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ABSTRACT
One shot learning is particularly difficult in multiagent systems
where the relevant information is distributed across agents, and
inter-agent interactions shape global emergent behavior. This pa-
per introduces a distributed learning framework called Distributed
Modular Memory Unit (DMMU) that creates a shared external mem-
ory to enable one shot adaptive learning in multiagent systems. In
DMMU, a shared external memory is selectively accessed by agents
acting asynchronously and in parallel. Each agent processes its own
stream of sequential information independently while interacting
with the shared external memory to identify, retain, and propagate
salient information. This enables DMMU to rapidly assimilate task
features from a group of distributed agents, consolidate it into a
reconfigurable external memory, and use it for one shot multiagent
learning. We compare the performance of the DMMU framework
on a simulated cybersecurity task with traditional feedforward
ensembles, LSTM based agents, and a centralized framework. Re-
sults demonstrate that DMMU significantly outperforms the other
methods and exhibits distributed one shot learning.
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1 INTRODUCTION
An open challenge in Artificial Intelligence is to determine how an
agent can learn to dynamically adapt its policy based on a singular
observation. This ability for rapid adaptation is a hallmark of human
cognition, and is most closely related to one shot learning. While
much progress has been recently made in realizing one shot learn-
ing [3, 10, 13, 18], these have been limited to single agent systems.
This is in contrast to most real world tasks where decision making
is often distributed among multiple agents interacting across time
and space. One shot learning on such systems is particularly chal-
lenging as local changes in agent policies can have unpredictable
consequences in emergent system behavior.
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One approach to facilitate one shot learning is the incorporation
of memory which can be used to remember salient observations
and recall them in the future [15]. For example, in the season task
the agent can incorporate a working memory to remember whether
a food is poisonous/nutritious after sampling it once. The agent
can then consider these alongside its input to make decisions [11].
Adaptive one shot decision making for single agent systems have
been explored in the past largely with the tools of memory [1, 2].
However, the increased complexity from multiple agents acting
concurrently is widely unexplored for this class of tasks.

The standard medium of incorporating memory within learn-
ing is Long Short Term Memory (LSTM) [5, 6]. LSTM is a type
of Recurrent Neural Network and is the state of the art in many
sequence processing tasks [4, 14]. A central feature within LSTM
is its continuous blending of observations (new information) with
salient past information stored within its cell (memory). However,
in a multiagent domain where many agents concurrently observe
new information and seek to update a shared memory, this leads to
high degrees of interference and information degradation.

2 DISTRIBUTED MODULAR MEMORY UNIT
We introduce a memory-based multiagent framework called Dis-
tributed Modular Memory Unit (DMMU), exploiting the modularity
and gating structures of the MMU network [7, 8] and building on
[9]. DMMU (depicted in 1) is capable of concurrently processing
sequential sets of observations from multiple agents.

Each information stream originates from an actor with individ-
ual agency. Each actor can be considered as an agent with its own
unique policy, observing the environment and acting within it inde-
pendently. Each of these agents is defined by a standard feedforward
neural network with three major learnable components.

• Input Gate: The input gate filters the flow of information
that comes from the environment to the agent. This serves
to shield the agent from the noisy portions of each incoming
observation and allows it to focus its attention on relevant
features within its observation set.

• Curated Memory Feed: The agent’s input is augmented
with content selectively read from an external memory. The
agent has an independently learnable read gate which filters
the content read from external memory. This serves to shape
the contents of memory as per the needs of the agent, protect-
ing it from being overwhelmed with extraneous information
it might not need at a particular time.

• Selective Memory Update: The agent is augmented with
a learnable write gate that allows it to selectively update
the contents of the external memory. This gate allows the
agent to report salient features from its observations to the
external memory. The write gate that filters this channel of

Extended Abstract AAMAS 2019, May 13-17, 2019, Montréal, Canada

2054



Figure 1: High level schematic of the DMMU framework.
Each agent (emphasized in bubble) is comprised of an aug-
mented feedforward neural network with connections to
the world (input/output) and memory (read/write) connec-
tions. The modularity of the framework is highlighted by
the differences in agents A, B, and C. At this time step, agent
A ignores memory, and acts reactively based on its input.
Agent B meanwhile ignores its input and acts exclusively
from memory. Agent C is leveraging all available informa-
tion, combining the contents within memory and its imme-
diate input to make a decision. Agent C is also updating
memory based on its decision.

information flow serves to shield the external memory from
being overwhelmed by updates from the agent.

