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ABSTRACT
This paper extends resource-bounded ATL with probabilistic rea-
soning and provides the syntax and semantics of the resulting logic,
probabilistic resource-bounded ATL.
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1 INTRODUCTION
In the literature, several variants of ATL and Coalition Logic have
been proposed (see e.g., [1, 8, 13]). These logics allow us to express
many interesting properties of coalitions and strategies, such as
“a coalition of agents A(⊆ N ) has a strategy to reach a state satis-
fying φ no matter what the other agents (N \ A) in the system do”,
where φ characterises, e.g., lifting up a heavyweight (by a group
of robots A) or a solution to a problem. However, there is no natu-
ral way of expressing resource requirements in these logics. The
resource-bounded alternating-time temporal logic (RB-ATL) [3] was
developed for reasoning about coalitional ability under resource
bounds. RB-ATL allows us to express various resource-bounded
properties, including, for example, “coalition A has a strategy to
reach a state satisfying φ under the resource bound b, but they can-
not enforce φ under a tighter resource bound b ′". In fact, the logic
mentioned above can be used to state various qualitative properties
of real-world systems. However, it is also equally or even more
important to analyse quantitative properties of systems, such as
reliability and uncertainty, which cannot be trivially expressed in
logics mentioned above. A large number of multi-agent application
domains, such as Internet of Things (IoT) and Cyber-Physical Sys-
tems (CPS) in general and disaster rescue and military operations in
particular, require not only the reasoning about the team behavior
of agents but also that the agents and/or the environment may have
random or unreliable behaviours [6, 14]. Their applications encom-
pass many safety-critical domains, and many such applications run
in resource-constrained devices and environments [2, 12]. There-
fore, these systems often need rigorous analysis and verification to
ensure the correctness of their designs [10]. In such domains, the
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behaviour of an agent has to be described in terms of a distribution
of probability over a set of possibilities. There has recently been
increasing interest in developing logics incorporating probabilis-
tic reasoning [5, 7, 9], which are essentially extensions of CTL or
ATL. In rPATL [5], we can express that a coalition of agents has a
strategy which can ensure that either the probability of an event’s
occurrence or an expected reward measure meets some threshold.
However, probabilistic resource-bounded properties such as, for
example, “can coalition A has a strategy so that the probability to
reach a state satisfying φ under the resource bound b is at least 0.95"
can neither be expressed in rPATL nor in any other probabilistic
temporal logics mentioned above. In this paper, we propose a logic
Probabilistic Resource-Bounded ATL (pRB-ATL) which allows us
to express such properties.

2 SYNTAX AND SEMANTICS OF PRB-ATL
In this section, we provide the syntax and semantics of the proposed
logic pRB-ATL. Let N = {1, 2, . . . ,n} be a set of n(≥ 1) agents
forming a multi-agent system. Let R be a set of resources (e.g.,
money, energy, etc.). We assume that a cost of an action, for each
of the resources, is a natural number. The set of resource bounds
B over R is defined as B = (N ∪ {∞})r , where r = |R |. Let Q be
a finite set and δ : Q → [0, 1] be probability distribution function
over Q such that

∑
q∈Q δ (q) = 1. We denote by D(Q) the set of all

such distributions over Q . For a given δ ∈ D(Q), supp(δ ) = {q ∈

Q | δ (q) > 0} is called the support of δ . The interested reader is
referred to [4] for a complete description relating to probability
distributions and measures.

2.1 Syntax of pRB-ATL
Let Π be a finite set of atomic propositions, N be the set of agents,
A be a non-empty subset of N , and b ∈ B. The syntax of pRB–ATL
is defined as follows:

φ := ⊤ | p | ¬φ | φ ∨ φ | ⟨⟨Ab ⟩⟩P▷◁v [ψ ]

ψ := ⃝φ | φ Uk φ | ¬ψ

where p ∈ Π, ▷◁∈ {<, ≤,=, ≥, >}, v ∈ Q ∩ [0, 1], k ∈ N ∪ {∞}.
The two temporal operators have standard meaning⃝ for “next”

and U≤k for “bounded until” if k ≤ ∞ or “until” otherwise. When
k = ∞, we write U instead of U∞. Here, ⟨⟨Ab ⟩⟩P▷◁v [⃝φ] means
that a coalition A has a strategy to make sure that the next state
satisfies φ under resource bound b with a probability in relation ▷◁
with constant v . The formula ⟨⟨Ab ⟩⟩P▷◁v [φ1 U φ2] means that A
has a strategy to enforce φ2 while maintaining the truth of φ1, and
the cost of this strategy is at most b with a probability in relation
▷◁ with constant v . Other classical abbreviations for ⊥, ∨, → and
↔ and temporal operations are defined as usual.
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2.2 Semantics of pRB-ATL
We extend the definition of resource-bounded concurrent game
structures [3] with probabilistic behaviours of agents.

