
Designing Emergent Swarm Behaviors using Behavior Trees and
Grammatical Evolution

Extended Abstract

Aadesh Neupane
Brigham Young University

aadeshnpn@byu.edu

Michael A. Goodrich
Brigham Young University

mike@cs.byu.edu

KEYWORDS
Behavior Trees; Swarms; Grammatical Evolution

ACM Reference Format:
Aadesh Neupane and Michael A. Goodrich. 2019. Designing Emergent
Swarm Behaviors using Behavior Trees and Grammatical Evolution. In
Proc. of the 18th International Conference on Autonomous Agents and Multia-
gent Systems (AAMAS 2019), Montreal, Canada, May 13–17, 2019, IFAAMAS,
3 pages.

1 MOTIVATION AND PROBLEM STATEMENT
Bio-inspired collectives like honeybee, ant, and termite colonies
provide elegant distributed solutions to complex collective prob-
lems like finding food sources, selecting a new site, and allocating
tasks. Effective collective behaviors emerge from biological swarms
through local interactions (see, for example, [7, 17, 19]).

Despite the potential benefits of bio-inspired algorithms, only a
few organisms have been explored for their collective behavior; for
example, very little is understood about the construction methods
of termites [5]. One reason for slow research is the effort involved in
understanding individual agent behavior and creatingmathematical
models to describe both individual and collective behaviors [2].
Mimicking an evolutionary process with artificial agents may yield
useful collective behaviors in a reasonable time.

Conventional approaches for evolving swarms behaviors used
Finite State Machines (FSM) with or without neuro-evolutionary
algorithms [6, 10, 12, 14, 15]. When the system is complex and the
number of states is huge, a hierarchical finite state machine (HFSM)
offers benefits [1, 20]. Unfortunately, HFSMsmust trade-off between
reactivity and modularity [3]. Also, behaviors encoded in HFSMs
can be hard to debug and extend [11]. Behaviour Trees (BTs), which
are useful in game design, overcome some HFSM limitations [8].

BTs have recently been used to evolve behaviors for robot swarms.
Jones et al. [9] used genetic evolution algorithm to evolve a BT for
a Kilobot foraging task. For detailed information on BTs, see [4].
Distributed Grammatical Evolution (GE) coupled with BTs might
be adequate for generating swarm behaviors.

This abstract summarizes a framework combining a distributed
GE called GEESE [13] with BTs to generate swarm behaviors. We
identified twenty-eight primitive individual behaviors designed to
mimic behaviors frequently seen in the swarm literature. We then
designed a BNF grammar that embeds the primitive behaviors as
BT nodes and is general enough to solve many collective spatial

Proc. of the 18th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2019), N. Agmon, M. E. Taylor, E. Elkind, M. Veloso (eds.), May 13–17, 2019,
Montreal, Canada. © 2019 International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

Figure 1: Single-source foraging

allocation tasks. Results show that the performance of evolved
swarm behaviors was better than a hand-coded solution for a Single-
source foraging task.

2 APPROACH
GE is a context-free grammar-based genetic program paradigm that
is capable of evolving programs or rules in many languages [16].
GE adopts a population of genotypes represented as binary strings,
which are transformed into functional phenotype programs through
a genotype-to-phenotype transformation. The transformation uses
a BNF grammar, which specifies the language of the solutions.

We extend a specific multi-agent GE algorithm called GEESE
in two ways: First, the BNF grammar was redesigned to allow BT
programs to be the evolutionary phenotype. Second, three levels of
fitness function were designed to promote not only task-specific
success but also exploration.

Swarm Grammar. This swarm grammar used with GEESE incor-
porates individual agent rules that can produce a valid BT which
induce desirable swarm behaviors. The BNF grammar guides the
genotype-to-phenotype mapping process.