We test DMMU in a simulated cybersecurity task [9]. This task
can be thought of as a multiagent extension of the season task
[11] where a distributed multiagent system has to adapt its global
policy based on a singular observation by one of its agent. In this
task, a web server which operates via a distributed set of proxy
servers has to withstand a DDoS attack. The web server receives
multiple requests for fulfillment originating from multiple devices.
A portion of these devices are conscripted by a botnet while the
rest represnet genuine users. To succeed in this task, the proxy
servers have to coordinate in sampling the incoming requests in
parallel, determine which devices are nefarious, and selectively
serve requests originating from the genuine ones. The core diffi-
culty here is that the nefarious/genuine categorization of devices
changes across task instances. This prevents the servers from sim-
ply memorizing action-value functions and forces it to dynamically
assess the nefarious/genuine categorization for each new instance
of the task. Additionally, unlike [9] the servers take variable num-
ber of timesteps (determined randomly) to fulfill requests. This
is termed the busy period and adds an extra layer of difficulty
originating from the asynchronisity across agents in accessing the
shared memory.

3 RESULTS
We compared DMMU in the cybersecurity task with four baselines
spanning the centralized/decentralized andmemoried/reactive char-
acteristics. Feedforward Neural Ensemble (FFNE) and LSTMNeural
Ensemble (LSTMNE) represents each proxy server as a standard
feedforward neural network and a LSTM, respectively. Centralized
Neural Framework (CNF) represents the entire set of servers as a
single feedforward neural network that has full access to all the
information and makes centralized decisions. LSTM with Shared
memory (LSTMSM) represents each server as an LSTMwith access
to an external shared memory mimicking the DMMU framework.

Figure 2: Comparative performance in the cybersecurity
task. The server fleet consists of 10 proxy servers handling a
request volume of 100 from 20 distinct devices. A random
number of devices between {7,13} out of 20 are nefarious
while the rest are genuine. Asynchronousmemory access by
agents with the busy period following each action randomly
set between {0,2} timesteps.

Figure 2 shows the comparative performance of DMMU with
other baselines. DMMU significantly outperforms other baselines
achieving a net of 8.25 ± 0.39 genuine requests served. CNF and
FFNE fail to learn entirely. This is unsurprising as these approaches
lack memory and are unable to associate actions with rewards over
time. Even with centralized access to information and centralized
joint action (CNF), the lack of memory is a principal limitation.

Interestingly, LSTMNE also fail to learn despite having access to
memory. However, unlike DMMU, LSTMNE does not have a shared
memory which is essential in learning to consolidate observations
between agents and is thus limited to greedy behaviors.

The most surprising perhaps is the failure to learn for LSTMSM
agents which has an external shared memory similar to DMMU.
However, unlike DMMU where agents can selectively read and
write to memory, LSTMSM agents are constrained to base their
actions as a function of the memory content. This limits their flexi-
bility and leads to homogenization of their joint action. This em-
phasizes the importance of DMMU’s modular design which allows
agents to read from, add to, or ignore the shared memory dynami-
cally. This enables DMMU to learn effective coordination strategies
among a diverse set of agents to jointly sample observations, and
share pertinent information leveraging the external memory.

4 CONCLUSION
As most real world systems move towards decentralization [12,
16, 17], multiagent one shot learning where agents can dynam-
ically change their behavior based on an observation by one of
the agents is an important challenge to tackle. In this work, we
formulated DMMU that leverages a shared memory as a form of
‘knowledge base’ that can be collectively read from and updated by
a team of autonomous agents. This enables the collective to adapt
instantaneously based on a singular observation.
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