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ABSTRACT
Probabilistic argumentation allows reasoning about argumentation

problems in a way that is well-founded by probability theory. How-

ever, in practice, this approach can be severely limited by the fact

that probabilities are computed by adding an exponential number

of terms. We show that this exponential blowup can be avoided in

an interesting fragment of epistemic probabilistic argumentation

and that some computational problems that have been considered

intractable can be solved in polynomial time.
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1 INTRODUCTION
Abstract argumentation [5] studies the acceptability of arguments

independent of their content, just based on their relationships. Sev-

eral probabilistic extensions have been studied in recent years [4, 6–

8, 13, 14, 18, 19, 26–28, 30, 31]. We focus on the epistemic approach

to probabilistic argumentation that evolved from work in [12, 29].

In this approach, probability functions over possible worlds assign

degrees of beliefs to arguments. Semantical constraints restrict

the possible degrees of beliefs based on the relationships between

arguments. For example, the probability of an argument can be

bounded from above based on the probabilities of its attackers or

bounded from below by the probability of its supporters. This is con-

ceptually similar to weighted argumentation frameworks, where

attack relations are supposed to decrease the strength of arguments,

whereas support relations are supposed to increase the strength

[1, 2, 20, 22, 25].

Two basic computational problems have been introduced in [16].

The satisfiability problem asks whether a given set of semantical

constraints over an argumentation graph can be satisfied. The en-
tailment problem is to answer queries about the probability of argu-

ments. Based on their close relationship to problems considered in

probabilistic reasoning, it has been conjectured that these problems

are intractable. However, as we will explain, both problems can be
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Figure 1: A simple example BAF.

solved in polynomial time. The reason is that they consider only

atomic probability statements. Therefore, reasoning with proba-

bility functions over possible worlds turns out to be equivalent to

reasoning with functions that assign probabilities to arguments

directly. We call these functions probability labellings as they can be

seen as generalizations of labellings in classical abstract argumen-

tation [3] that, intuitively, label arguments as rejected (probability

0), accepted (probability 1) or undecided (probability 0.5).

2 BACKGROUND AND MAIN RESULTS
We consider bipolar argumentation frameworks (BAFs) (A,R,S)

consisting of a set of arguments A, an attack relation R ⊆ A × A

and a support relation S ⊆ A ×A. Att(A) = {B ∈ A | (B,A) ∈ R}

denotes the set of attackers of an argument A and Sup(A) = {B ∈

A | (B,A) ∈ S} denotes its supporters. We visualize BAFs by

graphs, where nodes denote arguments, solid edges denote attacks

and dashed edges denote supports. Figure 1 shows an example.

A possible world is a subset of argumentsw ⊆ A. Intuitively,w
contains the arguments that are accepted. 2

A
denotes the set of

all subsets of A, that is, the set of all possible worlds. In order to

talk about agents’ beliefs in arguments, we consider probability

functions P : 2
A → [0, 1] such that

∑
w ∈2A P(w) = 1. PA denotes

the set of all probability functions over A. The probability of an

argument A ∈ A under P is defined by adding the probabilities of

all worlds in which A is accepted, that is, P(A) =
∑
w ∈2A ,A∈w P(w).

Semantics are given to attack and support relations via semanti-

cal constraints. For the satisfiability and entailment problem in [16],

the following constraints have been considered (for attack-only

graphs).

COH: P is called coherent if for all A,B ∈ A with (A,B) ∈ R,

we have P(B) ≤ 1 − P(A).
SFOU: P is called semi-founded if P(A) ≥ 0.5 for all A ∈ A

with Att(A) = ∅.

FOU: P is called founded if P(A) = 1 for all A ∈ A with

Att(A) = ∅.

SOPT: P is called semi-optimistic if P(A) ≥ 1 −
∑
B∈Att(A) P(B)

for all A ∈ A with Att(A) , ∅.

OPT: P is called optimistic if P(A) ≥ 1 −
∑
B∈Att(A) P(B).

JUS: P is called justifiable if P is coherent and optimistic.
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The intuition for these constraints comes from the idea that prob-

ability 0.5 represents indifference, whereas probabilities smaller

(larger) than 0.5 tend towards rejectance (acceptance). Coherence

imposes an upper bound on the beliefs in arguments based on the be-

liefs in their attackers. Semi-Foundedness says that an agent should

not reject an unattacked argument. Foundedness even demands

that such an argument should be fully accepted. Semi-optimistic

and Optimistic give lower bounds on the beliefs in an argument

based on the beliefs in its attackers. Usually, not all constraints

are employed, but a subset is selected that seems reasonable for a

particular application.

Example 2.1. If we demand COH and FOU for the BAF in Figure

1, we get P(C) = 1 and P(D) = 1 from FOU. From COH, we get

P(B) ≤ 1 − P(D). Together, this also implies P(B) = 0.

We can define dual constraints for support-only graphs by re-

placing R with S, probability (1 − p) with p, ≤ with ≥ and vice

versa. The following two constraints are dual to COH and OPT.

S-COH: P is called s-coherent if for all A,B ∈ A with (A,B) ∈
S, we have P(B) ≥ P(A).

PES: P is called pessimistic if P(A) ≤
∑
B∈Sup(A) P(B).

