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ABSTRACT
The Possible-Winner problem asks, given an election where the
voters’ preferences over the set of candidates is partially spec-
ified, whether a distinguished candidate can become a winner.
In this work, we consider the computational complexity of the
Possible-Winner problem under the assumption that the voter
preferences are partitioned. That is, we assume that every voter
provides a complete order over sets of incomparable candidates
(e.g., candidates are ranked by their level of education). We consider
elections with partitioned profiles over positional scoring rules. Our
first result is a polynomial time algorithm for voting rules with two
distinct values, which include the common k-approval voting rule.
We then go on to prove NP-hardness for the class of voting rules
that produce scoring vectors with at least four distinct values, and
a large class of voting rules that produce scoring vectors with three
distinct values.
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1 INTRODUCTION
In political elections, web site rankings, and multiagent systems,
preferences of different parties (voters) have to be aggregated to
form a joint decision. A general solution to this problem is to have
the agents vote over the alternatives. The voting process is con-
ducted as follows: each agent provides a ranking of the possible
alternatives (candidates). Then, a voting rule takes these rankings as
input and produces a set of chosen alternatives (winners) as output.
However, in many real-life settings one has to deal with partial

votes: Some voters may have preferences over only a subset of the
candidates. The Possible-Winner problem, introduced by Konczak
and Lang [2005], is defined as follows: Given a partial order for
each of the voters, can a distinguished candidate c win for at least
one extension of the partial orders?

The answer to the Possible-Winner problem depends on the
voting rule that is used. In this work we consider positional scoring
rules. A positional scoring rule provides a score value for every
position that a candidate may take within a linear order, given as a
scoring vector of lengthm in the case ofm candidates. The scores
of the candidates are added over all votes and the candidates with
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the maximal score win. For example, the k-approval voting rule,
typically used in political elections, defined by (1, . . . , 1, 0, . . . , 0)
starting with k ones, enables voters to express their preference
for k candidates. A popular special case of k-approval is plurality,
defined by (1, 0, . . . , 0).

The Possible-Winner problem has been investigated for various
voting systems [5, 12, 15, 18]. For positional scoring rules, Betzler
and Dorn [2010] proved a result that was just one step away from a
full dichotomy for the Possible-Winner problem with positional
scoring rules, and any number of candidates. In particular, they
showed NP-completeness for all but three scoring rules, namely
plurality, veto, and the rule with the scoring vector (2, 1, . . . , 1, 0).
For plurality and veto, they showed that the problem is solvable in
polynomial time, but the complexity of Possible-Winner remained
open for the scoring rule (2, 1, . . . , 0) until it was shown to be NP-
complete as well by Baumeister and Rothe [2012].

Partitioned preferences provide a good compromise between com-
plete orders and arbitrary partial orders. Intuitively, the user pro-
vides a complete order over sets of incomparable items. In the
machine learning community, partitioned preferences were shown
to be common in many real-life datasets, and have been used for
learning statistical models on full and partial rankings [10, 13, 14].
In recommender systems, the items are often partitioned according
to their numerical level of desirability [16] (e.g., the common star-
rating system, where the scores range between 1 and 5 stars). In
such a scenario, all items with identical scores are incomparable.
Partitioned profiles are also used to represent agent preferences in
resource allocation problems [1].

In this work we investigate the computational complexity of
the Possible-Winner problem with partitioned preference profiles.
Our first result is that deciding whether a candidate is a possible
winner can be performed in polynomial time for 2-valued voting
rules (i.e., that produce scoring vectors with 2 distinct values), which
include the k-approval, and k-veto voting rules. We then show
that our algorithm also solves the possible winner problem for
the (2, 1, . . . , 1, 0) voting rule. In general, when the partitioned
assumption is dropped, the problem is NP-complete for both of these
rules [3, 4]. For other voting rules the Possible-Winner problem
remains hard, despite the assumption of partitioned profiles. We
prove hardness for the class of voting rules that produce scoring
vectors containing at least 4 distinct values, and a large class of
voting rules with 3 distinct values.

Prior Work. Previous work has considered the complexity of
Possible-Winner under various restrictions to the voter profile [5,
8, 17, 18]. In particular, Dey and Misra [2017] studied the com-
putational complexity of Possible-Winner with respect to the
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number of undetermined candidate pairs in every vote. Xia and
Conitzer [2011] proved that k-approval and k-veto are NP-complete
even when every vote contains just 4 undetermined pairs. The scor-
ing rule (2, 1, . . . , 1, 0) remains NP-complete even when every vote
contains justm − 1 undetermined pairs, wherem is the number of
candidates [8]. In this work, we focus on partitioned profiles, show-
ing that Possible-Winner can be solved in polynomial time for
these three rules, regardless of the number of undetermined pairs.
Our hardness results make use of techniques introduced by Betzler
and Dorn [2010], and Dey and Misra [2017], demonstrating their
applicability to elections with various restrictions.

2 PRELIMINARIES
Elections and Voting Rules
A preference is a binary relation ≻ over a set of alternatives, or
candidates C that satisfies transitivity (a ≻ b and b ≻ c implies
a ≻ c) and irreflexivity (a ≻ a never holds).

