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ABSTRACT
Network flow games are a prominent model for team formation,

where a commodity can flow through a network whose edges are

controlled by selfish agents. In Threshold Network Flow Games

(TNFGs), an agent team is successful if the flow it can achieve

between a source and target vertices meets or exceeds a certain

threshold. Cooperative game theory allows predicting how agents

are likely to share the the joint reward in such settings, by applying

solution concepts such as the core, which characterizes stable re-

ward distributions. When TNFGs have empty cores, every reward

distribution is somewhat unstable, which requires using a relaxed

solution such as the least-core to find the most stable distribution.

Earlier work showed that computing the least-core in TNFGs is

computationally hard, but tractable for very restricted graphs, such

as layer graphs. We extend these results, presenting polynomial

algorithms for the much larger class of bounded-treewidth graphs.

KEYWORDS
Network Flow Games; Least Core

ACM Reference Format:
Aldo Pacchiano and Yoram Bachrach. 2019. Computing Stable Solutions in

Threshold Network Flow Games With Bounded Treewidth. In Proc. of the
18th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2019), Montreal, Canada, May 13–17, 2019, IFAAMAS, 3 pages.

1 INTRODUCTION
When multiple agents inhabit the same environment, their actions

affect one another. Game theory characterizes the possible out-

comes in such settings, examining many domains including secu-

rity [25, 30, 31], trade [8, 10, 17, 32], mechanism design [21, 24, 28],

voting [2, 7, 33] and negotiation [1, 11, 12]. When no individual

agent can accomplish a task on their own, agents must form a team

to achieve the goal and may interact trying to negotiate the reward

allocation [14, 18, 27]. An agent who gets a low share of the reward

in one team may be tempted to join another team offering them

a higher reward [9, 16, 22]. Thus, a stable coalition can only be

formed if the resulting gains are distributed appropriately. Game

theory suggests ways to distribute gains, formalized in cooperative
solution concepts such as the core [15], and least-core [23].

A transferable utility coalitional game is composed of a set of n
agents, I = {1, 2, . . . ,n}, and a characteristic function mapping
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any subset (coalition) of the agents to a rational value v : 2
I →

Q, indicating the total utility these agents achieve together.The

characteristic function only defines the gains a coalition achieves,

but does not indicate how they are to be distributed among the

coalition’s agents. An imputation (p1, . . . ,pn ) is a division of the

gains of the grand coalition I among the agents, where pi ≥ 0, such

that

∑n
i=1 pi = v(I ). We call pi the payoff of agent i , and denote

the payoff of a coalition C as p(C) =
∑
i ∈C pi . We say a coalition

B blocks the payoff vector (p1, . . . ,pn ) if p(B) < v(B), since B’s
members can split from the original coalition, derive the gains of

v(B) in the game, give each member i ∈ B its previous gains pi ,
and still some utility remains, so each member can get more utility.

If a blocked payoff vector is chosen, the coalition is unstable. A

prominent solution focusing on stability is the core [15]. The core of
a game is the set of all imputations (p1, . . . ,pn ) that are not blocked
by any coalition, so that for any coalition C , we have: p(C) ≥ v(C).
The ϵ-core is the set of all imputations (p1, . . . ,pn ) such that for

any coalition C ⊆ I , p(C) ≥ v(C) − ϵ . Given an imputation p,
the excess of C is the difference between C’s value and payoff:

e(C) = v(C) − p(C). A natural question is finding the smallest ϵ
such that the ϵ-core is non-empty, known as the least-core.

2 THE LEAST-CORE IN TNFGS
Network Flow Games (NFGs) model team formation among selfish

agents trying to maximize the flow between a source and a target

in a network [4, 19, 20]. A flow network consists of a directed graph

G = ⟨V ,E⟩with capacities on the edges c : E → Q+, a distinguished
source vertex s ∈ V and a target (sink) vertex t ∈ V . A network flow

is a function f : E → Q+ which obeys the capacity constraints and

conserves total zero flow at each vertex except s, t .
A threshold network flow domain consists of a network flow

graph G = ⟨V ,E⟩, with capacities on the edges c : E → Q, a source
vertex s , a target vertex t , and a set I of agents, where agent i
controls the edge ei ∈ E, and flow threshold k . A coalition C ⊆ I ,
controls the edges EC = {ei |i ∈ C}. Given a coalition C we denote

byGC = ⟨V ,EC ⟩ the induced graph where the only edges are those

that belong to the agents in C . We denote by fC the maximum

flow between s and t in GC . In a threshold network flow game
(TNFG), a coalitionC wins if it can achieve a k-flow between s and
t and loses otherwise. The characteristic function of the game,v(C)
is 1 if fC ≥ k , so EC allows a flow of k from s to t and 0 otherwise.

Maximal Excess in TNFGS: One key question given a TNFG

is determining the degree of stability a certain imputation p =
(p1, . . . ,pn ) achieves, as measured by the excess, the maximal in-

centive any sub-coalition has to deviate and call the problem of
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computing itME (Maximal Excess). While core related problems

can be tractably solved for Cardinal NFGs [19, 20], the threshold
version of TNFGs is computationally more difficult.

