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ABSTRACT
An intelligent agent should be able to show different emotional
behaviours in different interaction situations to become believable
and establish close relationships with human counterparts. It is
widely accepted that personality and mood play an important role
in modulating emotions. However, current computational accounts
of emotion for intelligent agents do not effectively integrate the no-
tions of personality and mood in the process of emotion generation.
Previous attempts that have been made are mostly based on the
assumptions of the researcher, rather than on empirical data and
scientific validation. In this paper, we present the results of a novel
supervised machine learning approach used to train a network of
emotions that integrates the factors of personality and mood, which
provides a high emotion intensity prediction accuracy.
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1 INTRODUCTION
Researchers have identified that emotionality is an inevitable as-
pect of an intelligent agent required for it to become believable
while interacting with humans [2, 17] and to maintain a long term
relationship [4]. If an agent is able to generate and express situation-
congruent emotions, people can find the interaction more engaging
and believable than interacting with a lifeless machine that shows
unemotional responses through text or a monotonous voice [4].

However, emotion is not an isolated phenomenon. Literature
suggests that the mechanism of emotion processing is influenced
by individual-specific factors such as personality [5, 27, 31] and
mood [19, 21]. It is important to model the influence of such factors
in emotion generation mechanisms of artificial agents, since in
practical applications, an intelligent agent should exhibit relevant
emotional responses and different action tendency if it is to be
employed in wide range of human-centred situations. For example,
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an intelligent agent intended to be employed as a personal devel-
opment assistant is desirable to have an organised and systematic
characteristic that conveys competence. As such, the agent might
have to express disappointment or similar emotions if the person
under training ignores some important scheduled activity. However,
if the agent is to be deployed as an emotional support companion,
then it may be preferable to forgive such a minor ignorance – hence
it is desirable to have an easy going nature. Similarly, mood can
also play an important role in modulating the emotional responses
of the agent. For example, consider a hypothetical situation where
an agent is in positive mood state (based on its recent human inter-
action experience). The agent might easily forgive an insult from
the human interacting with it, while it may not do so if it is in
negative mood state. The above examples show only a few of many
situations where personality and mood can substantially influence
the process of emotion generation during human-agent interaction.

In this paper, we present the results of emotion prediction accu-
racy demonstrated by our computational model of emotion – EEGS
[22–25]. EEGS integrates the aspects of mood and personality using
a machine learning technique called stochastic gradient descent
[3]. In the past, there have been remarkable contributions in the
field of modelling emotion ( see for example [1, 6–8, 10–15, 20, 30]).
However, unlike existing models of emotion processing, which nor-
mally justify the fine-tuning of personality and mood factors with
the analysis of emotion literature, we suggest to train such factors
by using machine learning approach. We train our model with a
dataset gathered from human participants assessing personality,
mood and emotion factors in a given situation and use the trained
model to predict the emotion intensities.

2 EMOTION PREDICTION MECHANISM
A total of 47 unique responses were obtained from Amazon Me-
chanical Turk survey (male = 31 and female = 16). The data collected
was reformatted to create a machine learning suitable data table
with the following columns.

v1 v2 ... vk O C E A N M e

where, v1, v2, ... vk indicate the appraisal variables [16, 26, 29],
which are used to denote how the situation is evaluated by the
target of interaction. O , C , E, A and N denote the five personality
factors of openness, conscientiousness, extroversion, agreeableness
and neuroticism respectively [9].M denotes the mood factor. e de-
notes the intensity of the emotion. Because of the complex nature
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Table 1: Intensity prediction accuracy in EEGS.

Emotion x̄ Accuracy x̃ Accuracy σ

joy 79.2% 83.4% 0.151
distress 73.4% 76.1% 0.187
appreciation 81.1% 84.2% 0.145
reproach 77.0% 81.8% 0.199
gratitude 79.1% 82.1% 0.152
anger 76.3% 80.2% 0.190
liking 80.8% 83.7% 0.148
disliking 77.7% 82.9% 0.191
Overall 78.1% 82.2% 0.173

of each emotion and to allow the methodology to be applicable in
any artificial agent having any number of emotions, we ran the
training algorithm for each emotion type separately i.e. links asso-
ciated with a particular emotion (say joy) were trained separate to
other emotions types. This offered simplicity in the training pro-
cess and helped in avoidance of probable learning errors. Therefore,
a separate dataset was created for each emotion type. For each
emotion, the set of {v1 v2 ... vk O C E A N M} was used
as the input features. As the survey scenario had 11 core emotion
inducing actions and 47 unique responses, we ended up having a
dataset containing 517 (=11 x 47) rows for each emotion type.