Example 2.2. If we add S-COH to our previous example, we

get P(C) ≥ P(D) and P(A) ≥ P(C). Since we already know that

P(C) = 1, we can conclude P(A) = 1.

If both attack and support relations are present, one may want

to consider more flexible constraints that take account of both at-

tackers and supporters simultaneously. In order to do so, a general

constraint language has been introduced recently that incorpo-

rates all of the previous examples [15]. We consider only a simple

fragment of this language. Our fragment still captures the previ-

ous examples and, in particular, gives us polynomial performance

guarantees.

Definition 2.3 (Linear Atomic Constraint, Satisfiability). A linear
atomic constraint is an expression of the form

∑n
i=1 ci · π (Ai ) ≤ c0,

whereAi ∈ A and ci ∈ Q. A probability function P satisfies a linear

atomic constraint iff

∑n
i=1 ci · P(Ai ) ≤ c0. P satisfies a set of linear

atomic constraints C, denoted as P |= C, iff it satisfies all l ∈ C .

Note that ≥ and = can be expressed as well. For ≥, just note that∑n
i=1 ci · π (Ai ) ≤ c0 is equivalent to

∑n
i=1 −ci · π (Ai ) ≥ −c0. For =,

note that

∑n
i=1 ci · π (Ai ) ≤ c0 and

∑n
i=1 ci · π (Ai ) ≥ c0 together are

equivalent to

∑n
i=1 ci · π (Ai ) = c0. We merely restrict our language

to constraints with ≤ in order to keep the notation simple. All

semantical constraints that we mentioned before are indeed linear

atomic constraints.

The following two computational problems generalize the prob-

lems from [16] to arbitrary linear atomic constraints over bipolar

argumentation frameworks.

PArgAtSAT: Given a finite set of linear atomic constraints C ,
decide whether C is satisfiable.

PArgAtENT: Given a finite set of satisfiable linear atomic con-

straintsC and an argumentA, compute tight lower and upper

bounds on the probability of A. Formally, solve the two opti-

mization problems: minP ∈PA
/maxP ∈PA

{P(A) | P |= C}.

In our naming scheme, PArg stands for probabilistic argumenta-

tion, At for the restriction to linear atomic constraints and SAT

and ENT stand for satisfiability and entailment, respectively. The

computational problems from [15] also allowed partial probabil-

ity assignments (fixing the probability of some arguments), but

these partial assignments can just be seen as simple linear atomic

constraints.

Example 2.4. Consider the BAF in Figure 1. Say our partial prob-

ability assignment assigns probability 1 to B and 0 to C . These
assignments correspond to the two linear constraints π (B) = 1

and π (C) = 0. Say we also impose COH. Then, we additionally

have the constraints π (A) + π (B) ≤ 1 and π (B) + π (D) ≤ 1. Taken

together, these constraints imply that every probability function P
that satisfies all constraints, must satisfy P(B) = 1, P(C) = 0 (partial

assignment constraints), P(A) = 0 and P(D) = 0 (follow with co-

herence constraints). Note that when also adding the foundedness

constraints π (C) = 1 and π (D) = 1, the set of constraints becomes

unsatisfiable.

It has been conjectured that PArgAtSAT and PArgAtENT are in-

tractable because they are similar to intractable probabilistic reason-

ing problems studied in [11]. However, both problems can actually

be solved in polynomial time.

Theorem 2.5. PArgAtSAT and PArgAtENT can be solved in poly-
nomial time.

The algorithms and proofs can be found in [23]. What makes

PArgAtSAT and PArgAtENT easier than the probabilistic reasoning

problems in [11] is that they talk only about atomic beliefs and not

about beliefs in complex formulas. This allows us to replace prob-

ability functions over an exponential number of possible worlds

equivalently with probability labellings L : A → [0, 1] that as-

sign probabilities to arguments directly. Formally, this equivalence

can be shown by defining an equivalence relation over probabil-

ity functions and defining a bijective mapping from equivalence

classes of probability functions to probability labellings. The tech-

nical details can be found in [23]. Conceptually similar ideas have

been considered in probabilistic-logical reasoning [9, 10, 17, 21].

However, in this area, equivalence relations are introduced over

possible worlds and identifying compact representatives for these

equivalence classes remains intractable in general [24].

How far can our fragment be extended without loosing polyno-

mial runtime guarantees? Complexity results in [23] show that the

fragment cannot be extended very far. It is natural to suspect that

k-th order labellings L : Ak → [0, 1] that assign probabilities to

k-tuples of arguments could be used to work with complex formu-

las over k arguments efficiently. However, assuming, P , NP , this
idea cannot even be successful for k = 2. Intuitively, the labelling

approach cannot be applied for k > 1 efficiently because an expo-

nential number of marginal consistency constraints is needed in

order to establish a useful relationship betweenk-th order labellings
and probability functions, see [23] for the details.

Implementations for solving PArgAtSAT and PArgAtENT can be

found in the Java-library ProBabble.
1
Problems with thousands of

arguments can usually be solved within a few hundred milliseconds.

Without the labelling approach, the same amount of time would be

needed for 10-15 arguments already because the number of possible

worlds grows exponentially.

1
https://sourceforge.net/projects/probabble/
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