A a voting profile V is a sequence (v1, . . . ,vn ) of total (linear)
orders over a set C of candidates {c1, . . . , cm }. Eachvi in the profile
V stands for the complete ranking of the candidates by the ith voter.
A voting rule r is a function that maps a given voting profileV into
a nonempty set r (V) of co-winners. A candidate c is a co-winner if
c ∈ r (V), and a winner if r (V) = {c}.

A scoring vector over a set ofm candidates is a sequence −→α =
(α1, . . . ,αm ) ofm natural numbers such that α1 ≥ · · · ≥ αm . When-
ever candidate c is ranked in place j in the rankingvi , it contributes
svi (c) = α j points to the total score of c . The co-winners are the
candidates with a maximum total score

∑n
i=1 svi (c). A positional

scoring rule r = (
−→αm )m∈N+ is a function that associates a scoring

vector −→αm with each numberm ∈ N+ of candidates. The value in
the jth index of −→αm is denoted by −→αm (j).

Let r be a positional scoring rule. We assume that for allm > 0,
the scoring vector −→αm contains at least one nonzero element. We
also assume that r is normalized: for everym > 0, the greatest com-
mon divisor of the numbers in −→αm is one, and there exists a j such
that −→αm (k) = 0 for all k > j . These assumptions do not restrict the
generality of the class of positional scoring rules [4, 9]. Therefore,
we assume that all positional scoring rules are normalized. The
rule r is pure if for everym ≥ 2, the scoring vector −→αm is obtained
from −→αm−1 by inserting a score value at any position subject to
satisfying the monotonicity constraint α1 ≥ · · · ≥ αm . Essentially,
all studied positional scoring rules are pure [2, 4, 9]. An election is
denoted by I(C,V, r ), where C is the set of candidates, V the set
of complete votes, and r is the positional scoring rule.

Partial Voting Profiles
A partial voting profile O is a sequence (o1, . . . ,on ) of partial orders
over C. We denote by lin(oi ) the set of all linear extensions of oi ,
where a linear extension of oi is a total order vi such that c ≻vi c

′

whenever c ≻oi c
′. An extension of O is a member of lin(o1) × · · · ×

lin(on ), that is, a voting profile V = (v1, . . . ,vn ) where each vi
is a linear extension of oi . Let r be a voting rule. A candidate c is
a possible winner if there is an extension V of O such that c is a
winner (or co-winner) underV . The following is known about the
complexity of determining the possible winners under positional

scoring rules. Note that the rule is fixed, and the input consists of
the candidates and partial profile.

Theorem 2.1. [3, 18] Assume that r is pure. The possible winners
can be found in polynomial time if r is either the plurality rule or the

veto rule; otherwise, it is NP-complete to determine whether a given

candidate is a possible winner.

In this paper we consider a known type of partial preference
known as partitioned preferences.

Definition 2.2 (Partitioned profile). A partial voting profile O =
(o1, . . . ,on ) is partitioned if every preference oj ∈ O consists of a
partition of the candidates C into disjoint setsA1, . . . ,Aq such that:
(1) for all i < l , if c ∈ Ai and c ′ ∈ Al then c ≻ c ′ in oj ; and (2) for
each i ≤ q, candidates in Ai are incomparable in oj (i.e., a � b and
b � a in oj , for every a,b ∈ Ai ).

3 SUMMARY OF RESULTS
In the full version of this paper we detail and prove the results of
this section.

Definition 3.1 (K-valued voting rule). We say that a positional
scoring rule r = (

−→αm )m∈N+ is K-valued if there exists a number
n0 ∈ N+ such that for allm ≥ n0, the score vector −→αm contains
exactly K distinct values.

By this definition, the k-approval, veto, and plurality voting rules
are 2-valued, while Borda has an unbounded number of different
score values.

Definition 3.2 (unbounded-value voting rule). A positional scoring
rule r = (

−→αm )m∈N+ has an unbounded number of positions with

equal score values if, for every l ∈ N+, there exists a numbern0 ∈ N+

such that for allm ≥ n0, the score vector −→αm contains at least l
consecutive positions with the same value.

Let I = (C,O, r ) denote an election where O is a partitioned
profile (i.e., all of the partial votes are partitioned). The main results
are summarized in Theorem 3.3. A scoring rule is called differen-

tiating [8] if it produces a scoring vector containing two distinct
nonzero differences between consecutive positions in the score
vector. Theorem 3.3 covers all positional scoring rules except those
producing vectors of the form (2, . . . , 2︸  ︷︷  ︸

k2

, 1, . . . , 1, 0, . . . , 0︸  ︷︷  ︸
k0

), where

k0 and k2 are fixed constants such that k0 + k2 > 2, for which the
complexity remains open.

Theorem 3.3. Let r = (
−→αm )m∈N+ be a pure positional scoring

rule. Then we have the following when the preference profile is parti-

tioned.

(1) If r is 2-valued or if r is (2, 1, . . . , 1, 0), then Possible-Winner

over r is solvable in polynomial time.

(2) If r is K-valued, where K ≥ 4, then Possible-Winner is NP-

complete for r .
(3) If r is 3-valued, and r produces a size-m scoring vector that

is differentiating, or where the number of positions occupied

by either αm or α1 is unbounded, then Possible-Winner is

NP-complete for r .
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