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ABSTRACT
We study strategic behaviour in goal-based voting, where agents

take a collective decision over multiple binary issues based on their

individual goals (expressed as propositional formulas). We focus

on three generalizations of the issue-wise majority rule, and study

their resistance to manipulability in the general case, as well as for

restricted languages for goals. We also study how computationally

hard it is for an agent to know if they can profitably manipulate.
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1 INTRODUCTION
A key aspect of agent-based architectures is endowing agents with

goals [20], and propositional goals in particular are ubiquitous in

models of strategic reasoning. When taking collective decisions in

a multi-issue domain, agents share the control over the variables at

stake while still holding individual goals. This happens, for instance,

when they need to arrange a business meal and have to decide on its

specifics: should the restaurant be in the center, should it be fancy,

should the meal be dinner or lunch? First, agents need a procedure

to decide over each issue. Second, strategic behavior needs to be

taken into account. Two frameworks have been proposed in the AI

literature to solve this and similar problems: belief merging (see,

e.g., Konieczny and Pino Pérez [13]) and goal-based voting [18].

Given our primary concern of resoluteness of the voting outcome

we choose the latter framework and we focus on majoritarian rules.

The appeal of majority lies not only in its intuitive definition and

extensive application in real-world scenarios, but also on having

been widely studied in the related fields of voting theory and judg-

ment aggregation [2, 17]. When moving to goal-based voting many

definitions of majority are possible. The three adaptations studied
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here strike a balance between different needs: that of providing a

resolute result, and that of treating each issue independently while

still considering the complex structure of propositional goals.

Each of these majoritarian goal-based voting rules is analyzed

with respect to their resistance to several manipulation strategies.

Negative results, i.e., finding that a rule can be manipulated in the

general case, lead us to study the computational complexity of

manipulation, as well as restricting the language of individual goals

in the hope of discovering niches of strategy-proofness.

2 FORMAL FRAMEWORK
We recall the framework of goal-based voting by Novaro et al. [18].

A group of agents, represented by setN = {1, . . . ,n}, has to take
a collective decision over a number of issues, represented by set

I = {1, . . . ,m} of propositional variables. We letLI be the proposi-

tional language over the atoms in I, with the usual boolean connec-

tives. Agent i expresses her individual goal by a consistent proposi-

tional formula γi of LI . The languages L
⋆
for ⋆ ∈ {∧,∨, ⊕}, de-

fined by the following BNF grammars φ := p | ¬p | φ⋆φ, represent
restrictions on the language of goals. A goal-profile Γ = (γ1, . . . ,γn )
collects the goals of all n agents.

An interpretation or alternative is a function v : I → {0, 1}

associating a binary value with each variable in I, where 0 means

the issue is rejected and 1 that is accepted. We assume that there

is no integrity constraint: all interpretations over the issues are

allowed. We write v |= φ to indicate that interpretation v makes

φ true (i.e., v is a model of φ) and the set Mod(φ) = {v | v |= φ}
contains all the models of formulaφ. We denote the choices of agent

i for issue j in the models of her goal γi asvi (j ) = (m1

i j ,m
0

i j ), where

mx
i j = |{v ∈ Mod(γi ) | v (j ) = x }| for x ∈ {0, 1}. Abusing notation,

we let vi (j ) = x in case |Mod(γi )| = 1 andmx
i j = 1.

A goal-based voting rule is a function for any n andm defined

as F : (LI )
n → P ({0, 1}m ) \ {∅}. If on every goal-profile F returns

a singleton we call the rule resolute, and irresolute otherwise. The

total number of acceptances and rejections of issue j in the outcome

of F (Γ) are defined as F (Γ)j = (F (Γ)0j , F (Γ)
1

j ), where F (Γ)
x
j = |{v ∈

F (Γ) | vj = x }| for x ∈ {0, 1}. In case we have F (Γ)xj = 0, we write

F (Γ)j = 1 − x for simplicity.

The following are three variants of issue-wise majority de-

fined for goal-based voting [18]. Firstly, EMaj interprets major-

ity as the quota rule that accepts an issue if and only if more
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than half of the total number of votes are in its favor. Formally,

EMaj(Γ)j = 1 iff

∑
i ∈N (

∑
v ∈Mod(γi )

v (j )
|Mod(γi ) |

) ≥ ⌈n+1
2
⌉. To

guarantee equality among agents submitting formulas having a

varying number of models, EMaj weights each model of an agent’s

goal inversely proportional to the total number of models of her

goal.

Secondly, TrueMaj compares the total acceptances with the total

rejections for an issue, setting the result to 1 (respectively, 0) if it is

higher (respectively, lower) and to both 0 and 1 when tied. Formally,

TrueMaj(Γ) = Πj ∈IM(Γ)j where for all j ∈ I:

M(Γ)j =



{x } if

∑
i ∈N

mx
i j

|Mod(γi ) |
>
∑
i ∈N

m1−x
i j

|Mod(γi ) |
{0, 1} otherwise

As with EMaj, the models of an individual goal are weighted in-

versely to the total number of models for that goal.

Finally, 2sMaj first applies majority to the models of the agents’

individual goals, and then again to the result of the first step of ag-

gregation, i.e., 2sMaj(Γ) = Maj(Maj(Mod(γ1)), . . . ,Maj(Mod(γn ))).