Definition 2.1. A probabilistic resource Concurrent Game Struc-
ture (pRCGS) is a tuple S = (n, r ,Q,Π,π , d, c,δ ) where:

• n ≥ 1 is the number of agents;
• r ≥ 0 is the number of resources;
• Q is a non-empty finite set of states;
• Π is a finite set of propositional variables;
• π : Π → ℘(Q) is a function which assigns to each variable
in Π a subset of Q ;

• d : Q ×N → N+ is a function which indicates the number of
actions available at a state for each agent whereN+ = N\{0};

• c : Q×N ×N+ → B is a partial function which indicates a re-
source cost for each action by an agent at a state; furthermore
c(q,a, 1) = ®0 for any q ∈ Q and a ∈ N ;

• δ : Q × (N → N+) → D(Q) is a partial probabilistic transi-
tion function (also known as probability transition matrix).

Given a pRCGS S = (n, r ,Q,Π,π ,d, c,δ ), we identify available ac-
tions at a state q ∈ Q of an agent a ∈ N by numbers 1, . . . ,d(q,a)
where Da (q) denotes the set of available actions {1, . . . ,d(q,a)};
action 1 specifies idling which is always available and cost of ®0
by definition. Given a coalition A ⊆ N , a joint actionm of A is a
functionm : A → N+. Let D denote the set of all joint actions for
the grand coalition N , i.e., D = N → N+. Given a state q, the set of
available joint actions of A at q is denoted by DA(q) = {m : A →

N+ | ∀a ∈ A : m(a) ∈ Da (q)}. The cost of an available joint ac-
tionm ∈ DA(q) is defined as cost(q,m) =

∑
a∈A c(q,a,m(a)). When

A = N , DA(q) is written as D(q). Given a joint actionm ∈ DA(q),
the cost ofm is defined as cost(q,m) =

∑
a∈A c(q,a,m(a)), i.e., the

total cost of actions by agents in the coalition.
Given a pRCGS S , an infinite run(computation) is an infinite

sequence λ = q0
m0
−−→ q1

m1
−−→ . . . ∈ (Q × D)ω wheremi ∈ D(qi )

and δ (qi ,mi )(qi+1) > 0 for all i ≥ 0. We denote the set of all infinite
computations by ΩS ⊆ (Q × D)ω . A finite computation is a finite
prefix λ = q0

m0
−−→ q1

m1
−−→ q2 . . .

mn−1
−−−−→ qn ∈ (Q × D)∗Q of some

infinite sequence in ΩS . We denote the set of all finite computations
by Ω+S . For convenience, (Q × D)ω and (Q × D)∗Q shall be written
as (QD)ω and (QD)∗Q . The length of a computation λ, denoted
by |λ |, is defined as the number of transitions in λ. For a finite
computation λ = q0

m0
−−→ q1

m1
−−→ q2 . . .

mn−1
−−−−→ qn ∈ Ω+S , |λ | = n; for

an infinite computation λ ∈ q0
m0
−−→ q1

m1
−−→ . . . ΩS , |λ | = ∞. Given

a computation λ ∈ Ω
(+)
S , λ(i) = qi for all i ∈ {0, . . . , |λ |}; λ(i, j) =

qi . . .qj for all i, j ∈ {0, . . . , |λ |} and i ≤ j;mλ = m0m1 . . . as the
projection of actions in λ andmλ(i) = mi for i ∈ {0, . . . , |λ | − 1}.
Note that λ(|λ |) is the last state in λ. Finally, Ω(+)

S,q = {λ ∈ Ω
(+)
S |

λ(0) = q} denotes the set of (finite) computations starting from q ∈

Q . Given a finite computation λ ∈ Ω+S and a coalition A, the cost of
joint actions by A is defined as costA(λ) =

∑ |λ |−1
i=0 cost(λ(i),mλ(i)).

