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ABSTRACT
In order to achieve effective human-AI collaboration, it is necessary
for an AI agent to align its behavior with the human’s expectations.
When the agent generates a task plan without such considerations,
it may often result in inexplicable behavior from the human’s point
of view. This may have serious implications for the human, from
increased cognitive load to more serious concerns of safety around
the physical agent. In this work, we present an approach to generate
explicable behavior by minimizing the distance between the agent’s
plan and the plan expected by the human. To this end, we learn a
mapping between plan distances (distances between expected and
agent plans) and human’s plan scoring scheme. The plan generation
process uses this learned model as a heuristic. We demonstrate the
effectiveness of our approach in a delivery robot domain.
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1 EXPLICABLE PLANNING
A robot’s behavior should not only be optimal with respect to its
own model, but also explicable with respect to a human’s mental
model of the robot. The problem of inexplicable behavior arises
when the robot’s plan deviates from that expected by the human.
In this paper, we explore the plan explicability problem in a setting
where the robot has access to a generative model of the human
expectations. Even with a known mental model this remains a
challenging and nuanced problem since the mental model might
entail plans that are infeasible or prohibitively expensive for the
robot, and thus at best can serve as a guide, and not an oracle, for
generating explicable plans. The problem of generating explicable
plans can be also solved in a model-free setting, where the robot
does not have access to the human’s mental model [7].

∗The full version of the paper is available at https://arxiv.org/abs/1611.05497.
†A detailed treatise of explicable planning and its relation to other forms of explainable
robot behavior can be found in [1].
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A Classical Planning Problem [3, 5] is a tuple P = ⟨M,I,G⟩,
whereM = ⟨F ,A⟩ is the domain model, that consists of a finite
set of fluents, F , and a set of actions,A. A state s of the world is an
instantiation of all fluents in F . Let S be the set of states. I ⊆ S
is the initial state. G is the goal where a subset of fluents in F
are instantiated. Each action a ∈ A is a tuple ⟨prea , adda , dela , ca⟩
where ca is the cost of a, prea , adda , dela ⊆ F are the preconditions,
add and delete effects of a. Γ(·) is the transition function, such
that, Γ(s,a) |= ⊥, if s ̸ |= prea ; else Γ(s,a) |= s ∪ adda \ dela . The
solution to the planning problem is a plan or a sequence of actions
π = ⟨a1,a2, . . . ,an⟩ such that starting from the initial state, by
sequentially executing the actions the agent achieves its goal, i.e.
Γ(I,π ) |= G. The cost of the plan is given by, c(π ) =

∑
ai ∈π c(ai ).

An optimal plan achieves the goal with minimum cost.

An Explicable Planning Problem is defined as a tuple PEPP =
⟨MR ,MR

H
,IR ,GR⟩, where,MR = ⟨F R ,AR⟩ is the robot’s do-

main model, such that, F R and AR represent the robot’s fluents
and actions,MR

H
= ⟨F R ,AR

H
⟩ is the human’s mental model of

the robot where F R andAR
H

represent the fluents and actions that
the human thinks are available to the robot, IR and GR are the
initial and goal states of the robot. AR and AR

H
represent that the

action names, preconditions, effects and costs of the actions can
be different. The initial state and the goal state are assumed to be
known to the human. Further, we define an evaluation function
δ∗ that represents the difference between the robot plan and the
expected plan and thus the cost of being inexplicable.

An Explicable Plan π∗
MR

is a solution to PEPP that minimizes
the sum of the plan cost and the evaluation function:

π∗
MR
= argminπ

MR
c(πMR ) + δ

∗(πMR ,πMR
H

)

2 GENERATION OF EXPLICABLE PLANS
Generation of explicable plans involves the following 4 steps: (1)
Since the evaluation function is not directly available to the robot,
we learn an approximation of it using a combination of three plan
distance measures – action, causal link and state sequence distances
– proposed by Nguyen et al. [4], Srivastava et al. [6]. (2) Human
evaluators are asked to score each action in candidate robot plans
with 1 (explicable) or 0 (inexplicable). The total explicability score
of each plan is computed as an average of explicable actions. (3)
A mapping between the three plan distances and the explicability
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Algorithm 1 Reconciliation Search

Input: PEPP = ⟨MR ,MRH ,I
R ,GR⟩,max_cost , Exp (·)