Despite hardness results for computing the least-core in TNFGs,

polynomial algorithms have been proposed for two very restricted

classes of TNFGs: where all the edges have the same capacity, and

where the network topology is of a layer graph with bounded de-

grees and bounded integer capacities [3]. We extend these results

to graphs which have a bounded treewidth. The treewidth of a

graph is a parameter which describes the “locality” of interaction

in a graph [5, 6]. Our method is a “fixed-parameter traclable” ap-

proach [13], meaning that it works on any graph but its runtime

is exponential in the treewidth of the network, so it only has a

polynomial runtime for graphs whose treewidth is bounded by a

low constant. In particular, as series-parallel graphs, outerplanar

graphs and Halin graphs all have a treewidth of at most 3, our

approach works for these types of networks in polynomial time.

Earlier work has uncovered an relation between finding a maxi-

mal excess coalition in a TNFG and a variant of the min-cost flow

problem. In the All-Or-Nothing Min-Cost Flow problem we are

given a network flow domain and a target flow k , and edge cost

vector X ∈ RE with X = {xe }e ∈E . The All-Or-Nothing cost (AON-

cost) of an edge subset C is the total cost of edges with a non-zero

flow. In the AON Min-Cost Flow problem we are asked to find a

k-flow of a minimal AON cost (i.e. a flow f of minimal AON cost

whose magnitude is at least k). Earlier work shows that the maximal

excess problem ME is equivalent to AON Min-Cost Flow [3].

3 AON MIN-COST FLOW IN BOUNDED
TREEWIDTH GRAPHS

We provide an algorithm for the computation of the ϵ−core of TN-
FGs on bounded treewidth and bounded integer capacities networks.

Our method belongs to the class of Fixed Parameter Tractable algo-

rithms. Bounded treewidth is a common structural assumption in

the analysis of graph based algorithms that allows to prove tractable

running times for special classes of graphs.

Definition 3.1. A Flow Tree decomposition of a graph G = (V ,E)
- directed or indirected- is a pair (T ,X) where T is a tree and

X = {Xi |Xi ⊆ V , i vertex ∈ T } is a family of subsets of V for

which the Tree Decomposition conditions hold (see [26]), and:

(1) T is a rooted binary tree

(2) There are four types of nodes: introduce nodes, forget nodes,
leaf nodes and join nodes.

(a) i is an introduce node if it has only one child j and Xi =
X j ∪ {v} for some v ∈ V \X j .

(b) i is a forget node if it has only one child j andXi∪{v} = X j .

(c) i is called a join node if it has two children j,h such that

Xi = X j = Xh .
(d) i is a leaf node if it does not have any child andXi consists

of a node u together with a subset of its neighborhood.

(3) Each of the sets corresponding to leaves of (T ,X) is an edge

of G. No two leaves have the same associated edge.

The width of a decomposition is the maximum size of a subset of

X. The treewidth ofG is the minimum width of all decompositions.

3.1 An Algorithm for AON Min-Cost Flow
Our first step is defining an auxiliary problem, the AON -Min-

Cost-Circulation and show AON-Min-Cost-Flow can be reduced

to it. A circulation is a flow vector such that for all vertices in the

network the inflow equals the outflow. Our algorithm first builds a

Flow Tree Decomposition (T ,X) of the input graph and constructs

tables of partial solutions {P}i ∈T via upward propagation through

T . It pastes these partial solutions into a global one. The way in

which it does this depends on the type of the node in the Flow

Tree Decomposition. We get a polynomial algorithm for bounded

treewidth graphs for the AONmin flow problem. If exists, a solution

can be recovered by backtracking through reconstruction maps.

Algorithm 2. AON-Min-Cost-Circulation Algorithm for bounded

treewidth graphs with bounded integer capacities.

Inputs: Graph G, flow parameter k , special nodes, s, t .

(1) Construct a Flow Tree Decomposition (T ,X ) for G.
(2) Set the flow from s to t equal to k .
(3) Construct tables of partial solutions for each of the nodes

i ∈ T starting by the leaves and propagating the solutions

upwards via the procedures outlined above depending on

the type of node (Forget, Introduce or Join).

(4) If r is the root of T , the AON min cost k-circulation over G
equals the min cost among all valid partial solutions.

(5) Reconstruct theminAON costk−circulation by backtracking
through the reconstruction maps.

3.2 Algorithm Runtime
Letw be the treewidth of the input graph. For any edge e let Ce be

its maximum allowed flow. We callCG = maxe ∈E Ce the maximum

capacity over all the edges in E, and dG the maximum degree of G.
If it exists, a Flow Tree Decomposition (T ,X) of G can be built

in linear time [29] ensuring |T | is linear in |G |. Step 3 is the in-

tensive part of the Algorithm 2 and has a runtime of O(|T |Cw
2

G ∗

(CG ∗ dG )
2w ) with a memory use of O(Cw

2

G ∗ (CG ∗ dG )
w |T |) for

the partial solutions tables and reconstruction maps of each node of

T . Whenever ω is a constant, the runtime of our algorithm is poly-

nomial on |G | and CG . Since there is an equivalence between the

AON Min-Cost Flow problem and theME problem in TNFGs [3]:

Corollary 3.2. ME is in P for TNFGs over bounded treewidth
graphs with bounded integer capacities.

4 CONCLUSIONS
We extend existing positive results regarding the least-core in TN-

FGs to a much larger class of graphs. Our approach relates to a

parameter of the graph called the treewidth, relating to the “locality”

of interaction between nodes [5]. Our method can compute the least

core of TNFGs with bounded treewidth in polynomial time. It also

works for general graphs, in which case its runtime is exponential

in the treewidth of the graph. We also provide simulation results for

geometric graphs and duplication divergence graphs, which model

realistic traffic networks with spatially local interaction, showing

that our approach scales well to such networks eventhough their

have unbounded treewidth.
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