Out of the total data rows, 70% of the rows i.e. 362 rows were used
for training the network and remaining 30% selected in random
order were used to test the accuracy of the trained network i.e. 155
rows in test dataset. For each emotion type, the algorithm was used
for 100 epochs. Thus, one complete training session consisted of
100 * 362 = 36,200 weights update (iterations).

3 RESULTS AND CONCLUSION
Table 1 shows the overall accuracy in prediction of the inten-
sities of various emotions in EEGS. The accuracy of each emo-
tion represents the combined intensity prediction accuracy of that
emotion over the 10 testing sessions after the completion of the
corresponding training process. Since each testing data set con-
sisted for 155 rows, the overall accuracy for each emotion shown
in Table 1 represents a comparison 1,550 accuracy tests (where,
error = |tarдetintensity − predictedintensity |). It is evident from
the table that the mean accuracy (x̄ ) in the prediction of the inten-
sity of various emotions ranged from 73.4% for distress emotion to
81.1% for appreciation emotion with an average mean accuracy of
78.1% for all the emotions considered. Likewise, median accuracy
(x̃ ) ranged from 76.1% for distress emotion to 84.2% for appreciation
emotion with an average median accuracy of 82.2% when all the
emotions were considered. For each emotion, the standard deviation
(σ ) of the prediction accuracy for individual emotions was minimal
ranging from 0.145 to 0.199 with an average of 0.173 for all the
emotions together. It is a promising outcome where the accuracy
in intensity prediction of all the emotions are quite close to each
other even if the model was trained separately for each emotion.

Although not common, use of machine learning approaches in
similar applications has been suggested by some other researchers.
However, the novelty of our work lies in the prediction of actual emo-
tion intensity instead of mere classification of emotions. For example,

Table 2: Classification accuracy obtained by [18].

Classification Type Average Accuracy
Positive/ Negative 93%
4 Emotion Clusters 60.5%
12 Emotion Classes 27.9%
Individual Emotion Intensity Not Performed

Meuleman and Scherer [18] also used ISEAR data collected from
the Geneva Emotion Analyst [28] for training a model to predict
emotion classes based on appraisals rated by human participants.
Meuleman and Scherer [18] conducted three types of classification
tasks. First, they tested the accuracy in differentiating positive and
negative emotions. Second, they tested the accuracy in differen-
tiating four emotion clusters (happiness, anger, shame/guilt and
distress). Third, they tested the accuracy in differentiating the 12
emotion classes namely sadness, fear, despair, anxiety, shame, guilt,
rage, disgust, irritation, joy, pleasure, and pride. The best accuracy
achieved in each of the above tasks were 93%, 60.5% and 27.9%
respectively. As evident from Table 2, the classification accuracy
in the study of Meuleman and Scherer [18] dropped significantly
as the requirement of the task specificity increased. They have not
performed the ‘intensity prediction test’ in their study because the
utilised data set lacks the continious intensity values for the emo-
tion classes – instead a mere binary activation is available. Given
the difference of their task (classification) with our task (regres-
sion of emotion intensities) it is not possible to make an exact and
reliable comparison of the two sets of accuracies. However, if we
assume that by regressing the elicited emotion intensities for each
input interaction we can also gather a valid cue to classify such
interaction in a single emotional class, we can view their classifi-
cation task as closely related to our regression one even though
the results are not easy to compare. The ISEAR data set used by
Meuleman and Scherer [18] can not be directly utilised in the train-
ing and validation of the appraisal-emotion mapping of our model,
EEGS, because (i) ISEAR data consists of the appraisals proposed by
Scherer [29] that can not be seamlessly matched with the appraisal
variables offered by the OCC theory [26], which forms the basis of
our implementation, and (ii) the goal of current research is not only
to establish a quantitative relationship between appraisal variables
and emotions (which is still not fully offered by Meuleman and
Scherer [18]) but also to integrate the aspects of personality and
mood in the mapping process. As such, a notable contribution of
our research is a new approach that allows to establish a quantitative
association between appraisal variables and emotions by ‘learning’
the degree by which other human factors influence this association
(such as personality and mood) – which has not yet been provided
by past research.

In summary, this paper presents the results of emotion intensity
prediction exhibited by our computational emotion model, EEGS
[22–25]. Our work is the first of its kind which attempts to predict
the actual emotion intensity based on data collected from humans
and also provides a benchmark for future researchers.
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