Output: EEPP (set of explicable plans)
1: EEPP ← ∅; open← ∅; closed← ∅
2: open.insert(I, 0, inf)
3: while open , ∅ do
4: n← open.remove() ▷ Node with highest h(·)
5: if n |= G then
6: EEPP .insert(π s.t. ΓMR (I,π ) |= n)
7: closed.insert(n)
8: for each v ∈ successors(n) do
9: if v < closed then
10: if g(n) + cost(n, v) ≤ max_cost then
11: open.insert(v, g(n) + cost(n, v), h(v))
12: else
13: if h(n) < h(v) then
14: closed.remove(v)
15: open.insert(v, g(n) + cost(n, v), h(v))
16: return EEPP

score for each candidate plan, referred to as the explicability dis-
tance, is learned using a regression model. (4) In order to generate
explicable plans, the plan score predictions provided by the expli-
cability distance are used as a heuristic to guide an anytime search
implemented in Fast-Downward [2] planner. The search produces
increasingly explicable plans in an anytime fashion.

The Explicability Distance approximates the evaluation function
δ∗ using a combination of three plan distances. It is a regression
model that is trained to learn the scoring scheme of the users by
mapping the plan scores to the corresponding explicability feature
vector as described below.

The explicability feature vector for a candidate robot plan is
constructed by computing the plan’s distance from an expected
plan. We define a set of expected plans, E(P), for the planning
problem P as the set of optimal solutions to it. E(PR

H
) denotes the

set of optimal plans to PR
H

that the human expects the robot to
compute. An expected plan in E(PR

H
) that is closest to the candidate

robot plan is used to construct the feature vector. It is represented
as π∗

MR
H

, and is found as follows:

π∗
MR
H

= {π
MR
H

| argmin
π
MR
H

∈ E(PR
H
)

δexp (πMR ,πMR
H

)}

where δexp is the distance between the robot plan πMR and an
expected plan π

MR
H

. δexp is computed using the three plan distance
measures as follows:

δexp (πMR ,πMR
H

) = | |δA(πMR ,πMR
H

)

+ δC (πMR ,πMR
H

) + δS (πMR ,πMR
H

)| |2

where δA, δC , δS represent action, causal link and state sequence
distances respectively. The explicability feature vector, ∆, is:

∆ = ⟨δA(πMR ,π
∗

MR
H

),δC (πMR ,π
∗

MR
H

),δS (πMR ,π
∗

MR
H

)⟩

Figure 1: Comparison of (a) plans costs and (b) explicability
scores provided by subjects for optimal and explicable plans.

Finally, the explicability distance Exp (πMR / π
∗

MR
H

) is a regres-

sion function f that fits the three plan distances to the explicability
scores of the robot plans:

Exp (πMR / π
∗

MR
H

) ≈ f(∆,b), where b is the parameter vector.

The plan generation process outlined in Algorithm 1 employs a
cost-bounded anytime greedy search that generates all valid loop-
less candidate plans up to a given cost bound and then progressively
searches for plans with better explicability scores. We use Exp (·)
as a heuristic to guide our search. The heuristic value h(v) of a state
v is computed using the agent plan prefix πMR leading up to v:

h(v) = Exp (πMR /π
′

MR
H

)

where ΓMR (I,πMR ) |= v ∧ Γ
MR
H

(I,π ′
MR
H

) |= v

Property: Explicablity score of a plan is non-monotonic. This is
because, as a partial plan grows, a new action may increase or
decrease the score. Exp (·) in turn also exhibits non-monotonicity.
The proposed anytime search comes in handy particularly in light
of this non-monotonicity by being able to produce solutions with
increasing degrees of explicability.

Demonstration:We designed a delivery robot domain to demon-
strate explicable behaviors using a robot. The robot can deliver
parcels/electronic devices and serve beverages to the humans us-
ing a tray. Whenever the robot carries the beverage cup there is
some risk that the cup may tip over and spill the contents over
the electronic items on the tray. Here the robot has to learn the
context of carrying devices and beverages separately even if it re-
sults in an expensive plan (in terms of cost or time). A video of the
demonstration can be viewed at https://bit.ly/2JweeYk.

Evaluation: Figure 1a shows that, for this domain, all explicable
plans are more expensive than optimal plans. This is because the
explicable plans involve doing separate trips for items of different
types. A cost-optimal planner would not generate these plans. Fig-
ure 1b shows the results of a user study where the test subjects
had to score the explicability of the plans. The explicability scores
provided by the subjects are higher for explicable plans. Further
details are available in the full report.∗
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