3 MANIPULATION OF MAJORITY RULES
The induced preference relation on the alternatives is dichotomous:

agents equally prefer any model of their goal to any counter-model.

As for irresolute rules the outcome may be a set of interpretations,

different notions of satisfaction could be defined depending on how

an agent compares two sets of interpretations.

Let sat : LI × (P ({0, 1}
m ) \ ∅) → [0, 1] be a function expressing

the satisfaction of agent i towards the outcome of a rule F on profile

Γ. To simplify, we write sat(i, F (Γ)) instead of sat(γi , F (Γ)). The
preference of agent i over outcomes is then defined as a complete

and transitive relation≼i , whose strict part is ≺i , such that F (Γ) ≼i
F (Γ′) iff sat(i, F (Γ)) ≥ sat(i, F (Γ′)).

For Γ = (γi )i ∈N , let (Γ−i ,γ
′
i ) = Γ′ = (γ1, . . . ,γ

′
i , . . . ,γn ) be the

profile where only agent i changed her goal from γi to γ
′
i . Agent

i has an incentive to manipulate by submitting goal γ ′i in place of

goal γi if and only if F (Γ−i ,γ ′i ) ≺i F (Γ). A rule F is strategy-proof if

and only if for all profiles Γ there is no agent i who has an incentive

to manipulate.

Everaere et al. [9] propose three manipulation strategies an agent

i may perform depending on how much they are allowed to deviate

from their truthful goal: unrestricted when i can send any γ ′i instead
of her truthful γi , erosion when i can only send a γ ′i such that

Mod(γ ′i ) ⊆ Mod(γi ) and dilatation when i can send only a γ ′i such
that Mod(γi ) ⊆ Mod(γ ′i ). If a rule can be manipulated by erosion or

dilatation it is manipulable in the general case, while if it is strategy-

proof for unrestricted manipulation it is also strategy-proof for

erosion and dilatation.

The issue-wise majority rule is known to be strategy-proof in the

context of judgment aggregation [3], while this is not true anymore

when moving to propositional goals:

Theorem 3.1. EMaj, TrueMaj and 2sMaj can be manipulated by

both erosion and dilatation.

Since strategy-proofness cannot be guaranteed in general, we

study the manipulability of the proposed rules when the agents’

L∧ L∨ L⊕

E D E D E D

EMaj SP SP M SP M M

TrueMaj SP SP M SP M M

2sMaj SP SP SP SP M M

Table 1: E stands for erosion, D for dilatation, SP for strategy-proof

and M for manipulable.

goals are restricted to conjunctions (corresponding to the frame-

work of judgment aggregation with abstentions [4, 5]), disjunctions

or exclusive disjunctions. Our results are summarized in Table 1.

4 COMPLEXITY OF MANIPULATION
We also study how computationally difficult would it be for an agent

to find a goal allowing them to get a better outcome for the rules

EMaj and 2sMaj. The formal definition of the Manip(F ) problem
is in line with analogous work in judgment aggregation [8]: the

input is a profile Γ and an agent i , and the question is whether

there is a γ ′i such that F (Γ−i ,γ ′i ) ≺i F (Γ). Let pp, for Probabilistic
Polynomial Time, be the class of problems that can be solved in

nondeterministic polynomial time with acceptance condition that

more than half of the computations accept. We show that:

Theorem 4.1. Manip(2sMaj) and Manip(EMaj) are PP-hard.

5 RELATEDWORK AND CONCLUSIONS
The literature on combinatorial voting (see, e.g., the chapter by

Lang and Xia [16]) provides solutions to tackle the combinatorial

explosion entailed by the structure of the alternatives, such as vot-

ing sequentially over issues using tractable voting rules. The work

of Lang [15] on voting in multi-issue domains with compactly rep-

resented preferences is the starting point of our considerations.

Propositional goals are perhaps the simplest compact language for

preferences, linked to the literature on social choice with dichoto-

mous preferences [6, 7]. The framework of belief merging [13, 14],

also studies the aggregation of propositional formulas, focusing on

aggregators satisfying a set of desirable properties inspired from be-

lief revision. Closely related work is the study of strategy-proofness

in judgment aggregation [3, 8], where the input is a complete bi-

nary choice over all issues rather than a propositional goal, as well

as in belief merging [9]. Manipulation of voting rules has been

amply studied in voting theory, starting from the seminal result of

Gibbard and Satterthwaite [10, 19] to more recent studies aimed at

finding barriers to manipulation (see, e.g., the survey by Conitzer

and Walsh [1]). Propositional goals in a strategic setting have been

extensively studied in the literature on boolean games [12, 21]. Here,

however, issues are not exclusively controlled by agents, a closer

model being that of aggregation games [11].

In this paper we studied the strategic component of the recent

framework of goal-based voting for three variants of issue-wise

majority [18]. We find that EMaj, TrueMaj and 2sMaj are manipula-

ble, even for erosion and dilatation strategies. As positive results,

an agent with a goal in the language of conjunctions cannot manip-

ulate, and for disjunctions TrueMaj and EMaj are only manipulable

by erosion. While not strategy-proof in general, these resolute ma-

jority rules are pp-hard for an agent to manipulate.
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