(1)⟨s⟩ ::= ⟨sequence⟩ | ⟨selector ⟩
(2)⟨sequence⟩ ::= ⟨execution⟩ | ⟨s⟩ ⟨s⟩ | ⟨sequence⟩ ⟨s⟩
(3)⟨selector ⟩ ::= ⟨execution⟩ | ⟨s⟩ ⟨s⟩ | ⟨selector ⟩ ⟨s⟩
(4)⟨execution⟩ ::= ⟨conditions⟩ ⟨action⟩
(5)⟨conditions⟩ ::= ⟨condition⟩ ⟨conditions⟩ | ⟨condition⟩
(6)⟨condition⟩ ::= NeighbourObjects | IsDropable_⟨sobjects⟩ | . . .
(7)⟨action⟩ ::= MoveTowards_⟨sobjects⟩ | Explore | . . .
(8)⟨sobjects⟩ ::= Hub | Sites | Obstacles
(9)⟨dobjects⟩ ::= Food | Debris
(10)⟨cobjects⟩ ::= Signal | Cue
(11)⟨objects⟩ ::= ⟨sobjects⟩ | ⟨dobjects⟩

Extended Abstract AAMAS 2019, May 13-17, 2019, Montréal, Canada

2138

Figure 2: Hand-coded Behavior Tree for single-source foraging task.

Figure 3: One of the evolved Behavior Tree for single-source foraging task.

The right-hand side of the production rule 1 defines the BT
control structures. Production rules [2-5] recursively define exe-
cution nodes. Production rules [6-7] define primitive behaviors.
Production rule 8 defines the general static elements in the swarm
environment. Production rule [9-11] defines the dynamic objects in
the environment.

Fitness Functions. Let At denote the fitness of the agent A. The
overall agent fitness of a genome at time step t is given by

At = β (At−1) + (Ot + Et + Pt). (1)

where Ot is the task-specific objection function, Et is the explo-
ration fitness, Pt is the prospective fitness, At−1 is the agent fitness
in previous generation, and β is the generational discount factor.
Et and Pt are a form of “bootstrapping” to help boost learning. Et
rewards exploration to different spatial region where as Pt rewards
agents for persisting in activities that may be useful.

The most fit 50% of the genomes in the agent’s repository are
selected to be parents. Crossover followed by mutation is then
performed to create a new population of genomes. A single genome
is then selected based on diversity fitness, and the agent follows the
corresponding BT program. In every simulation step, each agent
evaluates its fitness (At) using its BT controller. Three distinct
class of fitness function (equation 1), each necessary given the non-
episodic learning and the large search space, are used to evaluate
the agent.

3 RESULTS
A single-source foraging scenario from [18] is considered. The
agent’s task is to collect food from a source region in the environ-
ment and bring the food to a hub region in the environment. Agents
do not have prior information regarding the source location.

Figure 1 shows the average % food collected by the swarm in
the task. The left and right portion shows the performance by

evolved and hand-coded behaviors respectively. The evolved be-
haviors clearly perform better than the hand-coded behavior.

It takes about 3000 iterations before GE-agents start gathering
food in the hub because agents need to explore the environment
first to find the location of the source. Since there is just a single
source it takes agents some time to find the source and communicate
the information of the source. In contrast, the hand-coded behavior
was able to collect food at roughly 500 iterations.

After analyzing the BT for both behaviors in Figures 2–3, we
observe that the exploration node is independent of other nodes
in hand-coded BT whereas in evolved BT, the explore node is de-
pendent on another composite node. The independence of explore
node from other nodes allows the hand-coded BT to explore the
environment much faster than the evolved BT.

Subjective observations, to be quantified in future work, indicate
that the diversity of agents in the evolved agents is one reason
for their success; all the agents have the same behavior for the
hand-coded solution. Another reason for the inferior performance
of hand-coded behavior is that it is hard for humans to construct a
BT tree with a cyclic nature as BT are directed trees. For foraging,
there is cyclic pattern of visiting hub and other objects of interest.

4 SUMMARY
Results show that a recursively defined BT-based grammar, built
from common agent behaviors, can be used by the GEESE algorithm
to evolve solutions to single-source foraging task. Because of the
difficulty of solving the credit assignment problem, bootstrapping
methods must be added to the fitness function to find solutions in
reasonable time.

ACKNOWLEDGMENTS
The authors would also like to thank the anonymous referees for
their valuable comments and helpful suggestions. This work is
supported by the ONR grant number N000141613025.

