′(p)|, where
µ is the current resource allocation.

To decide allocation R \R′
based on the preferences of S ′, we use

the following simplemethod. For each r , each s ∈ S ′ (hypothetically)
votes for candidatesTr based on ≻s , where each project obtains the

Borda score based on ≻s . Then r is allocated to the winner.

Theorem 3.5. SVDA is strategyproof, resource efficient, weakly
nonwasteful and fair among S \S ′, i.e., no regular student has justified
envy toward another regular student.

Prospects. Future works include theoretically identifying the op-

timal sample size, finding tractable cases and dealing with various

constraints on the allocation of resources.
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