Definition 2.2. Given a pRCGS S , a strategy of an agent a ∈ N is
a mapping fa : (QD)∗Q → D(N+) which associates each sequence
λ ∈ (QD)∗Q to a distribution µa ∈ D({1, . . . ,d(λ(|λ |),a)}).

Definition 2.3. A strategy is called memoryless (or Markovian) if
its choice of actions depend only on the current state, i.e., fa (λ) =
fa (λ(|λ |)) for all λ ∈ (QD)∗Q . It is called deterministic if it always
selects a action with probability 1, i.e., fa (λ) is a Dirac distribution.

Definition 2.4. Given a pRCGS S , a coalition strategy FA : A →

((QD)∗Q → D(N+)) is a function which associates each agent a in
A with a strategy.

Given a coalition stratgegy FA, each finite sequence λ ∈ (QD)∗Q

gives rise to a distribution µFAλ ∈ D(A → DA(λ(|λ |))) over joint
actions m ∈ DA(λ(|λ |)) where µFAλ (m) =

∏
a∈A fa (λ)(m(a)) and

fa = FA(a) for all a ∈ A. Given two coalition strategies FA and FB
of two disjoint coalitionsA and B, i.e.,A∩B = ∅, their union is also
a coalition strategy, denoted by FA ∪ FB , for A ∪ B.

Definition 2.5. Given a bound b ∈ B, k ∈ N, and a strategy FA,
FA is b-bounded iff for all λ ∈ Ω+S , it holds that costA(λ) ≤ b and
supp(µFAλ ) ⊆ {m ∈ DA(λ(|λ |)) | cost(λ(|λ |),m) ≤ b − cost(λ)}.

Given a state q0 ∈ Q , we can determine the probability of every
finite computation λ = q0

m0
−−→ q1

m1
−−→ q2 . . .

mn−1
−−−−→ qn ∈ Ω+S,q con-

sistent with FA as PrFNS,q0
(λ) =

∏n−1
i=0 µFNλ(0,i)(mi ) × δ (si ,mi )(si+1).

For each finite computation λ ∈ Ω+S , we can then define a cylin-
der set Cλ that consists of all infinite computations prefixed by
λ. Given an initial state q ∈ Q , it is then standard [4, 11] to de-
fine a measurable space over ΩS,q , infinite runs of S from q, as
(ΩS,q ,FS,q ) where FS,q ⊆ ℘(ΩS,q ) is the least σ -algebra on ΩS,q
generated by the family of all cylinder sets Cλ where λ ∈ Ω+S that
starts from q, i.e., λ(0) = q. Given a strategy FN , a strategy for
all agents in the game, the behaviour of S is fully probabilistic. It
then gives rise to a probability measure (ΩS,q ,FS,q ,Pr

FN
S,q ) where

PrFNS,q : FS,q → [0, 1] uniquely extends PrFNS,q : Ω+S,q → [0, 1] such

that PrFNS,q (Cλ) = PrFNS,q (λ) for all λ ∈ Ω+S,q starting from q.

2.3 Truth definition for pRB-ATL
Given a pRCGS S = (n, r ,Q,Π,π ,d, c,δ ), the truth definition for
pRB-ATL is given inductively as follows:

• S,q |= ⊤;
• S,q |= p iff q ∈ π (p);
• S,q |= ¬φ iff S,q ̸ |= φ;
• S,q |= φ1 ∨ φ2 iff S,q |= φ1 or S,q |= φ2;
• S,q |= ⟨⟨Ab ⟩⟩P▷◁v [ψ ] iff ∃ b-bounded FA such that ∀FĀ,
PrFA∪FĀS,q ({λ ∈ ΩS,q | S, λ |= ψ }) ▷◁ v ;

• S, λ |= ⃝φ iff S, λ(1) |= φ;
• S, λ |= φ1 Uk φ2 iff ∃i ∈ N such that i ≤ k , ∀j < i : S, λ(j) |=
φ1, and S, λ(i) |= φ2;

• S, λ |= ¬ψ iff S, λ ̸ |= ψ .

3 CONCLUSIONS
The logic pRB-ATL proposed in this paper can be used to express
various interesting properties of coalitions of agents involving re-
source limitations and probabilistic behaviour. We have also devel-
oped a standard model-checking algorithm for pRB-ATL. However,
we are unable to present it due to space constraints.
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