Extended Abstract AAMAS 2019, May 13-17, 2019, Montréal, Canada

2139

REFERENCES
[1] Rodney Brooks. 1986. A robust layered control system for a mobile robot. IEEE

journal on robotics and automation 2, 1 (1986), 14–23.
[2] Scott Camazine, Jean-Louis Deneubourg, Nigel R Franks, James Sneyd, Eric

Bonabeau, and Guy Theraula. 2003. Self-organization in biological systems. Vol. 7.
Princeton University Press.

[3] Michele Colledanchise and Petter Ögren. 2017. How behavior trees modularize
hybrid control systems and generalize sequential behavior compositions, the
subsumption architecture, and decision trees. IEEE Transactions on robotics 33, 2
(2017), 372–389.

[4] Michele Colledanchise and Petter Ögren. 2018. Behavior Trees in Robotics and
AI: An Introduction. (2018).

[5] Lucy Cooke. 2018. UNDERBUG An Obsessive Tale of Termites and Technology.
(2018).

[6] Eliseo Ferrante, Edgar Duéñez-Guzmán, Ali Emre Turgut, and Tom Wenseleers.
2013. GESwarm: Grammatical evolution for the automatic synthesis of collective
behaviors in swarm robotics. In Proc. of the 15th annual conf. on Genetic and
evolutionary computation. ACM, 17–24.

[7] DeborahMGordon. 2010. Ant encounters: interaction networks and colony behavior.
Princeton University Press.

[8] D Isla. [n. d.]. Handling complexity in the Halo 2 AI, 2005. URL: http://www.
gamasutra. com/gdc2005/features/20050311/isla _01. shtml [21.1. 2010] ([n. d.]).

[9] Simon Jones, Matthew Studley, Sabine Hauert, and Alan Winfield. 2018. Evolving
behaviour trees for swarm robotics. In Distributed Autonomous Robotic Systems.
Springer, 487–501.

[10] Lukas König, Sanaz Mostaghim, and Hartmut Schmeck. 2009. Decentralized
evolution of robotic behavior using finite state machines. International Journal

of Intelligent Computing and Cybernetics 2, 4 (2009), 695–723.
[11] Chong-U Lim. 2009. An AI Player for DEFCON: an evolutionary approach using

behavior trees. Imperial College, London (2009).
[12] Aadesh Neupane, Michael A Goodrich, and Eric G Mercer. 2018. GEESE: Gram-

matical Evolution Algorithm for Evolution of Swarm Behaviors. In Proceedings
of the 17th Intl. Conf. on Autonomous Agents and MultiAgent Systems. Intl. Foun-
dation for Autonomous Agents and Multiagent Systems, 2025–2027.

[13] Aadesh Neupane, Michael A Goodrich, and Eric G Mercer. 2018. GEESE: gram-
matical evolution algorithm for evolution of swarm behaviors. In Proceedings of
the Genetic and Evolutionary Computation Conference. ACM, 999–1006.

[14] Pavel Petrovic. 2008. Evolving behavior coordination for mobile robots using
distributed finite-state automata. In Frontiers in evolutionary robotics. InTech.

[15] Agnes Pintér-Bartha, Anita Sobe, and Wilfried Elmenreich. 2012. Towards the
lightâĂŤComparing evolved neural network controllers and Finite State Machine
controllers. In Intelligent Solutions in Embedded Systems (WISES), 2012 Proceedings
of the Tenth Workshop on. IEEE, 83–87.

[16] Conor Ryan, JJ Collins, and Michael O Neill. 1998. Grammatical evolution:
Evolving programs for an arbitrary language. In European Conf. on Genetic Pro-
gramming. Springer, 83–96.

[17] Thomas D Seeley. 2009. The wisdom of the hive: the social physiology of honey bee
colonies. Harvard University Press.

[18] John H Franks Sudd, Nigel R John H Sudd, and Nigel R Franks. 1987. The
behavioural ecology of ants. Technical Report.

[19] David JT Sumpter. 2010. Collective animal behavior. Princeton University Press.
[20] Antti Valmari. 1996. The state explosion problem. In Advanced Course on Petri

Nets. Springer, 429–528.

Extended Abstract AAMAS 2019, May 13-17, 2019, Montréal, Canada

2140

	1 Motivation and Problem Statement
	2 Approach
	3 Results
	4 Summary
	Acknowledgments
	References

