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1 MOTIVATION AND PROBLEM STATEMENT
Bio-inspired collectives like honeybee, ant, and termite colonies
provide elegant distributed solutions to complex collective prob-
lems like finding food sources, selecting a new site, and allocating
tasks. Effective collective behaviors emerge from biological swarms
through local interactions (see, for example, [7, 17, 19]).

Despite the potential benefits of bio-inspired algorithms, only a
few organisms have been explored for their collective behavior; for
example, very little is understood about the construction methods
of termites [5]. One reason for slow research is the effort involved in
understanding individual agent behavior and creatingmathematical
models to describe both individual and collective behaviors [2].
Mimicking an evolutionary process with artificial agents may yield
useful collective behaviors in a reasonable time.

Conventional approaches for evolving swarms behaviors used
Finite State Machines (FSM) with or without neuro-evolutionary
algorithms [6, 10, 12, 14, 15]. When the system is complex and the
number of states is huge, a hierarchical finite state machine (HFSM)
offers benefits [1, 20]. Unfortunately, HFSMsmust trade-off between
reactivity and modularity [3]. Also, behaviors encoded in HFSMs
can be hard to debug and extend [11]. Behaviour Trees (BTs), which
are useful in game design, overcome some HFSM limitations [8].

BTs have recently been used to evolve behaviors for robot swarms.
Jones et al. [9] used genetic evolution algorithm to evolve a BT for
a Kilobot foraging task. For detailed information on BTs, see [4].
Distributed Grammatical Evolution (GE) coupled with BTs might
be adequate for generating swarm behaviors.

This abstract summarizes a framework combining a distributed
GE called GEESE [13] with BTs to generate swarm behaviors. We
identified twenty-eight primitive individual behaviors designed to
mimic behaviors frequently seen in the swarm literature. We then
designed a BNF grammar that embeds the primitive behaviors as
BT nodes and is general enough to solve many collective spatial
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Figure 1: Single-source foraging

allocation tasks. Results show that the performance of evolved
swarm behaviors was better than a hand-coded solution for a Single-
source foraging task.

2 APPROACH
GE is a context-free grammar-based genetic program paradigm that
is capable of evolving programs or rules in many languages [16].
GE adopts a population of genotypes represented as binary strings,
which are transformed into functional phenotype programs through
a genotype-to-phenotype transformation. The transformation uses
a BNF grammar, which specifies the language of the solutions.

We extend a specific multi-agent GE algorithm called GEESE
in two ways: First, the BNF grammar was redesigned to allow BT
programs to be the evolutionary phenotype. Second, three levels of
fitness function were designed to promote not only task-specific
success but also exploration.

Swarm Grammar. This swarm grammar used with GEESE incor-
porates individual agent rules that can produce a valid BT which
induce desirable swarm behaviors. The BNF grammar guides the
genotype-to-phenotype mapping process.

(1)⟨s⟩ ::= ⟨sequence⟩ | ⟨selector ⟩
(2)⟨sequence⟩ ::= ⟨execution⟩ | ⟨s⟩ ⟨s⟩ | ⟨sequence⟩ ⟨s⟩
(3)⟨selector ⟩ ::= ⟨execution⟩ | ⟨s⟩ ⟨s⟩ | ⟨selector ⟩ ⟨s⟩
(4)⟨execution⟩ ::= ⟨conditions⟩ ⟨action⟩
(5)⟨conditions⟩ ::= ⟨condition⟩ ⟨conditions⟩ | ⟨condition⟩
(6)⟨condition⟩ ::= NeighbourObjects | IsDropable_⟨sobjects⟩ | . . .
(7)⟨action⟩ ::= MoveTowards_⟨sobjects⟩ | Explore | . . .
(8)⟨sobjects⟩ ::= Hub | Sites | Obstacles
(9)⟨dobjects⟩ ::= Food | Debris
(10)⟨cobjects⟩ ::= Signal | Cue
(11)⟨objects⟩ ::= ⟨sobjects⟩ | ⟨dobjects⟩
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Figure 2: Hand-coded Behavior Tree for single-source foraging task.

Figure 3: One of the evolved Behavior Tree for single-source foraging task.

The right-hand side of the production rule 1 defines the BT
control structures. Production rules [2-5] recursively define exe-
cution nodes. Production rules [6-7] define primitive behaviors.
Production rule 8 defines the general static elements in the swarm
environment. Production rule [9-11] defines the dynamic objects in
the environment.

Fitness Functions. Let At denote the fitness of the agent A. The
overall agent fitness of a genome at time step t is given by

At = β (At−1) + (Ot + Et + Pt ). (1)

where Ot is the task-specific objection function, Et is the explo-
ration fitness, Pt is the prospective fitness, At−1 is the agent fitness
in previous generation, and β is the generational discount factor.
Et and Pt are a form of “bootstrapping” to help boost learning. Et
rewards exploration to different spatial region where as Pt rewards
agents for persisting in activities that may be useful.

The most fit 50% of the genomes in the agent’s repository are
selected to be parents. Crossover followed by mutation is then
performed to create a new population of genomes. A single genome
is then selected based on diversity fitness, and the agent follows the
corresponding BT program. In every simulation step, each agent
evaluates its fitness (At ) using its BT controller. Three distinct
class of fitness function (equation 1), each necessary given the non-
episodic learning and the large search space, are used to evaluate
the agent.

3 RESULTS
A single-source foraging scenario from [18] is considered. The
agent’s task is to collect food from a source region in the environ-
ment and bring the food to a hub region in the environment. Agents
do not have prior information regarding the source location.

Figure 1 shows the average % food collected by the swarm in
the task. The left and right portion shows the performance by

evolved and hand-coded behaviors respectively. The evolved be-
haviors clearly perform better than the hand-coded behavior.

It takes about 3000 iterations before GE-agents start gathering
food in the hub because agents need to explore the environment
first to find the location of the source. Since there is just a single
source it takes agents some time to find the source and communicate
the information of the source. In contrast, the hand-coded behavior
was able to collect food at roughly 500 iterations.

After analyzing the BT for both behaviors in Figures 2–3, we
observe that the exploration node is independent of other nodes
in hand-coded BT whereas in evolved BT, the explore node is de-
pendent on another composite node. The independence of explore
node from other nodes allows the hand-coded BT to explore the
environment much faster than the evolved BT.

Subjective observations, to be quantified in future work, indicate
that the diversity of agents in the evolved agents is one reason
for their success; all the agents have the same behavior for the
hand-coded solution. Another reason for the inferior performance
of hand-coded behavior is that it is hard for humans to construct a
BT tree with a cyclic nature as BT are directed trees. For foraging,
there is cyclic pattern of visiting hub and other objects of interest.

4 SUMMARY
Results show that a recursively defined BT-based grammar, built
from common agent behaviors, can be used by the GEESE algorithm
to evolve solutions to single-source foraging task. Because of the
difficulty of solving the credit assignment problem, bootstrapping
methods must be added to the fitness function to find solutions in
reasonable time.
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