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ABSTRACT

Coalition formation is beneficial to multi-agent systems, especially

when the value of a coalition depends on the relationship among its

members. However, an attack can significantly damage a coalition

structure by disabling agents. Therefore, getting prepared in ad-

vance for such an attack is particularly important.We study a robust

k-coalition formation problem modeled by max-min k-partition
of a weighted graph. We show that this problem is ΣP

2
-complete,

which holds even for k = 2 and arbitrary weights, or k = 3 and

non-negative weights. We also propose the Iterated Best Response

(IBR) algorithm which provides a run-time absolute bound for the

approximation error and can be generalized to the max-min opti-

mization version of any ΣP
2
-complete problem. We tested IBR on

fairly large instances of both synthetic graphs and real life networks,

yielding near optimal results in a reasonable time.
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1 INTRODUCTION

In many situations agents regroup into coalitions toward working

together, in order to complete a set of k tasks [7, 24]. While any

coalition structure with less or more than k coalitions will not com-

plete all the tasks or includes redundant activity, another important

aspect is the robustness of the solution. Indeed, an attack may de-

crease the system’s performance by removing agents. Therefore,

the coalition structure should be carefully selected in order to be

prepared for the worst anticipated loss from such malicious action.

In this paper we take the view of a defender that would like to find

a coalition structure with k coalitions that maximizes the social wel-

fare, given that an attacker will try to minimize it by removing up

Proc. of the 18th International Conference on Autonomous Agents and Multiagent Systems
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tom agents. We use a concise representation based on a weighted

graph: every agent is a node, and the additional value agent i has
for agent j being with him is the weight of link {i, j}. Our problem
is thus to find a max-min k-partition of the given graph.

Related Work. Coalition structure generation [22] aims at par-

titioning a set of agents into coalitions to maximize some system-

wide performance measure. Traditionally, the input consists of a

black-box characteristic function that returns the value for each

coalition [23]. State-of-the-art algorithms can solve problem in-

stances with 25 agents within 100 seconds. Also, several concise

characteristic function representations have been proposed, for ex-

ample, marginal contribution nets (MC-nets) [13], synergy coalition

group [8], and coalition resource game [31]. The graphical represen-

tation [2, 6, 10, 26, 27] which we use is one of the simplest. There

is vast literature on analyzing Stackelberg security games [25, 28]

and additional works that study coalition formation problems with

other models of failures [1, 3–5, 12, 19]. The closest work is Oki-

moto et al. [20], with the differences that we constrain the number

of coalitions (vs. unconstrained) and use a compact representation

(vs. oracle). Moreover, our algorithm for the defender has a provable

approximation bound and a practical running time.

Model. Amax-mink-partition instance is a tuple ⟨N ,L,w,k,m,θ⟩.
• (N ,L,w) is a weighted undirected graph. N = [n], where
n ∈ N is a set of nodes.

1
The set of links L ⊆

(N
2

)
consists of

unordered node pairs. Link ℓ = {i, j}maps to weightwi j ∈ Z.
Equivalently, w : N 2 → Z satisfies for any (i, j) ∈ N 2

that

w(i, i) = 0,w(i, j) = w(j, i) andw(i, j) , 0⇒ {i, j} ∈ L.
• k is the size of a partition, 2 ≤ k < n.
• m ∈ N is the number of nodes that could be removed.

• θ ∈ Z is a threshold value.

Let π denote ak-partition ofN , which is a collection of node-subsets

{S1, . . . , Sk }, such that for each i ∈ [k], Si ⊆ N , and ∀Si , Sj ∈ π ,
where i , j, Si ∩ Sj = ∅ holds. We say that a k-partition π is

complete when

⋃
i ∈[k ] Si = N holds (otherwise, it is incomplete).

For node i ∈ N , π (i) is the node-subset to which it belongs. For any

S ⊆ N , we define

W (S) =
∑
{i, j }⊆S w(i, j).

Then, letW (π ) denote∑S ∈π W (S). We require that no node-subset

be empty; hence, if some node-subset is empty, we setW (π ) = −∞.

1
Given n ∈ N, [n] is shorthand of {1, . . . , n }.
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Given a k-partition π = {S1, . . . , Sk } and a set M ⊆ N , the

remaining incomplete partition π−M after removingM is defined as

{S ′
1
, . . . , S ′k }, where S

′
i = Si \M . LetW−m (π ) denote the minimum

value after removing at mostm nodes, i.e., it is defined as:

W−m (π ) = min

M ⊆N , |M | ≤m
{W (π−M )}.

To obtainW−m (π ) , −∞, every S ∈ π needs to contain at least

m + 1 nodes, so that no node-subset of π−M is emptied.

2 COMPLEXITY OF MAX-MIN-K-PARTITION
We studied computational complexity for the max-min defender’s

problem and found two intricate results that are detailed in [14]. The

standard verification problem itself turns out to be coNP-complete,

which intricates one more level in the polynomial hierarchy (PH).

We indeed show that Max-Min-k-Partition (given a max-min

k-partition instance, does a k-partition π s.t.W−m (π ) ≥ θ exist?) is

complete for class ΣP
2
, even in two cases:

(a) when k = 2 for arbitrary link weightsw ≶ 0, or

(b) when k = 3 for non-negative link weightsw ≥ 0.

Though we don’t know for k = 2 and w ≥ 0, these results match

what is known on MaxCut [15] (amounts to Min-2-Cut with

w ≶ 0, and NP-complete) and Min-3-Cut [9] (NP-complete when

one node is fixed in each node-subset), but one level higher in PH.

3 ITERATED BEST RESPONSE ALGORITHM

Usually, in the second level of PH, instances become very quickly

intractable (e.g., above n ≥ 20 in [20]). Thus, we introduce an

algorithm that we call Iterated Best Response algorithm (IBR) for

solving a max-min k-partition problem. The idea is to start from a

random (new) k-partition π , and then iterate the following loop:

(1) Attacker response:M ← argminM ′⊆N , |M ′ | ≤mW (π−M ′).
(2) Defender response: find π̂ , optimal k-partition of N \M s.t.

df(π̂ ) ≤ |M | (where df(π̂ ) = ∑
C ∈π̂ min{|C | −m − 1, 0}), and

complete π̂ into a k-partition π of N s.t. ∀C ∈ π , |C | ≥ m+ 1.
An outer loop may run this best-response dynamics several times.

This algorithm provides a run-time absolute bound for the ap-

proximation error. Let lb be the maximum valueW−m (π ) found
so far for any k-partition π , that is the value of the currently best

known solution. Let ub be the minimum valueW (π̂ ) found so far.

Then the solution returned by the algorithm is within an additive

ub−lb of the optimum. Denoting OPT = maxπ {W−m (π )}, it means:

OPT −W−m (π ) ≤ ub − lb .
Consider the example in Figure 1. Assume k = 2 and m = 1.

Due to negative links, {(1, 2, 5), (3, 4, 6)} and {(1, 4, 5), (2, 3, 6)} are
the only meaningful 2-partitions. Also, removing 1 or 3 is always

better than removing other nodes. For these meaningful actions of

defender/attacker, a payoff matrix is given as the table in Figure 1

(M = ∅ means no attack). Assume π = {(1, 2, 5), (3, 4, 6)} is chosen
at first. Then, the best response of the attacker isM = {3}. Then, lb
is updated to 13. Then, the defender chooses π̂−M = {(1, 4, 5), (2, 6)},
which is an optimal partition of {1, 2, 4, 5, 6}. Then,W (π̂−M ) = 20

is used to update ub, i.e., as long as the attacker chooses {3}, the
value of the defender is at most 20. Next, the defender chooses

{(1, 4, 5), (2, 3, 6)}, which subsumes W (π̂−M ). The best response

of the attacker is M = {1} and lb is updated to 18. The defender

attacker

defender ∅ {1} {3}
{(1, 2, 5), (3, 4, 6)} 30 17 13

{(1, 4, 5), (2, 3, 6)} 38 18 20

Figure 1: Example (n = 6, k = 2, andm = 1) and payoffmatrix
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Figure 2: Evaluation results (real life network)

chooses π̂−M = {(4, 5), (2, 3, 6)}, which is an optimal partition of

{2, 3, 4, 5, 6}. Then,W (π̂−M ) = 18 is used to updateub. Now, lb = ub
holds and IBR terminates.

4 EXPERIMENTAL EVALUATION

We experimentally evaluate the performance of IBR. All the tests

were run on a machine: an Intel Xeon E5-2680v4 CPU @ 2.40GHz

processor with 125.8GB RAM, Ubuntu 16.40 LTS, and a mixed inte-

ger programming package Gurobi version 7.5.0. We show experi-

ments based on a real life network called Wikipedia Requests for

Adminship (RfA) network [30]. This is a network among Wikipedia

users where each link (i, j) has a weight corresponding to the vote

of user i towards user j to become an administrator. The weight of

a link is given based on the intensity of the sentiment expressed

in the vote [17]. The original graph is directed. For a pair of nodes

i and j, we create an undirected link with weight w(i, j) +w(j, i).
The original graph has about 10,000 nodes and 100,000 links. Based

on this original graph, we select a subgraph with n nodes by ran-

domly choosing a root node, then by adding neighboring nodes in

a breadth-first manner. In an obtained graph, the probability that a

link exists is about 20% (about 90% of them have positive weights).

We set the number of removed nodesm to n/10.
Figure 2 shows the computation time of IBR by varying n with

k = 3. We show the results by varying the number of iterations for

outer-loop. Each data point is an average of 100 problem instances.

We can see that IBR can solve problem instances with n = 50within

5 seconds when the number of iterations is 1.
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